1
|
Akter A, Ananna NF, Ullah H, Islam S, Al Amin M, Kibria KMK, Mahmud S. Computational approach for identifying immunogenic epitopes and optimizing peptide vaccine through in-silico cloning against Mycoplasma genitalium. Heliyon 2024; 10:e28223. [PMID: 38596014 PMCID: PMC11002066 DOI: 10.1016/j.heliyon.2024.e28223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Mycoplasma genitalium is a pathogenic microorganism linked to a variety of severe health conditions including ovarian cancer, prostate cancer, HIV transmission, and sexually transmitted diseases. A more effective approach to address the challenges posed by this pathogen, given its high antibiotic resistance rates, could be the development of a peptide vaccine. In this study, we used experimentally validated 13 membrane proteins and their immunogenicity to identify suitable vaccine candidates. Thus, based on immunogenic properties and high conservation among other Mycoplasma genitalium sub-strains, the P110 surface protein is considered for further investigation. Later on, we identified T-cell epitopes and B-cell epitopes from the P110 protein to construct a multiepitope-based vaccine. As a result, the 'NIAPISFSFTPFTAA' T-cell epitope and 'KVKYESSGSNNISFDS' B-cell epitope have shown 99.53% and 87.50% population coverage along with 100% conservancy among the subspecies, and both epitopes were found to be non-allergenic. Furthermore, focusing on molecular docking analysis showed the lowest binding energy for MHC-I (-137.5 kcal/mol) and MHC-II (-183.3 kcal/mol), leading to a satisfactory binding strength between the T-cell epitopes and the MHC molecules. However, the constructed multiepitope vaccine (MEV) consisting of 54 amino acids demonstrates favorable characteristics for a vaccine candidate, including a theoretical pI of 4.25 with a scaled solubility of 0.812 and high antigenicity probabilities. Additionally, structural analyses reveal that the MEV displays substantial alpha helices and extended strands, vital for its immunogenicity. Molecular docking with the human Toll-like receptors TLR1/2 heterodimer shows strong binding affinity, reinforcing its potential to elicit an immune response. Our immune simulation analysis demonstrates immune memory development and robust immunity, while codon adaptation suggests optimal expression in E. coli using the pET-28a(+) vector. These findings collectively highlight the MEV's potential as a valuable vaccine candidate against M. genitalium.
Collapse
Affiliation(s)
- Asma Akter
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Natasha Farhin Ananna
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Hedayet Ullah
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Sirajul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| |
Collapse
|
2
|
Nagar R, Hambleton I, Tinti M, Carrington M, Ferguson MAJ. Characterization of the major surface glycoconjugates of Trypanosoma theileri. Mol Biochem Parasitol 2023; 256:111591. [PMID: 37652240 DOI: 10.1016/j.molbiopara.2023.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Trypanosoma theileri maintains a long-term extracellular infection with a low parasitaemia in bovids. The surface of this parasite is predicted to be decorated with several surface molecules including membrane surface proteases (MSPs), trans-sialidases and T. theileri putative surface proteins (TTPSPs). However, there are no experimental data to verify this hypothesis. Here, we have purified and partially characterized the surface glycoconjugates of T. theileri using biochemical and mass spectrometry-based approaches. The glycoconjugates fall into two classes: glycoproteins and glycolipids. Proteomic analysis of the glycoprotein fraction demonstrated the presence of MSPs and abundant mucin-like TTPSPs, with most predicted to be GPI-anchored. Mass spectrometric characterization of the glycolipid fraction showed that these are mannose- and galactose-containing glycoinositolphospholipids (GIPLs) that are larger and more diverse than those of its phylogenetic relative T. cruzi, containing up to 10 hexose residues and carrying either alkylacyl-phosphatidylinositol or inositol-phospho-ceramide (IPC) lipid components.
