1
|
Wang Y, Yang X, Zhang S, Ai J, Wang J, Chen J, Zhao L, Wang W, You H. Comparative proteomics unveils the bacteriostatic mechanisms of Ga(III) on the regulation of metabolic pathways in Pseudomonas aeruginosa. J Proteomics 2023; 289:105011. [PMID: 37776994 DOI: 10.1016/j.jprot.2023.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Gallium has a long history as a chemotherapeutic agent. The mechanisms of action of Ga(III)-based anti-infectives are different from conventional antibiotics, which primarily result from the chemical similarities of Ga(III) with Fe(III) and substitution of gallium into iron-dependent biological pathways. However, more aspects of the molecular mechanisms of Ga(III) against human pathogens, especially the effects on bacterial metabolic processes, remain to be understood. Herein, by using conventional quantitative proteomics, we identified the protein changes of Pseudomonas aeruginosa (P. aeruginosa) in response to Ga(NO3)3 treatment. We show that Ga(III) exhibits bacteriostatic mode of action against P. aeruginosa through affecting the expressions of a number of key enzymes in the main metabolic pathways, including glycolysis, TCA cycle, amino acid metabolism, and protein and nucleic acid biosynthesis. In addition, decreased expressions of proteins associated with pathogenesis and virulence of P. aeruginosa were also identified. Moreover, the correlations between protein expressions and metabolome changes in P. aeruginosa upon Ga(III) treatment were identified and discussed. Our findings thus expand the understanding on the antimicrobial mechanisms of Ga(III) that shed light on enhanced therapeutic strategies. BIOLOGICAL SIGNIFICANCE: Mounting evidence suggest that the efficacy and resistance of clinical antibiotics are closely related to the metabolic homeostasis in bacterial pathogens. Ga(III)-based compounds have been repurposed as antibacterial therapeutic candidates against antibiotics resistant pathogens, and represent a safe and promising treatment for clinical human infections, while more thorough understandings of how bacteria respond to Ga(III) treatment are needed. In the present study, we provide evidences at the proteome level that indicate Ga(III)-induced metabolic perturbations in P. aeruginosa. We identified and discussed the interference of Ga(III) on the expressions and activities of enzymes in the main metabolic pathways in P. aeruginosa. In view of our previous report that the antimicrobial efficacy of Ga(III) could be modulated according to Ga(III)-induced metabolome changes in P. aeruginosa, our current analyses may provide theoretical basis at the proteome level for the development of efficient gallium-based therapies by exploiting bacterial metabolic mechanisms.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China.
| | - Xue Yang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Jiayi Ai
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Junteng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Junxin Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Wanying Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Haoxin You
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| |
Collapse
|
2
|
Calvo PA, Mateo-Cáceres V, Díaz-Arco S, Redrejo-Rodríguez M, de Vega M. The enterohemorrhagic Escherichia coli insertion sequence-excision enhancer protein is a DNA polymerase with microhomology-mediated end-joining activity. Nucleic Acids Res 2023; 51:1189-1207. [PMID: 36715333 PMCID: PMC9943667 DOI: 10.1093/nar/gkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial genomes contain an abundance of transposable insertion sequence (IS) elements that are essential for genome evolution and fitness. Among them, IS629 is present in most strains of enterohemorrhagic Escherichia coli O157 and accounts for many polymorphisms associated with gene inactivation and/or genomic deletions. The excision of IS629 from the genome is promoted by IS-excision enhancer (IEE) protein. Despite IEE has been identified in the most pathogenic serotypes of E. coli, its biochemical features that could explain its role in IS excision are not yet understood. We show that IEE is present in >30% of all available E. coli genome assemblies, and is highly conserved and very abundant within enterohemorrhagic, enteropathogenic and enterotoxigenic genomes. In vitro analysis of the recombinant protein from E. coli O157:H7 revealed the presence of a Mn2+-dependent error-prone DNA polymerase activity in its N-terminal archaeo-eukaryotic primase (AEP) domain able to promote dislocations of the primer and template strands. Importantly, IEE could efficiently perform in vitro an end-joining reaction of 3'-single-strand DNA overhangs with ≥4 bp of homology requiring both the N-terminal AEP and C-terminal helicase domains. The proposed role for IEE in the novel IS excision mechanism is discussed.
Collapse
Affiliation(s)
- Patricia A Calvo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, Madrid 28049, Spain
| | - Víctor Mateo-Cáceres
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Silvia Díaz-Arco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, Madrid 28049, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Miguel de Vega
- To whom correspondence should be addressed. Tel: +34 911964717; Fax: +34 911964420;
| |
Collapse
|
3
|
Sowa DJ, Warner MM, Tetenych A, Koechlin L, Balari P, Rascon Perez JP, Caba C, Andres SN. The Mycobacterium tuberculosis Ku C-terminus is a multi-purpose arm for binding DNA and LigD and stimulating ligation. Nucleic Acids Res 2022; 50:11040-11057. [PMID: 36250639 PMCID: PMC9638933 DOI: 10.1093/nar/gkac906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial non-homologous end joining requires the ligase, LigD and Ku. Ku finds the break site, recruits LigD, and then assists LigD to seal the phosphodiester backbone. Bacterial Ku contains a core domain conserved with eukaryotes but has a unique C-terminus that can be divided into a minimal C-terminal region that is conserved and an extended C-terminal region that varies in sequence and length between species. Here, we examine the role of Mycobacterium tuberculosis Ku C-terminal variants, where we removed either the extended or entire C-terminus to investigate the effects on Ku–DNA binding, rates of Ku-stimulated ligation, and binding affinity of a direct Ku–LigD interaction. We find that the extended C-terminus limits DNA binding and identify key amino acids that contribute to this effect through alanine-scanning mutagenesis. The minimal C-terminus is sufficient to stimulate ligation of double-stranded DNA, but the Ku core domain also contributes to stimulating ligation. We further show that wildtype Ku and the Ku core domain alone directly bind both ligase and polymerase domains of LigD. Our results suggest that Ku-stimulated ligation involves direct interactions between the Ku core domain and the LigD ligase domain, in addition to the extended Ku C-terminus and the LigD polymerase domain.
