1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Taniguchi N, Okawa Y, Maeda K, Kanto N, Johnson EL, Harada Y. N-glycan branching enzymes involved in cancer, Alzheimer's disease and COPD and future perspectives. Biochem Biophys Res Commun 2022; 633:68-71. [DOI: 10.1016/j.bbrc.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
|
3
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
4
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|
5
|
Kizuka Y, Mishra S, Yamaguchi Y, Taniguchi N. Implication of C-type lectin receptor langerin and keratan sulfate disaccharide in emphysema. Cell Immunol 2018; 333:80-84. [PMID: 30025865 DOI: 10.1016/j.cellimm.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/27/2023]
Abstract
Glycosylation is profoundly involved in various diseases, and interactions between glycan binding proteins and their sugar ligands are plausible drug targets. Keratan sulfate (KS), a glycosaminoglycan, is downregulated in lungs by cigarette smoking, suggesting that KS is involved in smoking-related diseases, such as chronic obstructive pulmonary disease (COPD). We found that a highly sulfated KS disaccharide, L4, suppresses lung inflammation and is effective against COPD and its exacerbation in mouse models. Its anti-inflammatory activity was comparable to that of a steroid. As a possible mechanism, langerin, a C-type lectin receptor (CLR) expressed in dendritic cells, was suggested to function as an L4 receptor. Oligomeric L4 derivatives were chemically designed to create new ligands with higher affinity and activity. The synthetic L4 oligomers bound to langerin with over 1000-fold higher affinity than the L4 monomer, suggesting that these compounds are effective drug candidates against COPD and inflammatory diseases.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Gifu 501-1193, Japan.
| | - Sushil Mishra
- Systems Glycobiology Research Group, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Systems Glycobiology Research Group, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan; Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuoku, Osaka 541-8567, Japan.
| |
Collapse
|
6
|
Structural Characterization and Interaction with RCA 120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Mar Drugs 2018; 16:md16040128. [PMID: 29662015 PMCID: PMC5923415 DOI: 10.3390/md16040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023] Open
Abstract
As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.
Collapse
|
7
|
High affinity sugar ligands of C-type lectin receptor langerin. Biochim Biophys Acta Gen Subj 2018; 1862:1592-1601. [PMID: 29631057 DOI: 10.1016/j.bbagen.2018.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.
Collapse
|
8
|
Gao C, Fujinawa R, Yoshida T, Ueno M, Ota F, Kizuka Y, Hirayama T, Korekane H, Kitazume S, Maeno T, Ohtsubo K, Yoshida K, Yamaguchi Y, Lepenies B, Aretz J, Rademacher C, Kabata H, Hegab AE, Seeberger PH, Betsuyaku T, Kida K, Taniguchi N. A keratan sulfate disaccharide prevents inflammation and the progression of emphysema in murine models. Am J Physiol Lung Cell Mol Physiol 2016; 312:L268-L276. [PMID: 28011617 DOI: 10.1152/ajplung.00151.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/28/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3--6]Galβ1-4[SO3--6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.
Collapse
Affiliation(s)
- Congxiao Gao
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Reiko Fujinawa
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Takayuki Yoshida
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Hokkaido, Japan
| | - Manabu Ueno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Fumi Ota
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Tetsuya Hirayama
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Hiroaki Korekane
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Toshitaka Maeno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuaki Ohtsubo
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yoshida
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Yoshiki Yamaguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, Infection Immunology, Hannover, Germany
| | - Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Kozui Kida
- Respiratory Care Clinic, Nippon Medical School, Tokyo, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan;
| |
Collapse
|
9
|
Lange B, Šimonová A, Fischöder T, Pelantová H, Křen V, Elling L. Towards Keratan Sulfate - Chemoenzymatic Cascade Synthesis of SulfatedN-Acetyllactosamine (LacNAc) Glycan Oligomers. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Shirato K, Gao C, Ota F, Angata T, Shogomori H, Ohtsubo K, Yoshida K, Lepenies B, Taniguchi N. Flagellin/Toll-like receptor 5 response was specifically attenuated by keratan sulfate disaccharide via decreased EGFR phosphorylation in normal human bronchial epithelial cells. Biochem Biophys Res Commun 2013; 435:460-5. [PMID: 23680662 DOI: 10.1016/j.bbrc.2013.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
Abstract
Bacterial or viral infection of the airway plays a critical role in the pathogenesis and exacerbation of chronic obstructive pulmonary disease (COPD) which is expected to be the 3rd leading cause of death by 2020. The induction of inflammatory responses in immune cells as well as airway epithelial cells is observed in the disease process. There is thus a pressing need for the development of new therapeutics. Keratan sulfate (KS) is the major glycosaminoglycans (GAGs) of airway secretions, and is synthesized by epithelial cells on the airway surface. Here we report that a KS disaccharide, [SO3(-)-6]Galβ1-4[SO3(-)-6]GlcNAc, designated as L4, suppressed the production of Interleukin-8 (IL-8) stimulated by flagellin, a Toll-like receptor (TLR) 5 agonist, in normal human bronchial epithelial (NHBE) cells. Such suppressions were not observed by other L4 analogues, N-acetyllactosamine or chondroitin-6-sulfate disaccharide. Moreover, treatment of NHBE cells with L4 inhibited the flagellin-stimulated phosphorylation of epidermal growth factor receptor (EGFR), the down stream signaling pathway of TLRs in NHBE cells. These results suggest that L4 specifically blocks the interaction of flagellin with TLR5 and subsequently suppresses IL-8 production in NHBE cells. Taken together, L4 represents a potential molecule for prevention and treatment of airway inflammatory responses to bacteria infections, which play a critical role in exacerbation of COPD.