Collapse
Affiliation(s)
- Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Isobel Hambleton
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
3
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
4
|
Hykollari A, Paschinger K, Wilson IBH. Negative-mode mass spectrometry in the analysis of invertebrate, fungal, and protist N-glycans. MASS SPECTROMETRY REVIEWS 2022; 41:945-963. [PMID: 33955035 PMCID: PMC7616688 DOI: 10.1002/mas.21693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
- VetCore Facility for Research, Veterinärmedizinische Universität Wien, Wien, Austria
| | | | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
| |
Collapse
|
5
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
7
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
8
|
The Glycan Structure of T. cruzi mucins Depends on the Host. Insights on the Chameleonic Galactose. Molecules 2020; 25:molecules25173913. [PMID: 32867240 PMCID: PMC7504415 DOI: 10.3390/molecules25173913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma cruzi, the protozoa that causes Chagas disease in humans, is transmitted by insects from the Reduviidae family. The parasite has developed the ability to change the structure of the surface molecules, depending on the host. Among them, the mucins are the most abundant glycoproteins. Structural studies have focused on the epimastigotes and metacyclic trypomastigotes that colonize the insect, and on the mammal trypomastigotes. The carbohydrate in the mucins fulfills crucial functions, the most important of which being the accepting of sialic acid from the host, a process catalyzed by the unique parasite trans-sialidase. The sialylation of the parasite influences the immune response on infection. The O-linked sugars have characteristics that differentiate them from human mucins. One of them is the linkage to the polypeptide chain by the hexosamine, GlcNAc, instead of GalNAc. The main monosaccharide in the mucins oligosaccharides is galactose, and this may be present in three configurations. Whereas β-d-galactopyranose (β-Galp) was found in the insect and the human stages of Trypanosoma cruzi, β-d-galactofuranose (β-Galf) is present only in the mucins of some strains of epimastigotes and α-d-galactopyranose (α-Galp) characterizes the mucins of the bloodstream trypomastigotes. The two last configurations confer high antigenic properties. In this review we discuss the different structures found and we pose the questions that still need investigation on the exchange of the configurations of galactose.
Collapse
|
9
|
Müller GA. Membrane insertion and intercellular transfer of glycosylphosphatidylinositol-anchored proteins: potential therapeutic applications. Arch Physiol Biochem 2020; 126:139-156. [PMID: 30445857 DOI: 10.1080/13813455.2018.1498904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anchorage of a subset of cell surface proteins in eukaryotic cells is mediated by a glycosylphosphatidylinositol (GPI) moiety covalently attached to the carboxy-terminus of the protein moiety. Experimental evidence for the potential of GPI-anchored proteins (GPI-AP) of being released from cells into the extracellular environment has been accumulating, which involves either the loss or retention of the GPI anchor. Release of GPI-AP from donor cells may occur spontaneously or in response to endogenous or environmental signals. The experimental evidence for direct insertion of exogenous GPI-AP equipped with the complete anchor structure into the outer plasma membrane bilayer leaflets of acceptor cells is reviewed as well as the potential underlying molecular mechanisms. Furthermore, promiscuous transfer of certain GPI-AP between plasma membranes of different cells in vivo under certain (patho)physiological conditions has been reported. Engineering of target cell surfaces using chimeric GPI-AP with complete GPI anchor may be useful for therapeutic applications.
Collapse
Affiliation(s)
- Günter A Müller
- Helmholtz Diabetes Center (HDC) at the Helmholtz Center München, Institute for Diabetes and Obesity, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front Microbiol 2019; 10:1854. [PMID: 31474955 PMCID: PMC6702454 DOI: 10.3389/fmicb.2019.01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is considered a neglected tropical disease by the World Health Organization. Congenital transmission of CD is an increasingly relevant public health problem. It progressively becomes the main transmission route over others and can occur in both endemic and non-endemic countries. Though most congenitally infected newborns are asymptomatic at birth, they display higher frequencies of prematurity, low birth weight, and lower Apgar scores compared to uninfected ones, and some suffer from severe symptoms. If not diagnosed and treated, infected newborns are at risk of developing disabling and life-threatening chronic pathologies later in life. The success or failure of congenital transmission depends on interactions between the parasite, the placenta, the mother, and the fetus. We review and discuss here the current knowledge about these parameters, including parasite virulence factors such as exovesicles, placental tropism, potential placental defense mechanisms, the placental transcriptome of infected women, gene polymorphism, and the maternal and fetal/neonatal immune responses, that might modulate the risk of T. cruzi congenital transmission.