Collapse
Affiliation(s)
- Dana J Sowa
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Monica M Warner
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Andriana Tetenych
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Lucas Koechlin
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Pardis Balari
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Jose Pablo Rascon Perez
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Cody Caba
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sara N Andres
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
4
|
Sharaev N, Chacon-Machado L, Musharova O, Savitskaya E, Severinov K. Repair of Double-Stranded DNA Breaks Generated by CRISPR–Cas9 in Pseudomonas putida KT2440. Mol Biol 2022. [DOI: 10.1134/s0026893322060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Pseudomonas putida KT2440 is a metabolically versatile bacterium with considerable promise as a chassis strain for production and degradation of complex organic compounds. Unlike most bacteria, P. putida KT2440 encodes the Ku and LigD proteins involved in Non-Homologous End Joining (NHEJ). This pathway of repair of double-strand breaks (DSBs) in DNA has an intrinsic mutagenic potential that could be exploited in combination with currently available genome editing tools that generate programmable DSBs. Here, we investigated the effect of removal or overproduction of NHEJ-associated P. putida KT2440 enzymes on mutations generated upon repair of Cas9-mediated DSBs with the double purpose of characterizing the NHEJ pathway and investigating how it functionally interacts with the current gold standard tool for gene editing. The results of our work shed light on non-templated mechanisms of DSB repair in P. putida KT2440, an information that will serve as foundation to expand the gene engineering toolbox for this important microorganism.
Collapse
|
5
|
Amare B, Mo A, Khan N, Sowa DJ, Warner MM, Tetenych A, Andres SN. LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining. Front Mol Biosci 2021; 8:787709. [PMID: 34901162 PMCID: PMC8656161 DOI: 10.3389/fmolb.2021.787709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
DNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ requires proteins to anchor the DNA double-strand break, recruit additional repair proteins, and then depending on the damage at the DNA ends, fill in nucleotide gaps or add or remove phosphate groups before final ligation. In eukaryotes, NHEJ uses a multitude of proteins to carry out processing and ligation of the DNA double-strand break. Bacterial NHEJ, though, accomplishes repair primarily with only two proteins-Ku and LigD. While Ku binds the initial break and recruits LigD, it is LigD that is the primary DNA end processing machinery. Up to three enzymatic domains reside within LigD, dependent on the bacterial species. These domains are a polymerase domain, to fill in nucleotide gaps with a preference for ribonucleotide addition; a phosphoesterase domain, to generate a 3'-hydroxyl DNA end; and the ligase domain, to seal the phosphodiester backbone. To date, there are no experimental structures of wild-type LigD, but there are x-ray and nuclear magnetic resonance structures of the individual enzymatic domains from different bacteria and archaea, along with structural predictions of wild-type LigD via AlphaFold. In this review, we will examine the structures of the independent domains of LigD from different bacterial species and the contributions these structures have made to understanding the NHEJ repair mechanism. We will then examine how the experimental structures of the individual LigD enzymatic domains combine with structural predictions of LigD from different bacterial species and postulate how LigD coordinates multiple enzymatic activities to carry out DNA double-strand break repair in bacteria.
Collapse
Affiliation(s)
- Benhur Amare
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anthea Mo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Noorisah Khan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dana J. Sowa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Monica M. Warner
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Andriana Tetenych
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sara N. Andres
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Yang FY, Wei N, Zhang ZH, Wang M, Liu YC, Zhang LF, Gu F. Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnol Lett 2021; 43:2273-2281. [PMID: 34669078 DOI: 10.1007/s10529-021-03195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Corynebacterium glutamicum (C. glutamicum) has been harnessed for multi-million-ton scale production of glutamate and lysine. To further increase its amino acid production for fermentation industry, there is an acute need to develop next-generation genome manipulation tool for its metabolic engineering. All reported methods for genome editing triggered with CRISPR-Cas are based on the homologous recombination. While, it requires the generation of DNA repair template, which is a bottle-neck for its extensive application. RESULTS In this study, we developed a method for gene knockout in C. glutamicum via CRISPR-Cpf1-coupled non-homologous end-joining (CC-NHEJ). Specifically, CRISPR-Cpf1 introduced double-strand breaks in the genome of C. glutamicum, which was further repaired by ectopically expressed two NHEJ key proteins (Mycobacterium tuberculosis Ku and ligase D). We provide the proof of concept, for CC-NHEJ, by the successful knockout of the crtYf/e gene in C. glutamicum with the efficiency of 22.00 ± 5.56%, or something like that. CONCLUSION The present study reported a novel genome manipulation method for C. glutamicum.
Collapse
Affiliation(s)
- Fa-Yu Yang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Nan Wei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhi-Hao Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying-Chun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Li-Fang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
7
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
8
|
Finger-Bou M, Orsi E, van der Oost J, Staals RHJ. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnol J 2020; 15:e1900404. [PMID: 32558098 DOI: 10.1002/biot.201900404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Indexed: 12/18/2022]
Abstract
The exploration of microbial metabolism is expected to support the development of a sustainable economy and tackle several problems related to the burdens of human consumption. Microorganisms have the potential to catalyze processes that are currently unavailable, unsustainable and/or inefficient. Their metabolism can be optimized and further expanded using tools like the clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) systems. These tools have revolutionized the field of biotechnology, as they greatly streamline the genetic engineering of organisms from all domains of life. CRISPR-Cas and other nucleases mediate double-strand DNA breaks, which must be repaired to prevent cell death. In prokaryotes, these breaks can be repaired through either homologous recombination, when a DNA repair template is available, or through template-independent end joining, of which two major pathways are known. These end joining pathways depend on different sets of proteins and mediate DNA repair with different outcomes. Understanding these DNA repair pathways can be advantageous to steer the results of genome engineering experiments. In this review, we discuss different strategies for the genetic engineering of prokaryotes through either non-homologous end joining (NHEJ) or alternative end joining (AEJ), both of which are independent of exogenous DNA repair templates.
Collapse
Affiliation(s)
- Max Finger-Bou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
9
|
Ho J, Zhao M, Wojcik S, Taiaroa G, Butler M, Poulter R. The application of the CRISPR–Cas9 system in Pseudomonas syringae pv. actinidiae. J Med Microbiol 2020; 69:478-486. [DOI: 10.1099/jmm.0.001124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction.Pseudomonas syringaepv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world.Aim.We aim to introduce a CRISPR–Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in otherPseudomonasspecies.Methodology.Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR–Cas9 sequences fromStreptococcus pyogenes,for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in bothEscherichia coliand Psa.Results.We have constructed plasmids carrying a CRISPR–Cas9 system based on that ofS. pyogenes, which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR–Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in theP. syringaegenome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site.Conclusion.We have constructed shuttle plasmids carrying a CRISPR–Cas9 system that are maintained in bothE. coliandP. syringaepv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.