Collapse
Affiliation(s)
- Ken Shirato
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inoue R, Nagino T, Hoshino G, Ushida K. Nucleic acids of Enterococcus faecalis strain EC-12 are potent Toll-like receptor 7 and 9 ligands inducing interleukin-12 production from murine splenocytes and murine macrophage cell line J774.1. ACTA ACUST UNITED AC 2010; 61:94-102. [DOI: 10.1111/j.1574-695x.2010.00752.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Asari A, Kanemitsu T, Kurihara H. Oral administration of high molecular weight hyaluronan (900 kDa) controls immune system via Toll-like receptor 4 in the intestinal epithelium. J Biol Chem 2010; 285:24751-8. [PMID: 20504769 DOI: 10.1074/jbc.m110.104950] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Low molecular weight hyaluronan enhances or induces inflammation through toll-like receptor 4 (TLR-4). However, the effects of high molecular weight hyaluronan (HA900) on TLR-4 are unknown. In this study, HA900 (900 kDa) was administered orally to MRL-lpr/lpr mice, a Th-1-type autoimmune disease model. Lymphoaccumulation of double-negative T cells, which is enhanced by proinflammatory cytokines, was suppressed by HA900 treatment. Cytokine array analysis showed that HA900 treatment enhanced production of interleukin-10, an anti-inflammatory cytokine, and down-regulated chemokine production. HA900 colocalized with TLR-4 on the luminal surface of epithelial cells in the large intestine. These cells are parts of the immune system and express cytokines. DNA array analysis of the tissue from the large intestine showed that HA900 treatment up-regulated suppressor of cytokine signaling 3 (SOCS3) expression and down-regulated pleiotrophin expression. Treatment of cultured double-negative T cells from MRL-lpr/lpr mice with pleiotrophin rescued these cells. SOCS3, which is known to suppress inflammation, was enhanced by HA900 treatment. In TLR-4 knockdown HT29 cells (a cell line derived from large intestinal cells), HA900 did not bind to HT29 cells and did not up-regulate SOCS3 expression. Our results suggest that oral administration of HA900 modulates Th-1-type autoimmune disease and inflammation by up-regulating SOCS3 expression and down-regulating pleiotrophin expression via TLR-4 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Akira Asari
- Hyaluronan Research Institute Inc, 4-5-9 Kichijojiminami-cho, Musashino-shi, Tokyo 180-0003, Japan.
| | | | | |
Collapse
|
13
|
Dabak DO, Kuloglu T, Ozercan MR. Effects of Vitamin D3(Cholecalciferol) on Adriamycin-Induced Nephrotoxicity. Ren Fail 2009; 31:400-5. [DOI: 10.1080/08860220902883020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Lauder RM. Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement Ther Med 2008; 17:56-62. [PMID: 19114230 DOI: 10.1016/j.ctim.2008.08.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/29/2008] [Accepted: 08/29/2008] [Indexed: 01/13/2023] Open
Abstract
Chondroitin sulphate (CS) is widely consumed orally by humans, and non-humans as it is believed to be beneficial for those with joint-related pathologies. Data concerning the functions of chondroitin sulphate in this, and other, biological systems are being actively extended. However, it is important to appreciate that chondroitin sulphate molecules represent a heterogeneous population the structure of which varies with source. As commercially available chondroitin sulphate is derived from a range of sources, and the molecular functions of chondroitin sulphate depend upon the structure, there are a range of structures available with differing potential for therapeutic impacts on a range of pathologies. While the safety of CS is not presently in doubt, poor quality finished products have the potential to compromise clinical and lab-based studies and will fail to give consumers all of the benefits available. Major parameters including bioavailability and uptake have been studied but it is clear that significant challenges remain in the identification of composition, sequence and size impacts on function, understanding how the consumed material is altered during uptake and travels to a site of action and how it exerts an influence on biological processes. If we understand these factors it may be possible to predict impacts upon biological processes and identify specific chondroitin sulphate structures which may target specific pathologies.