Collapse
Affiliation(s)
- Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alejandro Gabriel Schijman
- Molecular Biology of Chagas Disease Laboratory, Genetic Engineering and Molecular Biology Research Institute Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2019; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
12
|
Cámara MDLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, Macchiaverna NP, Cardinal MV, Guaimas F, Lobo MM, de Lederkremer RM, Gallo-Rodriguez C, Buscaglia CA. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis 2019; 13:e0007418. [PMID: 31107901 PMCID: PMC6544316 DOI: 10.1371/journal.pntd.0007418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/31/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023] Open
Abstract
Background Trypanosoma cruzi, the agent of Chagas disease, is a protozoan parasite transmitted to humans by blood-sucking triatomine vectors. However, and despite its utmost biological and epidemiological relevance, T. cruzi development inside the digestive tract of the insect remains a poorly understood process. Methods/Principle findings Here we showed that Gp35/50 kDa mucins, the major surface glycoproteins from T. cruzi insect-dwelling forms, are involved in parasite attachment to the internal cuticle of the triatomine rectal ampoule, a critical step leading to its differentiation into mammal-infective forms. Experimental evidence supporting this conclusion could be summarized as follows: i) native and recombinant Gp35/50 kDa mucins directly interacted with hindgut tissues from Triatoma infestans, as assessed by indirect immunofluorescence assays; ii) transgenic epimastigotes over-expressing Gp35/50 kDa mucins on their surface coat exhibited improved attachment rates (~2–3 fold) to such tissues as compared to appropriate transgenic controls and/or wild-type counterparts; and iii) certain chemically synthesized compounds derived from Gp35/50 kDa mucins were able to specifically interfere with epimastigote attachment to the inner lining of T. infestans rectal ampoules in ex vivo binding assays, most likely by competing with or directly blocking insect receptor(s). A solvent-exposed peptide (smugS peptide) from the Gp35/50 kDa mucins protein scaffolds and a branched, Galf-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) from their O-linked glycans were identified as main adhesion determinants for these molecules. Interestingly, exogenous addition of a synthetic Galfβ1–4[Galpβ1–6]GlcNAcα derivative or of oligosaccharides containing this structure impaired the attachment of Dm28c but not of CL Brener epimastigotes to triatomine hindgut tissues; which correlates with the presence of Galf residues on the Gp35/50 kDa mucins’ O-glycans on the former but not the latter parasite clone. Conclusion/Significance These results provide novel insights into the mechanisms underlying T. cruzi-triatomine interplay, and indicate that inter-strain variations in the O-glycosylation of Gp35/50 kDa mucins may lead to differences in parasite differentiation and hence, in parasite transmissibility to the mammalian host. Most importantly, our findings point to Gp35/50 kDa mucins and/or the Galf biosynthetic pathway, which is absent in mammals and insects, as appealing targets for the development of T. cruzi transmission-blocking strategies. Chagas disease, caused by the protozoan Trypanosoma cruzi, is a life-long and debilitating neglected illness of major significance to Latin America public health, for which no vaccine or adequate drugs are yet available. In this scenario, identification of novel drug targets and/or strategies aimed at controlling parasite transmission are urgently needed. By using ex vivo binding assays together with different biochemical and genetic approaches, we herein show that Gp35/50 kDa mucins, the major T. cruzi epimastigote surface glycoproteins, specifically adhere to the internal cuticle of the rectal ampoule of the triatomine vector, a critical step leading to their differentiation into mammal-infective metacyclic forms. Ex vivo binding assays in the presence of chemically synthesized analogs allowed the identification of a solvent-exposed peptide and a branched, galactofuranose (Galf)-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) as major Gp35/50 kDa mucins adhesion determinants. Overall, these results provide novel insights into the mechanisms underlying the complex T. cruzi-triatomine interplay. In addition, and since the presence of Galf-based glycotopes on the O-glycans of Gp35/50 kDa mucins is restricted to certain parasite strains/clones, they also indicate that the Galfβ1–4[Galpβ1–6]GlcNAcα motif may contribute to the well-established phenotypic variability among T. cruzi isolates. Most importantly, and taking into account that Galf residues are not found in mammals, we propose Gp35/50 kDa mucins and/or Galf biosynthesis as appealing and novel targets for the development of T. cruzi transmission-blocking strategies.