Collapse
Affiliation(s)
- Joycelyn Ho
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Min Zhao
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Samuel Wojcik
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Margi Butler
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Russell Poulter
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Sánchez-Salvador A, de Vega M. Structural Determinants Responsible for the Preferential Insertion of Ribonucleotides by Bacterial NHEJ PolDom. Biomolecules 2020; 10:biom10020203. [PMID: 32019147 PMCID: PMC7072297 DOI: 10.3390/biom10020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
The catalytic active site of the Polymerization Domain (PolDom) of bacterial Ligase D is designed to promote realignments of the primer and template strands and extend mispaired 3′ ends. These features, together with the preferred use of ribonucleotides (NTPs) over deoxynucleotides (dNTPs), allow PolDom to perform efficient double strand break repair by nonhomologous end joining when only a copy of the chromosome is present and the intracellular pool of dNTPs is depleted. Here, we evaluate (i) the role of conserved histidine and serine/threonine residues in NTP insertion, and (ii) the importance in the polymerization reaction of a conserved lysine residue that interacts with the templating nucleotide. To that extent, we have analyzed the biochemical properties of variants at the corresponding His651, Ser768, and Lys606 of Pseudomonas aeruginosa PolDom (Pa-PolDom). The results show that preferential insertion of NMPs is principally due to the histidine that also contributes to the plasticity of the active site to misinsert nucleotides. Additionally, Pa-PolDom Lys606 stabilizes primer dislocations. Finally, we show that the active site of PolDom allows the efficient use of 7,8-dihydro-8-oxo-riboguanosine triphosphate (8oxoGTP) as substrate, a major nucleotide lesion that results from oxidative stress, inserting with the same efficiency both the anti and syn conformations of 8oxoGMP.
Collapse
|
11
|
Bertrand C, Thibessard A, Bruand C, Lecointe F, Leblond P. Bacterial NHEJ: a never ending story. Mol Microbiol 2019; 111:1139-1151. [PMID: 30746801 DOI: 10.1111/mmi.14218] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Double-strand breaks (DSBs) are the most detrimental DNA damage encountered by bacterial cells. DBSs can be repaired by homologous recombination thanks to the availability of an intact DNA template or by Non-Homologous End Joining (NHEJ) when no intact template is available. Bacterial NHEJ is performed by sets of proteins of growing complexity from Bacillus subtilis and Mycobacterium tuberculosis to Streptomyces and Sinorhizobium meliloti. Here, we discuss the contribution of these models to the understanding of the bacterial NHEJ repair mechanism as well as the involvement of NHEJ partners in other DNA repair pathways. The importance of NHEJ and of its complexity is discussed in the perspective of regulation through the biological cycle of the bacteria and in response to environmental stimuli. Finally, we consider the role of NHEJ in genome evolution, notably in horizontal gene transfer.
Collapse
Affiliation(s)
- Claire Bertrand
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| | | | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pierre Leblond
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| |
Collapse
|
12
|
RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Cell Rep 2019; 21:3728-3739. [PMID: 29281823 PMCID: PMC5760271 DOI: 10.1016/j.celrep.2017.11.100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/13/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide bacteria and archaea with sequence-specific protection against invading mobile genetic elements. In the presence of divalent metal ions, Cas9 and Cas12a (formerly Cpf1) proteins target and cleave DNA that is complementary to a cognate guide RNA. The recognition of a protospacer adjacent motif (PAM) sequence in the target DNA by Cas9 and Cas12a is essential for cleavage. This RNA-guided DNA targeting is widely used for gene-editing methods. Here, we show that Francisella tularensis novicida (Fno) Cas12a, FnoCas9, and Streptococcus pyogenes Cas9 (SpyCas9) cleave DNA without a guide RNA in the presence of Mn2+ ions. Substrate requirements for the RNA-independent activity vary. FnoCas9 preferentially nicks double-stranded plasmid, SpyCas9 degrades single-stranded plasmid, and FnoCas12a cleaves both substrates. These observations suggest that the identities and levels of intracellular metals, along with the Cas9/Cas12a ortholog employed, could have significant impacts in genome editing applications.
Collapse
|
13
|
Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Appl Environ Microbiol 2018; 84:AEM.02608-17. [PMID: 29330178 DOI: 10.1128/aem.02608-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/23/2017] [Indexed: 01/20/2023] Open
Abstract
Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN, which codes for nattokinase in Bacillus subtilis, was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-SsacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-SsacC Finally, the engineered strain DWc9nΔ7 (Δepr ΔwprA Δmpr ΔaprE Δvpr ΔbprA ΔbacABC), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research.IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.
Collapse
|
14
|
Xu Y, Niu Y, Sun F, Yang Y, Luo W, Wang Z. The novel Pseudomonas putida plasmid p12969-2 harbors an In127-carrying multidrug-resistant region. Future Microbiol 2017; 12:573-584. [PMID: 28660784 DOI: 10.2217/fmb-2016-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: This study aims to characterize a multidrug-resistant (MDR) plasmid p12969-2 coexistent with the previously reported one p12969-DIM in clinical Pseudomonas putida. Materials & methods: The complete sequence of p12969-2 was determined using next-generation sequencing technology. Results: p12969-2 contains a 29.2 kb MDR region, which carries In127 harboring three resistance genes aadA2, qacED1 and sul1. The MDR region is derived from the connection of Tn5041D and Tn5045, which is facilitated by two copies of miniature inverted-repeat transposable element. Conclusion & future perspective: p12969-2 represents a novel lineage with the highest but limited nucleotide sequence similarity with the plasmid pGRT1 that does not carry any of the resistance genes. This is the first report of coexistence of two MDR plasmids in P. putida.
Collapse
Affiliation(s)
- Yang Xu
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yong Niu
- Criminal Investigation Bureau, Ministry of Public Security, Beijing 100741, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ying Yang
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology & Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
15
|
de Ory A, Nagler K, Carrasco B, Raguse M, Zafra O, Moeller R, de Vega M. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair. Nucleic Acids Res 2016; 44:1833-44. [PMID: 26826709 PMCID: PMC4770248 DOI: 10.1093/nar/gkw054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.
