1
|
Dies M, Galera-Laporta L, Garcia-Ojalvo J. Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle. Integr Biol (Camb) 2015; 8:533-41. [PMID: 26674636 DOI: 10.1039/c5ib00262a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correct functioning of cells requires the orchestration of multiple cellular processes, many of which are inherently dynamical. The conditions under which these dynamical processes entrain each other remain unclear. Here we use synthetic biology to address this question in the case of concurrent cellular oscillations. Specifically, we study at the single-cell level the interaction between the cell division cycle and a robust synthetic gene oscillator in Escherichia coli. Our results suggest that cell division is able to partially entrain the synthetic oscillations under normal growth conditions, by driving the periodic replication of the genes involved in the oscillator. Coupling the synthetic oscillations back into the cell cycle via the expression of a key regulator of chromosome replication increases the synchronization between the two periodic processes. A simple computational model allows us to confirm this effect.
Collapse
Affiliation(s)
- Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
2
|
Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 2015; 22:492-8. [PMID: 25938660 PMCID: PMC4456219 DOI: 10.1038/nsmb.3015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
The AAA+ ATPase Vps4 disassembles ESCRT-III and is essential for HIV-1 budding and other pathways. Vps4 is a paradigmatic member of a class of hexameric AAA+ ATPases that disassemble protein complexes without degradation. To distinguish between local displacement versus global unfolding mechanisms for complex disassembly, we carried out hydrogen-deuterium exchange during Saccharomyces cerevisiae Vps4 disassembly of of a chimeric Vps24-2 ESCRT-III filament. EX1 exchange behavior shows that Vps4 completely unfolds ESCRT-III substrates on a time scale consistent with the disassembly reaction. The established unfoldase ClpX showed the same pattern, demonstrating a common unfolding mechanism. Vps4 hexamers containing a single cysteine residue in the pore loops were cross-linked to ESCRT-III subunits containing unique cysteine within the folded core domain. These data support a mechanism in which Vps4 disassembles its substrates by completely unfolding them and threading them through the central pore.
Collapse
Affiliation(s)
- Bei Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Goran Stjepanovic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Qingtao Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - James H Hurley
- 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA. [2] Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Proc Natl Acad Sci U S A 2015; 112:5377-82. [PMID: 25870262 DOI: 10.1073/pnas.1505881112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent molecular machines of the AAA+ superfamily unfold or remodel proteins in all cells. For example, AAA+ ClpX and ClpA hexamers collaborate with the self-compartmentalized ClpP peptidase to unfold and degrade specific proteins in bacteria and some eukaryotic organelles. Although degradation assays are straightforward, robust methods to assay the kinetics of enzyme-catalyzed protein unfolding in the absence of proteolysis have been lacking. Here, we describe a FRET-based assay in which enzymatic unfolding converts a mixture of donor-labeled and acceptor-labeled homodimers into heterodimers. In this assay, ClpX is a more efficient protein-unfolding machine than ClpA both kinetically and in terms of ATP consumed. However, ClpP enhances the mechanical activities of ClpA substantially, and ClpAP degrades the dimeric substrate faster than ClpXP. When ClpXP or ClpAP engage the dimeric subunit, one subunit is actively unfolded and degraded, whereas the other subunit is passively unfolded by loss of its partner and released. This assay should be broadly applicable for studying the mechanisms of AAA+ proteases and remodeling chaperones.
Collapse
|
4
|
Li T, Lin J, Lucius AL. Examination of polypeptide substrate specificity for Escherichia coli ClpB. Proteins 2014; 83:117-34. [PMID: 25363713 DOI: 10.1002/prot.24710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 12/16/2022]
Abstract
Escherichia coli ClpB is a molecular chaperone that belongs to the Clp/Hsp100 family of AAA+ proteins. ClpB is able to form a hexameric ring structure to catalyze protein disaggregation with the assistance of the DnaK chaperone system. Our knowledge of the mechanism of how ClpB recognizes its substrates is still limited. In this study, we have quantitatively investigated ClpB binding to a number of unstructured polypeptides using steady-state anisotropy titrations. To precisely determine the binding affinity for the interaction between ClpB hexamers and polypeptide substrates the titration data were subjected to global non-linear least squares analysis incorporating the dynamic equilibrium of ClpB assembly. Our results show that ClpB hexamers bind tightly to unstructured polypeptides with binding affinities in the range of ∼3-16 nM. ClpB exhibits a modest preference of binding to Peptide B1 with a binding affinity of (1.7 ± 0.2) nM. Interestingly, we found that ClpB binds to an unstructured polypeptide substrate of 40 and 50 amino acids containing the SsrA sequence at the C-terminus with an affinity of (12 ± 3) nM and (4 ± 2) nM, respectively. Whereas, ClpB binds the 11-amino acid SsrA sequence with an affinity of (140 ± 20) nM, which is significantly weaker than other polypeptide substrates that we tested here. We hypothesize that ClpB, like ClpA, requires substrates with a minimum length for optimal binding. Finally, we present evidence showing that multiple ClpB hexamers are involved in binding to polypeptides ≥152 amino acids.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, 35294-1240
| | | | | |
Collapse
|
5
|
Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CAM. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Annu Rev Biophys 2014; 43:119-40. [PMID: 24895851 DOI: 10.1146/annurev-biophys-051013-022811] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins.