Collapse
Affiliation(s)
- María de los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Camila Centeno Cameán
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Carmen R. Cori
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Gustavo A. Kashiwagi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Santiago A. Gil
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Maite Mabel Lobo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa M. de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Synthesis and characterization of α-d-Galp-(1 → 3)-β-d-Galp epitope-containing neoglycoconjugates for chagas disease serodiagnosis. Carbohydr Res 2019; 478:58-67. [PMID: 31096122 DOI: 10.1016/j.carres.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The immunodominant epitope α-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-GlcNAc, expressed in the mucins of the infective trypomastigote stage of Trypanosoma cruzi has been proposed for multiple clinical applications, from serodiagnosis of protozoan caused diseases to xenotransplantation or cancer vaccinology. It was previously shown that the analogue trisaccharide, with glucose in the reducing end instead of GlcNAc, was as efficient as the natural trisaccharide for recognition of chagasic antibodies. Here we describe the synthesis of α-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-Glcp functionalized as the 6-aminohexyl glycoside and its conjugation to BSA using the squarate method. The conjugate of 6-aminohexyl α-d-Galp-(1 → 3)-β-d-Galp was also prepared. Both neoglycoconjugates were recognized by serum samples of Trypanosoma cruzi-infected individuals and thus, are promising tools for the improvement of Chagas disease diagnostic applications.
Collapse
|
14
|
Masuishi Y, Kimura Y, Arakawa N, Hirano H. Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment. J Proteomics 2016; 139:77-83. [PMID: 26972028 DOI: 10.1016/j.jprot.2016.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Glycosylphosphatidylinositol anchored proteins (GPI-APs) in the outer leaflet of the membrane microdomains, commonly referred to as lipid rafts, play important roles in many biological processes such as signal transduction, cell adhesion, protein trafficking, and antigen presentation. From a topological viewpoint, elucidating the presence and localization of GPI-anchor modification sites (ω-sites) is important for the study of the biophysical properties and anchoring mechanisms of these proteins. However, very few reports have actually identified ω-sites of GPI-APs. To enable large-scale site-specific analysis of GPI anchoring, we developed a method for identification of ω-sites by mass spectrometry by combining titanium dioxide-based affinity purification and hydrogen fluoride treatment. This method was able to identify ~3-fold more GPI-APs than our previous method: the new technique identified a total of 73 ω-sites derived from 49 GPI-APs. In 13 of the 49 GPI-APs identified, the GPI-anchor attached to multiple amino acids in the C-terminal site, yielding a variety of different protein species. This method allows us to simultaneously identify many GPI-AP protein species with different ω-sites. We also demonstrated the C-terminal GPI anchor attachment signal peptide, based on information about the GPI anchor binding sites of 49 GPI-APs. Thus, our results provide evidence for new insight into the GPI-anchored proteome and the role of GPI anchoring. BIOLOGICAL SIGNIFICANCE GPI-anchored proteins (GPI-APs) are localized to the outer leaflet of the plasma membranes. Because the GPI anchor is a complex structure, the identification of GPI-anchored peptides by mass spectrometry has always been considered difficult. To improve the feasibility of large-scale site-specific analysis of GPI anchoring, we developed a method for identification of GPI-anchored peptides by combining titanium dioxide-based affinity purification with hydrogen fluoride treatment. Using this novel technique, we identified a total of 73 ω-sites derived from 49 GPI-APs. These data may help us to develop a comprehensive understanding of the GPI-anchored proteome and the role of GPI anchoring. Moreover, this method could be used to discover GPI-APs as candidate biomarkers.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Noriaki Arakawa
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Hisashi Hirano
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan.