Collapse
Affiliation(s)
- Ana de Ory
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Katja Nagler
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Begoña Carrasco
- Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Darwin 3, 28049 Madrid, Spain
| | - Marina Raguse
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Olga Zafra
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Miguel de Vega
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
16
|
Williamson A, Hjerde E, Kahlke T. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'. Mol Microbiol 2015; 99:274-90. [PMID: 26412580 DOI: 10.1111/mmi.13229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
Abstract
Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Tim Kahlke
- CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia
| |
Collapse
|
17
|
Bartlett EJ, Brissett NC, Plocinski P, Carlberg T, Doherty AJ. Molecular basis for DNA strand displacement by NHEJ repair polymerases. Nucleic Acids Res 2015; 44:2173-86. [PMID: 26405198 PMCID: PMC4797286 DOI: 10.1093/nar/gkv965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair.
Collapse
Affiliation(s)
- Edward J Bartlett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Nigel C Brissett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Przemyslaw Plocinski
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Tom Carlberg
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| |
Collapse
|
18
|
Paris Ü, Mikkel K, Tavita K, Saumaa S, Teras R, Kivisaar M. NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2015; 31:11-8. [PMID: 25942369 DOI: 10.1016/j.dnarep.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida. Both the absence of LigD or Ku resulted in characteristic spectra of stationary-phase mutations that differed from each other and also from the wild-type spectrum. This indicates that LigD and Ku may participate also in mutagenic pathways that are independent from each other. Our results also imply that both phosphoesterase (PE) and polymerase (POL) domains of the LigD protein are involved in the occurrence of mutations in starving P. putida. The participation of both Ku and LigD in the occurrence of stationary-phase mutations was further supported by the results of the analysis of mutation spectra in stationary-phase sigma factor RpoS-minus background. The spectra of mutations identified in the RpoS-minus background were also distinct if LigD or Ku was absent. Interestingly, the effects of the presence of these enzymes on the frequency of occurrence of certain types of mutations were different or even opposite in the RpoS-proficient and deficient backgrounds. These results imply that RpoS affects performance of mutagenic pathways in starving P. putida that utilize LigD and/or Ku.
Collapse
Affiliation(s)
- Ülvi Paris
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Katren Mikkel
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Kairi Tavita
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| |
Collapse
|
19
|
de Ory A, Zafra O, de Vega M. Efficient processing of abasic sites by bacterial nonhomologous end-joining Ku proteins. Nucleic Acids Res 2014; 42:13082-95. [PMID: 25355514 PMCID: PMC4245934 DOI: 10.1093/nar/gku1029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023] Open
Abstract
Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B. subtilis Ku (BsuKu), along with its pivotal role in allowing joining of two broken ends by B. subtilis LigD (BsuLigD), is endowed with an AP/deoxyribose 5'-phosphate (5'-dRP)-lyase activity that can act on ssDNA, nicked molecules and DNA molecules without ends, suggesting a potential role in BER during spore outgrowth. Coordination with BsuLigD makes possible the efficient joining of DNA ends with near terminal abasic sites. The role of this new enzymatic activity of Ku and its potential importance in the NHEJ pathway is discussed. The presence of an AP-lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa allows us to expand our results to other bacterial Ku proteins.
Collapse
Affiliation(s)
- Ana de Ory
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Olga Zafra
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Abstract
In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsay A. Matthews
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Williamson A, Rothweiler U, Leiros HKS. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. ACTA ACUST UNITED AC 2014; 70:3043-56. [PMID: 25372693 PMCID: PMC4220977 DOI: 10.1107/s1399004714021099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022]
Abstract
The enzyme–adenylate structure of a bacterial ATP-dependent DNA ligase (ADL), which does not have any additional DNA-binding domains, is similar to minimal viral ADLs that comprise only the core catalytic domains. The bacterial ADL also lacks the unstructured loops which are involved in DNA binding in the viral ADLs, implying that it must instead use short well structured motifs of the core domains to engage its substrate. DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme–adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ulli Rothweiler
- NorStruct, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | |
Collapse
|
22
|
Williamson A, Pedersen H. Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expr Purif 2014; 97:29-36. [DOI: 10.1016/j.pep.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
23
|
Brissett N, Martin M, Bartlett E, Bianchi J, Blanco L, Doherty A. Molecular basis for DNA double-strand break annealing and primer extension by an NHEJ DNA polymerase. Cell Rep 2013; 5:1108-20. [PMID: 24239356 PMCID: PMC3898472 DOI: 10.1016/j.celrep.2013.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023] Open
Abstract
Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks. Structure of a NHEJ polymerase bound to an annealed DNA double-strand break Break synapsis is stabilized by microhomology and polymerase surface loops 3′ hydroxyl of the primer strand is positioned into active-site pocket in trans Templating base selection relies on loop 1 and conserved phenylalanine residues
Collapse
Affiliation(s)
- Nigel C. Brissett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Maria J. Martin
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Edward J. Bartlett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Julie Bianchi
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
- Corresponding author
| |
Collapse
|
24
|
de Vega M. The minimal Bacillus subtilis nonhomologous end joining repair machinery. PLoS One 2013; 8:e64232. [PMID: 23691176 PMCID: PMC3656841 DOI: 10.1371/journal.pone.0064232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
It is widely accepted that repair of double-strand breaks in bacteria that either sporulate or that undergo extended periods of stationary phase relies not only on homologous recombination but also on a minimal nonhomologous end joining (NHEJ) system consisting of a dedicated multifunctional ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku. Bacillus subtilis is one of the bacterial members with a NHEJ system that contributes to genome stability during the stationary phase and germination of spores, having been characterized exclusively in vivo. Here, the in vitro analysis of the functional properties of the purified B. subtilis LigD (BsuLigD) and Ku (BsuKu) proteins is presented. The results show that the essential biochemical signatures exhibited by BsuLigD agree with its proposed function in NHEJ: i) inherent polymerization activity showing preferential insertion of NMPs, ii) specific recognition of the phosphate group at the downstream 5′ end, iii) intrinsic ligase activity, iv) ability to promote realignments of the template and primer strands during elongation of mispaired 3′ ends, and v) it is recruited to DNA by BsuKu that stimulates the inherent polymerization and ligase activities of the enzyme allowing it to deal with and to hold different and unstable DNA realignments.