Collapse
|
6
|
Rood KL, Clark NE, Stoddard PR, Garman SC, Chien P. Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture. Structure 2012; 20:1223-32. [PMID: 22682744 DOI: 10.1016/j.str.2012.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 03/15/2012] [Accepted: 04/25/2012] [Indexed: 01/31/2023]
Abstract
In Caulobacter crescentus, the ClpXP protease degrades several crucial cell-cycle regulators, including the phosphodiesterase PdeA. Degradation of PdeA requires the response regulator CpdR and signals a morphological transition in concert with initiation of DNA replication. Here, we report the structure of a Per-Arnt-Sim (PAS) domain of PdeA and show that it is necessary for CpdR-dependent degradation in vivo and in vitro. CpdR acts as an adaptor, tethering the amino-terminal PAS domain to ClpXP and promoting recognition of the weak carboxyl-terminal degron of PdeA, a combination that ensures processive proteolysis. We identify sites on the PAS domain needed for CpdR recognition and find that one subunit of the PdeA dimer can be delivered to ClpXP by its partner. Finally, we show that improper stabilization of PdeA in vivo alters cellular behavior. These results introduce an adaptor/substrate pair for ClpXP and reveal broad diversity in adaptor-mediated proteolysis.
Collapse
Affiliation(s)
- Keith L Rood
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
7
|
Optimizing ring assembly reveals the strength of weak interactions. Proc Natl Acad Sci U S A 2012; 109:2348-53. [PMID: 22308356 DOI: 10.1073/pnas.1113095109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most cellular processes rely on large multiprotein complexes that must assemble into a well-defined quaternary structure in order to function. A number of prominent examples, including the 20S core particle of the proteasome and the AAA+ family of ATPases, contain ring-like structures. Developing an understanding of the complex assembly pathways employed by ring-like structures requires a characterization of the problems these pathways have had to overcome as they evolved. In this work, we use computational models to uncover one such problem: a deadlocked plateau in the assembly dynamics. When the molecular interactions between subunits are too strong, this plateau leads to significant delays in assembly and a reduction in steady-state yield. Conversely, if the interactions are too weak, assembly delays are caused by the instability of crucial intermediates. Intermediate affinities thus maximize the efficiency of assembly for homomeric ring-like structures. In the case of heteromeric rings, we find that rings including at least one weak interaction can assemble efficiently and robustly. Estimation of affinities from solved structures of ring-like complexes indicates that heteromeric rings tend to contain a weak interaction, confirming our prediction. In addition to providing an evolutionary rationale for structural features of rings, our work forms the basis for understanding the complex assembly pathways of stacked rings like the proteasome and suggests principles that would aid in the design of synthetic ring-like structures that self-assemble efficiently.
Collapse
|
8
|
Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 2008; 68:298-313. [DOI: 10.1111/j.1365-2958.2008.06146.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M. Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2006; 2:e94. [PMID: 17040125 PMCID: PMC1599763 DOI: 10.1371/journal.ppat.0020094] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/21/2006] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes. Filarial nematode worms cause hundreds of millions of cases of disease in humans worldwide. As part of efforts to identify new drug targets in these parasites, the Filarial Genome Project rediscovered that these worms carry within them a symbiotic bacterium, which may be a novel target. Fenn et al. investigated the relationships of these bacteria, from the genus Wolbachia, to those previously identified in arthropods using a new dataset of genome sequence data from the human parasite Onchocerca volvulus. O. volvulus causes river blindness in West Africa. The authors found that the Wolbachia strains found in nematodes are more closely related to each other than they are to the Wolbachia in insects, suggesting that the nematodes and their bacterial partners have been coevolving for some considerable evolutionary time and may indeed be good targets. In addition, the authors identified a fragment of Wolbachia DNA that was inserted in the genome of its nematode host and has subsequently degenerated. The insertion occurred before O. volvulus diverged from another nematode species, O. ochengi, found in cattle.
Collapse
Affiliation(s)
- Katelyn Fenn
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Conlon
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Jones
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nancy E Holroyd
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark Blaxter
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Bougdour A, Wickner S, Gottesman S. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 2006; 20:884-97. [PMID: 16600914 PMCID: PMC1472289 DOI: 10.1101/gad.1400306] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sigma(S) subunit of Escherichia coli RNA polymerase regulates the expression of stationary phase and stress response genes. sigma(S) is highly unstable in exponentially growing cells, whereas its stability increases dramatically upon starvation or under certain stress conditions. The degradation of sigma(S) is controlled by the phosphorylatable adaptor protein RssB and the ClpXP protease. RssB specifically directs sigma(S) to ClpXP. An unanswered question is how RssB-mediated degradation of sigma(S) is blocked by conditions such as glucose or phosphate starvation. We report here the identification and characterization of a new regulator of sigma(S) stability, IraP (inhibitor of RssB activity during phosphate starvation), that stabilizes sigma(S) both in vivo and in vitro. Deletion of iraP interferes with sigma(S) stabilization during phosphate starvation, but not during carbon starvation, and has a partial effect in stationary phase and nitrogen starvation. IraP interferes with RssB-dependent degradation of sigma(S) through a direct protein-protein interaction with RssB. A point mutant of IraP was isolated and found to be defective both for inhibition of sigma(S) degradation and interaction with RssB. Our results reveal a novel mechanism of regulation of sigma(S) stability through the regulation of RssB activity and identify IraP as a member of a new class of regulators, the anti-adaptor proteins.
Collapse
Affiliation(s)
- Alexandre Bougdour
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
Burton BM, Baker TA. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci 2005; 14:1945-54. [PMID: 16046622 PMCID: PMC2279306 DOI: 10.1110/ps.051417505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|