| |
Collapse
|
15
|
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj J 2016; 33:273-83. [PMID: 26899268 PMCID: PMC4891362 DOI: 10.1007/s10719-016-9650-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/04/2022]
Abstract
Glycomic analyses over the years have revealed that non-vertebrate eukaryotes express oligosaccharides with inorganic and zwitterionic modifications which are either occurring in different contexts as compared to, or are absent from, mammals. Examples of anionic N-glycans (carrying sulphate or phosphate) are known from amoebae, fungi, molluscs and insects, while zwitterionic modifications by phosphorylcholine, phosphoethanolamine and aminoethylphosphonate occur on N-, O- and lipid-linked glycans from trichomonads, annelids, fungi, molluscs, insects, cestodes and nematodes. For detection of zwitterionic and anionic glycans, mass spectrometry has been a key method, but their ionic character affects the preparation and purification; therefore, as part of a glycomic strategy, the possibility of their presence must be considered in advance. On the other hand, their ionisation and fragmentation in positive and negative ion mode mass spectrometry as well as specific chemical or enzymatic treatments can prove diagnostic to their analysis. In our laboratory, we combine solid-phase extraction, reversed and normal phase HPLC, MALDI-TOF MS, exoglycosidase digests and hydrofluoric acid treatment to reveal N-glycans modified with anionic and zwitterionic moieties in a wide range of organisms. It is to be anticipated that, as more species are glycomically analysed, zwitterionic and anionic modifications of N-glycans will prove rather widespread. This knowledge is - in the longer term - then the basis for understanding the function of this cornucopia of glycan modifications.
Collapse
|
16
|
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014; 3:25040. [PMID: 25536932 PMCID: PMC4275648 DOI: 10.3402/jev.v3.25040] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain;
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria Trelis
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain
| | - Armando de Menezes-Neto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Antonio Osuna
- Institute of Biotechnology, Biochemistry and Molecular Parasitology, University of Granada, Granada, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
Golgi UDP-GlcNAc:polypeptide O-α-N-Acetyl-d-glucosaminyltransferase 2 (TcOGNT2) regulates trypomastigote production and function in Trypanosoma cruzi. EUKARYOTIC CELL 2014; 13:1312-27. [PMID: 25084865 DOI: 10.1128/ec.00165-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms.
Collapse
|
18
|
Mattos EC, Tonelli RR, Colli W, Alves MJM. The Gp85 surface glycoproteins from Trypanosoma cruzi. Subcell Biochem 2014; 74:151-180. [PMID: 24264245 DOI: 10.1007/978-94-007-7305-9_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosoma cruzi strains show distinctive characteristics as genetic polymorphism and infectivity. Large repertoires of molecules, such as the Gp85 glycoproteins, members of the Gp85/Trans-sialidase superfamily, as well as multiple signaling pathways, are associated with invasion of mammalian cells by the parasite. Due to the large number of expressed members, encoded by more than 700 genes, the research focused on this superfamily conserved sequences is discussed. Binding sites to laminin have been identified at the N-terminus of the Gp85 molecules. Interestingly, the T. cruzi protein phosphorylation profile is changed upon parasite binding to laminin (or fibronectin), particularly the cytoskeletal proteins such as those from the paraflagellar rod and the tubulins, which are both markedly dephosphorylated. Detailed analysis of the signaling cascades triggered upon T. cruzi binding to extracellular matrix (ECM) proteins revealed the involvement of the MAPK/ERK pathway in this event. At the C-terminus, the conserved FLY sequence is a cytokeratin-binding domain and is involved in augmented host cell invasion in vitro and high levels of parasitemia in vivo. FLY, which is associated to tissue tropism and preferentially binds to the heart vasculature may somehow be correlated with the severe cardiac form, an important clinical manifestation of chronic Chagas' disease.