Collapse
Affiliation(s)
- Miguel de Vega
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.
| |
Collapse
|
25
|
Unciuleac MC, Shuman S. Distinctive effects of domain deletions on the manganese-dependent DNA polymerase and DNA phosphorylase activities of Mycobacterium smegmatis polynucleotide phosphorylase. Biochemistry 2013; 52:2967-81. [PMID: 23560592 DOI: 10.1021/bi400281w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polynucleotide phosphorylase (PNPase) plays synthetic and degradative roles in bacterial RNA metabolism; it is also suggested to participate in bacterial DNA transactions. Here we characterize and compare the RNA and DNA modifying activities of Mycobacterium smegmatis PNPase. The full-length (763-aa) M. smegmatis PNPase is a homotrimeric enzyme with Mg(2+)•PO(4)-dependent RNA 3'-phosphorylase and Mg(2+)•ADP-dependent RNA polymerase activities. We find that the enzyme is also a Mn(2+)•dADP-dependent DNA polymerase and a Mn(2+)•PO(4)-dependent DNA 3'-phosphorylase. The Mn(2+)•DNA and Mg(2+)•RNA end modifying activities of mycobacterial PNPase are coordinately ablated by mutating the putative manganese ligand Asp526, signifying that both metals likely bind to the same site on PNPase. Deletions of the C-terminal S1 and KH domains of mycobacterial PNPase exert opposite effects on the RNA and DNA modifying activities. Subtracting the S1 domain diminishes RNA phosphorylase and polymerase activity; simultaneous deletion of the S1 and KH domains further cripples the enzyme with respect to RNA substrates. By contrast, the S1 and KH domain deletions enhance the DNA polymerase and phosphorylase activity of mycobacterial PNPase. We observe two distinct modes of nucleic acid binding by mycobacterial PNPase: (i) metal-independent RNA-specific binding via the S1 domain, and (ii) metal-dependent binding to RNA or DNA that is optimal when the S1 domain is deleted. These findings add a new dimension to our understanding of PNPase specificity, whereby the C-terminal modules serve a dual purpose: (i) to help capture an RNA polynucleotide substrate for processive 3' end additions or resections, and (ii) to provide a specificity filter that selects against a DNA polynucleotide substrate.
Collapse
|
26
|
Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 2012. [PMID: 23198659 DOI: 10.1021/bi301202e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3'-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotides and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologues of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both from a Mycobacterium smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5'-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
27
|
Natarajan A, Dutta K, Temel DB, Nair PA, Shuman S, Ghose R. Solution structure and DNA-binding properties of the phosphoesterase domain of DNA ligase D. Nucleic Acids Res 2011; 40:2076-88. [PMID: 22084199 PMCID: PMC3300020 DOI: 10.1093/nar/gkr950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3′-phosphomonoesterase and 3′-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE•Mn2+• sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3′-deoxynucleotide, 3′-deoxynucleotide 3′-phosphate, or 3′ ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3′-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd2+) and inhibitory (Zn2+) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn2+.
Collapse
Affiliation(s)
- Aswin Natarajan
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
28
|
Das U, Smith P, Shuman S. Structural insights to the metal specificity of an archaeal member of the LigD 3'-phosphoesterase DNA repair enzyme family. Nucleic Acids Res 2011; 40:828-36. [PMID: 21965539 PMCID: PMC3258152 DOI: 10.1093/nar/gkr767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
LigD 3′-phosphoesterase (PE) enzymes perform end-healing reactions at DNA breaks. Here we characterize the 3′-ribonucleoside-resecting activity of Candidatus Korarchaeum PE. CkoPE prefers a single-stranded substrate versus a primer–template. Activity is abolished by vanadate (10 mM), but is less sensitive to phosphate (IC50 50 mM) or chloride (IC50 150 mM). The metal requirement is satisfied by manganese, cobalt, copper or cadmium, but not magnesium, calcium, nickel or zinc. Insights to CkoPE metal specificity were gained by solving new 1.5 Å crystal structures of CkoPE in complexes with Co2+ and Zn2+. His9, His15 and Asp17 coordinate cobalt in an octahedral complex that includes a phosphate anion, which is in turn coordinated by Arg19 and His51. The cobalt and phosphate positions and the atomic contacts in the active site are virtually identical to those in the CkoPE·Mn2+ structure. By contrast, Zn2+ binds in the active site in a tetrahedral complex, wherein the position, orientation and atomic contacts of the phosphate are shifted and its interaction with His51 is lost. We conclude that: (i) PE selectively binds to ‘soft’ metals in either productive or non-productive modes and (ii) PE catalysis depends acutely on proper metal and scissile phosphate geometry.
Collapse
Affiliation(s)
- Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
29
|
Ramsden DA. Polymerases in nonhomologous end joining: building a bridge over broken chromosomes. Antioxid Redox Signal 2011; 14:2509-19. [PMID: 20649463 PMCID: PMC3113452 DOI: 10.1089/ars.2010.3429] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of double-strand breaks in chromosomal DNA is essential. Unfortunately, a paradigm central to most DNA repair pathways--damaged DNA is replaced by polymerases, by using an intact, undamaged complementary strand as a template--no longer works. The nonhomologous end joining (NHEJ) pathway nevertheless still uses DNA polymerases to help repair double-strand breaks. Bacteria use a member of the archaeo-eukaryal primase superfamily, whereas eukaryotes use multiple members of the polymerase X family. These polymerases can, depending on the biologic context, accurately replace break-associated damage, mitigate loss of flanking DNA, or diversify products of repair. Polymerases specifically implicated in NHEJ are uniquely effective in these roles: relative to canonic polymerases, NHEJ polymerases have been engineered to do more with less.
Collapse
Affiliation(s)
- Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Brissett NC, Martin MJ, Pitcher RS, Bianchi J, Juarez R, Green AJ, Fox GC, Blanco L, Doherty AJ. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase. Mol Cell 2011; 41:221-31. [PMID: 21255731 DOI: 10.1016/j.molcel.2010.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/09/2010] [Accepted: 12/10/2010] [Indexed: 01/02/2023]
Abstract
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.