Collapse
Affiliation(s)
- Robert M Lauder
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
15
|
Ohmae M, Sakaguchi K, Kaneto T, Fujikawa SI, Kobayashi S. Keratanase II-Catalyzed Synthesis of Keratan Sulfate Oligomers by Using Sugar Oxazolines as Transition-State Analogue Substrate Monomers: A Novel Insight into the Enzymatic Catalysis Mechanism. Chembiochem 2007; 8:1710-20. [PMID: 17705309 DOI: 10.1002/cbic.200700252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Keratan sulfate (KS) oligomers with well-defined structures were synthesized by keratanase II (KSase II)-catalyzed transglycosylation. N-Acetyllactosamine [Galbeta(1-->4)GlcNAc; LacNAc] oxazoline derivatives with sulfate groups at the C-6 (1 a) and both the C-6 and the C-6' (1 b) were prepared as transition-state analogue substrate monomers for KSase II. Monomer 1 a was effectively oligomerized by the enzyme under weak alkaline conditions, to give alternating 6-sulfated KS oligomers (2 a) in good yields, and with total control of regioselectivity and stereochemistry. KSase II also recognized 1 b, which provided fully 6-sulfated KS oligomers (2 b) in good yields under similar conditions. Nonsulfated LacNAc oxazoline was difficult to oligomerize enzymatically. These results imply that the catalysis mechanism of KSase II involves a sugar oxazolinium ion that requires the 6-sulfate group in the GlcNAc residue not only in hydrolysis of KS chains, but also in oligomerization of oxazoline monomers. This is the first report of KSase II-catalyzed transglycosylation to form beta(1-->3)-glycosidic bond through a substrate-assisted mechanism.
Collapse
Affiliation(s)
- Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
16
|
Mahajan D, Wang Y, Qin X, Wang Y, Zheng G, Wang YM, Alexander SI, Harris DCH. CD4+CD25+Regulatory T Cells Protect against Injury in an Innate Murine Model of Chronic Kidney Disease. J Am Soc Nephrol 2006; 17:2731-41. [PMID: 16988067 DOI: 10.1681/asn.2005080842] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Studies of mechanisms of disease regulation by CD4+CD25+ regulatory T cells (Treg) have been focused on their interaction with effector T cells; however, the possibility that regulation might involve noncognate cells has not been explored in detail. This study investigated the effect of CD4+CD25+ Treg on macrophage proinflammatory properties and phenotype in vitro and found that they modulate macrophages by inhibiting their activation, leading to reduced proinflammatory cytokine production and a downregulated effector phenotype. For testing the in vivo significance of this effect, CD4+CD25+ T cells that expressed high levels of Foxp3 were reconstituted into SCID mice after induction of Adriamycin nephropathy, a noncognate model of chronic renal disease. CD4+CD25+ T cells significantly reduced glomerular and interstitial injury. In addition, there was a significant fall in the number of macrophages in both the glomeruli and interstitium of SCID mice that were reconstituted with Treg as compared with the Adriamycin alone group. Blockade of TGF-beta using neutralizing antibodies significantly impaired the protective effect of Treg. These findings delineate a TGF-beta-dependent Treg-macrophage inhibitory interaction that can explain cognate-independent protection by Treg.
Collapse
Affiliation(s)
- Deepika Mahajan
- Centre for Transplantation and Renal Research, The University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Qin LH, Kong L, Shi GJ, Wang ZT, Ge BX. Andrographolide Inhibits the Production of TNF-.ALPHA. and Interleukin-12 in Lipopolysaccharide-Stimulated Macrophages: Role of Mitogen-Activated Protein Kinases. Biol Pharm Bull 2006; 29:220-4. [PMID: 16462022 DOI: 10.1248/bpb.29.220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Andrographolide has been reported to possess a variety of pharmacological activities. In this study, we have investigated the effect of andrographolide on the production of TNF-alpha and IL-12 (Interleukin-12) in murine peritoneal macrophages. Andrographolide decreased TNF-alpha, IL-12a and IL-12b at mRNA level, and reduced the production of TNF-alpha and IL-12p70 proteins in a concentration-dependent manner. Furthermore, we have found that addition of andrographolide inhibited the activation of ERK1/2 MAP kinase, but not that of JNK, p38 or NF-kappaB. These results suggested that andrographolide inhibit LPS-induced production of TNF-alpha via suppression of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Lin-Hua Qin
- Joint Immunology Laboratory of Health Science Center and Shanghai Institute of Immunology, Shanghai Second Medical University and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200-025, China
| | | | | | | | | |
Collapse
|