Collapse
Affiliation(s)
- Eliciane C Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, Cidade Universitária, São Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Oliveira MPDC, Ramos TCP, Pinheiro AMVN, Bertini S, Takahashi HK, Straus AH, Haapalainen EF. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii. Acta Trop 2013; 128:548-56. [PMID: 23933185 DOI: 10.1016/j.actatropica.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored.
Collapse
Affiliation(s)
- Miriam Pires de Castro Oliveira
- Departamento de Biologia Estrutural e Funcional, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, SP, 04023-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
20
|
Masuishi Y, Nomura A, Okayama A, Kimura Y, Arakawa N, Hirano H. Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides. J Proteome Res 2013; 12:4617-26. [PMID: 24001144 DOI: 10.1021/pr4004807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a post-translational modification widely observed among eukaryotic membrane proteins. GPI anchors are attached to proteins via the carboxy-terminus in the outer leaflet of the cell membrane, where GPI-anchored proteins (GPI-APs) perform important functions as coreceptors and enzymes. Precursors of GPI-APs (Pre-GPI-APs) contain a C-terminal hydrophobic sequence that is involved in cleavage of the signal sequence from the protein and addition of the GPI anchor by the transamidase complex. In order to confirm that a given protein contains a GPI anchor, it is essential to identify the C-terminal peptide containing the GPI-anchor modification site (ω-site). Previously, efficient identification of GPI-anchored C-terminal peptides by mass spectrometry has been difficult, in part because of complex structure of the GPI-anchor moiety. We developed a method to experimentally identify GPI-APs and their ω-sites. In this method, a part of GPI-anchor moieties are removed from GPI-anchored peptides using phosphatidylinositol-specific phospholipase C (PI-PLC) and aqueous hydrogen fluoride (HF), and peptide sequence is then determined by mass spectrometry. Using this method, we successfully identified 10 GPI-APs and 12 ω-sites in the cultured ovarian adenocarcinoma cells, demonstrating that this method is useful for identifying efficiently GPI-APs.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Medical Life Science and ‡Advanced Medical Research Center, Yokohama City University , Yokohama, Kanagawa 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Chiodi CG, Verli H. Structural characterization of NETNES glycopeptide from Trypanosoma cruzi. Carbohydr Res 2013; 373:28-34. [PMID: 23578542 DOI: 10.1016/j.carres.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 11/26/2022]
Abstract
Trypanosoma cruzi is a protozoan, responsible for Chagas disease, that parasites triatomines and some vertebrates, mainly Homo sapiens. In 2010, nearly 10 million people in whole world, most from Latin America, had Chagas disease, which is an illness of high morbidity, low mortality, and serious problems of quality of life. The available treatment has high toxicity and low efficacy at chronic phase. Some of the protozoan antigenic or virulence factors include complex carbohydrate structures that, due to their uniqueness, may constitute potential selective targets for the development of new treatments. One example of such structures is NETNES, a low abundance T. cruzi glycopeptide, comprising 13 amino acid residues, one or two N-glycosylation chains, a GPI anchor and two P-glycosylations. In this context, the current work aims to obtain an atomic model for NETNES, including its glycan chains and membrane attachment, in order to contribute in the characterization of its structure and dynamics. Based on POPC and GPI models built in agreement with experimental data, our results indicate that, in the first third of the simulation, NETNES peptide is very flexible in solution, bending itself between asparagine residues and lying down on some carbohydrates and membrane, exposing amino acid residues and some other glycans, mainly terminal mannoses, to the extracellular medium, remaining in this position until the end of simulations.