Collapse
Affiliation(s)
- Nigel C Brissett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith P, Nair PA, Das U, Zhu H, Shuman S. Structures and activities of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily. Nucleic Acids Res 2011; 39:3310-20. [PMID: 21208981 PMCID: PMC3082917 DOI: 10.1093/nar/gkq1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs—Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)—and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 310 helix. Their active sites are located in a crescent-shaped groove on the barrel’s outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.
Collapse
Affiliation(s)
- Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
32
|
Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily. Proc Natl Acad Sci U S A 2010; 107:12822-7. [PMID: 20616014 DOI: 10.1073/pnas.1005830107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA ligase D (LigD) 3'-phosphoesterase (PE) module is a conserved component of the bacterial nonhomologous end-joining (NHEJ) apparatus that performs 3' end-healing reactions at DNA double-strand breaks. Here we report the 1.9 A crystal structure of Pseudomonas aeruginosa PE, which reveals that PE exemplifies a unique class of DNA repair enzyme. PE has a distinctive fold in which an eight stranded beta barrel with a hydrophobic interior supports a crescent-shaped hydrophilic active site on its outer surface. Six essential side chains coordinate manganese and a sulfate mimetic of the scissile phosphate. The PE active site and mechanism are unique vis à vis other end-healing enzymes. We find PE homologs in archaeal and eukaryal proteomes, signifying that PEs comprise a DNA repair superfamily.
Collapse
|
33
|
Zhu H, Shuman S. Gap filling activities of Pseudomonas DNA ligase D (LigD) polymerase and functional interactions of LigD with the DNA end-binding Ku protein. J Biol Chem 2009; 285:4815-25. [PMID: 20018881 DOI: 10.1074/jbc.m109.073874] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase lambda are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5'-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5'-phosphate binding eliminate the preferential filling of 5'-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1-229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1-253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5'- and 3'-exonucleases.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
34
|
Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway. Biochem Soc Trans 2009; 37:539-45. [PMID: 19442248 DOI: 10.1042/bst0370539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.
Collapse
|
35
|
Aniukwu J, Glickman MS, Shuman S. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 2008; 22:512-27. [PMID: 18281464 DOI: 10.1101/gad.1631908] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mycobacteria can repair DNA double-strand breaks (DSBs) via a nonhomologous end-joining (NHEJ) system that includes a dedicated DNA ligase (LigD) and the DNA end-binding protein Ku. Here we exploit an improved plasmid-based NHEJ assay and a collection of Mycobacterium smegmatis strains bearing deletions or mutations in Ku or the DNA ligases to interrogate the contributions of LigD's three catalytic activities (polymerase, ligase, and 3' phosphoesterase) and structural domains (POL, LIG, and PE) to the efficiency and molecular outcomes of NHEJ in vivo. By analyzing in parallel the repair of blunt, 5' overhang, and 3' overhang DSBs, we discovered a novel end-joining pathway specific to breaks with 3' overhangs that is Ku- and LigD-independent and perfectly faithful. This 3' overhang NHEJ pathway is independent of ligases B and C; we surmise that it relies on NAD(+)-dependent LigA, the essential replicative ligase. We find that efficient repair of blunt and 5' overhang DSBs depends stringently on Ku and the LigD POL domain, but not on the LigD polymerase activity, which mainly serves to promote NHEJ infidelity. The lack of an effect of PE-inactivating LigD mutations on NHEJ outcomes, especially the balance between deletions and insertions at blunt or 5' overhang breaks, argues against LigD being the catalyst of deletion formation. Ligase-inactivating LigD mutations (or deletion of the LIG domain) have a modest impact on the efficiency of blunt and 5' overhang DSB repair, because the strand sealing activity can be provided in trans by one of the other resident ATP-dependent ligases (likely LigC). Reliance on the backup ligase is accompanied by a drastic loss of fidelity during blunt end and 5' overhang DSB repair. We conclude that the mechanisms of mycobacterial NHEJ are many and the outcomes depend on the initial structures of the DSBs and the available ensemble of end-processing and end-sealing components, which are not limited to Ku and LigD.
Collapse
Affiliation(s)
- Jideofor Aniukwu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
36
|
Gu J, Lieber MR. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev 2008; 22:411-5. [PMID: 18281457 DOI: 10.1101/gad.1646608] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiafeng Gu
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| | | |
Collapse
|
37
|
Zhu H, Shuman S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide. J Biol Chem 2008; 283:8331-9. [PMID: 18203718 DOI: 10.1074/jbc.m705476200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many bacterial species have a nonhomologous end joining system of DNA repair driven by dedicated DNA ligases (LigD and LigC). LigD is a multifunctional enzyme composed of a ligase domain fused to two other catalytic modules: a polymerase that preferentially adds ribonucleotides to double-strand break ends and a phosphoesterase that trims 3'-oligoribonucleotide tracts until only a single 3'-ribonucleotide remains. LigD and LigC have a feeble capacity to seal 3'-OH/5'-PO(4) DNA nicks. Here, we report that nick sealing by LigD and LigC enzymes is stimulated by the presence of a single ribonucleotide at the broken 3'-OH end. The ribonucleotide effect on LigD and LigC is specific for the 3'-terminal nucleotide and is either diminished or abolished when additional vicinal ribonucleotides are present. No such 3'-ribonucleotide effect is observed for bacterial LigA or Chlorella virus ligase. We found that in vitro repair of a double-strand break by Pseudomonas LigD requires the polymerase module and results in incorporation of an alkali-labile ribonucleotide at the repair junction. These results illuminate an underlying logic for the domain organization of LigD, whereby the polymerase and phosphoesterase domains can heal the broken 3'-end to generate the monoribonucleotide terminus favored by the nonhomologous end joining ligases.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Abstract
In eukaryotic cells, repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway is critical for genomic stability. A functionally homologous repair apparatus, composed of Ku and a multifunctional DNA ligase (LigD), has recently been identified in many prokaryotes. Eukaryotic organisms employ a large number of factors to repair breaks by NHEJ. In contrast, the bacterial NHEJ complex is a two-component system that, despite its relative simplicity, possesses all of the break-recognition, end-processing, and ligation activities required to facilitate the complex task of DSB repair. Here, we review recent discoveries on the structure and function of the bacterial NHEJ repair apparatus. In particular, we discuss the evolutionary origins of this DSB repair pathway, how the diverse activities within the prokaryotic end-joining complex cooperate to facilitate DSB repair, the physiological roles of bacterial NHEJ, and finally, the essential function of NHEJ in the life cycle of mycobacteriophage.