Collapse
Affiliation(s)
- Carla G Chiodi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-970, RS, Brazil.
| | | |
Collapse
|
22
|
Allen S, Richardson JM, Mehlert A, Ferguson MAJ. Structure of a complex phosphoglycan epitope from gp72 of Trypanosoma cruzi. J Biol Chem 2013; 288:11093-105. [PMID: 23436655 PMCID: PMC3630849 DOI: 10.1074/jbc.m113.452763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The parasitic protozoan organism Trypanosoma cruzi is the causative agent of Chagas disease. The insect vector-dwelling epimastigote form of the organism expresses a low abundance glycoprotein associated with the flagellum adhesion zone, called gp72. The gp72 glycoprotein was first identified with an anti-carbohydrate IgG3 monoclonal antibody called WIC29.26 and has been shown to have an unusual sugar composition. Here, we describe a new way to isolate the WIC29.26 carbohydrate epitope of gp72. Using 1H NMR and mass spectrometry before and after derivatization, we provide an almost complete primary chemical structure for the epitope, which is that of a complex phosphosaccharide: Galfβ1–4Rhapα1–2Fucpα1-4(Galpβ1–3)(Galpα1–2)Xylpβ1–4Xylpβ1–3(Xylpβ1–2Galpα1-4(Galpβ1–3)(Rhapα1–2)Fucpα1–4)GlcNAcp, with phosphate attached to one or other of the two Galp terminal residues and in which all residues are of the d-absolute configuration, except for fucose and rhamnose which are l. Combined with previous data (Haynes, P. A., Ferguson, M. A., and Cross, G. A. (1996) Glycobiology 6, 869–878), we postulate that this complex structure and its variants lacking one or more residues are linked to Thr and Ser residues in gp72 via a phosphodiester linkage (GlcNAcpα1-P-Thr/Ser) and that these units may form phosphosaccharide repeats through GlcNAcpα1-P-Galp linkages. The gp72 glycoprotein is associated with the flagellum adhesion zone on the parasite surface, and its ligation has been implicated in inhibiting parasite differentiation from the epimastigote to the metacyclic trypomastigote stage. The detailed structure of the unique phosphosaccharide component of gp72 reported here provides a template for future biosynthetic and functional studies.
Collapse
Affiliation(s)
- Simon Allen
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
23
|
Tsai YH, Götze S, Vilotijevic I, Grube M, Silva DV, Seeberger PH. A general and convergent synthesis of diverse glycosylphosphatidylinositol glycolipids. Chem Sci 2013. [DOI: 10.1039/c2sc21515b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
25
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Cánepa GE, Mesías AC, Yu H, Chen X, Buscaglia CA. Structural features affecting trafficking, processing, and secretion of Trypanosoma cruzi mucins. J Biol Chem 2012; 287:26365-76. [PMID: 22707724 DOI: 10.1074/jbc.m112.354696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.
Collapse
Affiliation(s)
- Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde," Av. 25 de Mayo y Francia, Campus UNSAM, San Martín 1650, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J 2011; 438:303-13. [PMID: 21651499 DOI: 10.1042/bj20110683] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The surface of the protozoan Trypanosoma cruzi is covered by a dense coat of mucin-type glycoconjugates, which make a pivotal contribution to parasite protection and host immune evasion. Their importance is further underscored by the presence of >1000 mucin-like genes in the parasite genome. In the present study we demonstrate that one such group of genes, termed TcSMUG L, codes for previously unrecognized mucin-type glycoconjugates anchored to and secreted from the surface of insect-dwelling epimastigotes. These features are supported by the in vivo tracing and characterization of endogenous TcSMUG L products and recombinant tagged molecules expressed by transfected parasites. Besides displaying substantial homology to TcSMUG S products, which provide the scaffold for the major Gp35/50 mucins also present in insect-dwelling stages of the T. cruzi lifecycle, TcSMUG L products display unique structural and functional features, including being completely refractory to sialylation by parasite trans-sialidases. Although quantitative real time-PCR and gene sequencing analyses indicate a high degree of genomic conservation across the T. cruzi species, TcSMUG L product expression and processing is quite variable among different parasite isolates.