Collapse
Affiliation(s)
- Robert S Pitcher
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | |
Collapse
|
39
|
Kobayashi H, Simmons LA, Yuan DS, Broughton WJ, Walker GC. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol Microbiol 2007; 67:350-63. [PMID: 18067541 DOI: 10.1111/j.1365-2958.2007.06036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.
Collapse
Affiliation(s)
- Stewart Shuman
- Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
41
|
Abstract
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.
Collapse
Affiliation(s)
| | - Stewart Shuman
- *To whom correspondence should be addressed. 212 639 7145212 717 3623
| |
Collapse
|
42
|
Ramreddy T, Rao BJ, Krishnamoorthy G. Site-specific dynamics of strands in ss- and dsDNA as revealed by time-domain fluorescence of 2-aminopurine. J Phys Chem B 2007; 111:5757-66. [PMID: 17469866 DOI: 10.1021/jp068818f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well recognized that structure and dynamics of DNA strands guide proteins toward their cognate sites in DNA. While the dynamics is controlled primarily by the nucleotide sequence, the context of a particular sequence in relation to an open end could also play a significant role. In this work we have used the fluorescent analogue of adenine, 2-aminopurine (2-AP), to extract information on site-specific dynamics of DNA strands associated with 30-70 nucleotides length. Measurement of fluorescence lifetime and anisotropy decay kinetics in various types of DNA strands in which 2-AP was located in specific positions revealed novel insights into the dynamics of strands. We find that in single-stranded (ss) DNA, the extent of motional dynamics of the bases falls off sharply from the very end toward the middle of the strand. In contrast, the flexibility of the backbone decreases more gradually in the same direction. In double-stranded (ds) DNA, the level of base-pair fraying increases toward the ends in a graded manner. Surprisingly, the same is countered by the presence of ss-overhangs emanating from dsDNA ends. Moreover, the extent of concerted motion of bases in duplex DNA increased from the end to the middle of the duplex, a result which is both striking and counterintuitive. Most surprisingly, the two complementary strands of a duplex that were unequal in length exhibited differential dynamics: the longer one with overhangs showed a distinctly higher level of flexibility than the recessed shorter strand in the same duplex. All these results, taken together, provoke newer insights in our understanding of how different bases in DNA strands are endowed with specific dynamic properties as a function of their positions. These properties are likely to be used in facilitating specific recognitions of DNA bases by proteins during various DNA-protein interaction systems.
Collapse
Affiliation(s)
- T Ramreddy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | |
Collapse
|
43
|
Sinha KM, Stephanou NC, Gao F, Glickman MS, Shuman S. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J Biol Chem 2007; 282:15114-25. [PMID: 17376770 DOI: 10.1074/jbc.m701167200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis and other bacterial pathogens have a Ku-dependent nonhomologous end joining pathway of DNA double-strand break repair. Here we identify mycobacterial UvrD1 as a novel interaction partner for Ku in a genome-wide yeast two-hybrid screen. UvrD1 per se is a vigorous DNA-dependent ATPase but a feeble DNA helicase. Ku stimulates UvrD1 to catalyze ATP-dependent unwinding of 3'-tailed DNAs. UvrD1, Ku, and DNA form a stable ternary complex in the absence of ATP. The Ku binding determinants are located in the distinctive C-terminal segment of UvrD1. A second mycobacterial paralog, UvrD2, is a vigorous Ku-independent DNA helicase. Ablation of UvrD1 sensitizes Mycobacterium smegmatis to killing by ultraviolet and ionizing radiation and to a single chromosomal break generated by I-SceI endonuclease. The physical and functional interactions of bacterial Ku and UvrD1 highlight the potential for cross-talk between components of nonhomologous end joining and nucleotide excision repair pathways.
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology, Sloan-Kettering Institute, Memorial-Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
44
|
Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R, Thompson D, Fox GC, Blanco L, Doherty AJ. Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 2006; 366:391-405. [PMID: 17174332 DOI: 10.1016/j.jmb.2006.10.046] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/06/2006] [Accepted: 10/16/2006] [Indexed: 01/13/2023]
Abstract
Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown.
Collapse
Affiliation(s)
- Robert S Pitcher
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
DNA double-strand breaks (DSBs) are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ). Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages.
Collapse
|
46
|
Yakovleva L, Shuman S. Nucleotide misincorporation, 3'-mismatch extension, and responses to abasic sites and DNA adducts by the polymerase component of bacterial DNA ligase D. J Biol Chem 2006; 281:25026-40. [PMID: 16816388 DOI: 10.1074/jbc.m603302200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) participates in a mutagenic pathway of nonhomologous end joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (POL) and a phosphoesterase module. The POL domain performs templated and nontemplated primer extension reactions with either dNTP or rNTP substrates. Here we report that Pseudomonas LigD POL is an unfaithful nucleic acid polymerase. Although the degree of infidelity in nucleotide incorporation varies according to the mispair produced, we find that a correctly paired ribonucleotide is added to the DNA primer terminus more rapidly than the corresponding correct deoxyribonucleotide and incorrect nucleotides are added much more rapidly with rNTP substrates than with dNTPs, no matter what the mispair configuration. We find that 3' mispairs are extended by LigD POL, albeit more slowly than 3' paired primer-templates. The magnitude of the rate effect on mismatch extension varies with the identity of the 3' mispair, but it was generally the case that mispaired ends were extended more rapidly with rNTP substrates than with dNTPs. These results lend credence to the suggestion that LigD POL might fill in short 5'-overhangs with ribonucleotides when repairing double strand breaks in quiescent cells. We report that LigD POL can add a deoxynucleotide opposite an abasic lesion in the template strand, albeit slowly. Ribonucleotides are inserted more rapidly at an abasic lesion than are deoxys. LigD POL displays feeble activity in extending a preformed primer terminus opposing an abasic site, but can readily bypass the lesion by slippage of the primer 3' di- or trinucleotide and realignment to the template sequence distal to the abasic site. Covalent benzo[a]pyrene-dG and benzo[c]phenanthrene-dA adducts in the template strand are durable roadblocks to POL elongation. POL can slowly insert a dNMP opposite the adduct, but is impaired in the subsequent extension step.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
47
|
Zhu H, Shuman S. Substrate specificity and structure-function analysis of the 3'-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D. J Biol Chem 2006; 281:13873-81. [PMID: 16540477 DOI: 10.1074/jbc.m600055200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) performs end remodeling and end sealing reactions during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at the 3' end of the primer strand of a primer-template. The phosphodiesterase cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus. The phosphomonoesterase converts a terminal ribonucleoside 3'-PO4 or deoxyribonucleoside 3'-PO4 of a primer-template to a 3'-OH. Here we report that the phosphodiesterase and phosphomonoesterase activities are both dependent on the presence and length of the 5' single-strand tail of the primer-template substrate. Although the phosphodiesterase activity is strictly dependent on the 2'-OH of the penultimate ribose, it is indifferent to a 2'-OH versus a2'-H on the terminal nucleoside. Incision at the ribonucleotide linkage is suppressed when the 2'-OH is moved by 1 nucleotide in the 5' direction, suggesting that LigD is an exoribonuclease that cleaves the 3'-terminal phosphodiester. We report the effects of conservative amino acid substitutions at residues: (i) His42, His48, Asp50, Arg52, His84, and Tyr88, which are essential for both the ribonuclease and 3'-phosphatase activities; (ii) Arg14, Asp15, Glu21, and Glu82, which are critical for 3'-phosphatase activity but not 3'-ribonucleoside removal; and (iii) at Lys66 and Arg76, which participate selectively in the 3'-ribonuclease reaction. The results suggest roles for individual functional groups in metal binding and/or phosphoesterase chemistry.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
48
|
Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem 2006; 281:13412-13423. [PMID: 16476729 DOI: 10.1074/jbc.m513550200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) is a large polyfunctional enzyme involved in nonhomologous end-joining (NHEJ) in mycobacteria. LigD consists of a C-terminal ATP-dependent ligase domain fused to upstream polymerase and phosphoesterase modules. Here we report the 2.4 angstroms crystal structure of the ligase domain of Mycobacterium LigD, captured as the covalent ligase-AMP intermediate with a divalent metal in the active site. A chloride anion on the protein surface coordinated by the ribose 3'-OH and caged by arginine and lysine side chains is a putative mimetic of the 5'-phosphate at a DNA nick. Structure-guided mutational analysis revealed distinct requirements for the adenylylation and end-sealing reactions catalyzed by LigD. We found that a mutation of Mycobacterium LigD that ablates only ligase activity results in decreased fidelity of NHEJ in vivo and a strong bias of mutagenic events toward deletions instead of insertions at the sealed DNA ends. This phenotype contrasts with the increased fidelity of double-strand break repair in deltaligD cells or in a strain in which only the polymerase function of LigD is defective. We surmise that the signature error-prone quality of bacterial NHEJ in vivo arises from a dynamic balance between the end-remodeling and end-sealing steps.
Collapse
Affiliation(s)
- David Akey
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720
| | - Alexandra Martins
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Jideofor Aniukwu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Michael S Glickman
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021; Division of Infectious Diseases, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| | - James M Berger
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
49
|
Zhu H, Nandakumar J, Aniukwu J, Wang LK, Glickman MS, Lima CD, Shuman S. Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proc Natl Acad Sci U S A 2006; 103:1711-6. [PMID: 16446439 PMCID: PMC1413644 DOI: 10.1073/pnas.0509083103] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Indexed: 11/18/2022] Open
Abstract
DNA ligase D (LigD) is a large polyfunctional protein that participates in a recently discovered pathway of nonhomologous end-joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (Pol) and a phosphoesterase module. The Pol activity is remarkable for its dependence on manganese, its ability to perform templated and nontemplated primer extension reactions, and its preference for adding ribonucleotides to blunt DNA ends. Here we report the 1.5-A crystal structure of the Pol domain of Pseudomonas LigD and its complexes with manganese and ATP/dATP substrates, which reveal a minimized polymerase with a two-metal mechanism and a fold similar to that of archaeal DNA primase. Mutational analysis highlights the functionally relevant atomic contacts in the active site. Although distinct nucleoside conformations and contacts for ATP versus dATP are observed in the cocrystals, the functional analysis suggests that the ATP-binding mode is the productive conformation for dNMP and rNMP incorporation. We find that a mutation of Mycobacterium LigD that uniquely ablates the polymerase activity results in increased fidelity of blunt-end double-strand break repair in vivo by virtue of eliminating nucleotide insertions at the recombination junctions. Thus, LigD Pol is a direct catalyst of mutagenic nonhomologous end-joining in vivo. Our studies underscore a previously uncharacterized role for the primase-like polymerase family in DNA repair.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Jayakrishnan Nandakumar
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Jideofor Aniukwu
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Li Kai Wang
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Michael S. Glickman
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Christopher D. Lima
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| | - Stewart Shuman
- Molecular Biology, Structural Biology, and Immunology Programs, Sloan–Kettering Institute, New York, NY 10021
| |
Collapse
|
50
|
Zhu H, Wang LK, Shuman S. Essential constituents of the 3'-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme. J Biol Chem 2005; 280:33707-15. [PMID: 16046407 DOI: 10.1074/jbc.m506838200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) catalyzes end-healing and end-sealing steps during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at a duplex primer-template with a short 3'-ribonucleotide tract. The phosphodiesterase, which cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus, requires the vicinal 2'-OH of the penultimate ribose. The phosphomonoesterase converts the terminal ribonucleoside 3'-PO4 to a 3'-OH. Here we show that the PE domain has a 3'-phosphatase activity on an all-DNA primer-template, signifying that the phosphomonoesterase reaction does not depend on a 2'-OH. The distinctions between the phosphodiesterase and phosphomonoesterase activities are underscored by the results of alanine-scanning, limited proteolysis, and deletion analysis, which show that the two reactions depend on overlapping but nonidentical ensembles of protein functional groups, including: (i) side chains essential for both ribonuclease and phosphatase activity (His-42, His-48, Asp-50, Arg-52, His-84, and Tyr-88); (ii) side chains important for 3'-phosphatase activity but not for 3' ribonucleoside removal (Arg-14, Asp-15, Glu-21, Gln-40, and Glu-82); and (iii) side chains required selectively for the 3'-ribonuclease (Lys-66 and Arg-76). These constellations of critical residues are unique to LigD-like proteins, which we propose comprise a new bifunctional phosphoesterase family.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|