Collapse
|
28
|
Oppenheimer M, Valenciano AL, Sobrado P. Biosynthesis of galactofuranose in kinetoplastids: novel therapeutic targets for treating leishmaniasis and chagas' disease. Enzyme Res 2011; 2011:415976. [PMID: 21687654 PMCID: PMC3112513 DOI: 10.4061/2011/415976] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/02/2011] [Accepted: 03/14/2011] [Indexed: 12/14/2022] Open
Abstract
Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during infection. β-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of Leishmania spp. and Trypanosoma cruzi. β-Galf-containing glycans have been shown to be important in parasite-cell interaction and protection against oxidative stress. Here, we discuss the role of β-Galf in pathogenesis and recent studies on the Galf-biosynthetic enzymes: UDP-galactose 4′ epimerase (GalE), UDP-galactopyranose mutase (UGM), and UDP-galactofuranosyl transferase (GalfT). The central role in Galf formation, its unique chemical mechanism, and the absence of a homologous enzyme in humans identify UGM as the most attractive drug target in the β-Galf-biosynthetic pathway in protozoan parasites.
Collapse
|
29
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
30
|
Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi. Biochem J 2010; 429:533-43. [DOI: 10.1042/bj20100238] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The diverse types of glycoconjugates synthesized by trypanosomatid parasites are unique compared with the host cells. These glycans are required for the parasite survival, invasion or evasion of the host immune system. Synthesis of those glycoconjugates requires a constant supply of nucleotide-sugars (NDP-sugars), yet little is known about how these NDP-sugars are made and supplied. In the present paper, we report a functional gene from Trypanosoma cruzi that encodes a nucleotidyltransferase, which is capable of transforming different types of sugar 1-phosphates and NTP into NDP-sugars. In the forward reaction, the enzyme catalyses the formation of UDP-glucose, UDP-galactose, UDP-xylose and UDP-glucuronic acid, from their respective monosaccharide 1-phosphates in the presence of UTP. The enzyme could also convert glucose 1-phosphate and TTP into TDP-glucose, albeit at lower efficiency. The enzyme requires bivalent ions (Mg2+ or Mn2+) for its activity and is highly active between pH 6.5 and pH 8.0, and at 30–42 °C. The apparent Km values for the forward reaction were 177 μM (glucose 1-phosphate) and 28.4 μM (UTP) respectively. The identification of this unusual parasite enzyme with such broad substrate specificities suggests an alternative pathway that might play an essential role for nucleotide-sugar biosynthesis and for the regulation of the NDP-sugar pool in the parasite.
Collapse
|
31
|
Cestari IDS, Krarup A, Sim RB, Inal JM, Ramirez MI. Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi. Mol Immunol 2009; 47:426-37. [PMID: 19783051 DOI: 10.1016/j.molimm.2009.08.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/21/2009] [Accepted: 08/28/2009] [Indexed: 11/15/2022]
Abstract
The complement system is the first line of defence against pathogen infection and can be activated by the classic, alternative and lectin pathways. Trypanosoma cruzi, the causative agent of Chagas disease, has to evade complement system killing and invade the host cells to progress in infection. T. cruzi infectious stages resist complement-mediated killing by expressing surface receptors, which dissociate or prevent C3 convertase formation. Here, we present the first evidence that T. cruzi activates the complement lectin pathway. We detected rapid binding of mannan-binding lectin, H-ficolin, and L-ficolin to the surface of T. cruzi, and found that serum depleted of these molecules failed to kill parasites. Furthermore, lectin pathway activation by T. cruzi required the MBL-associated serine protease 2 (MASP2) activity resulting in C2 factor cleavage. In addition, we demonstrate that the infectious stage of T. cruzi inhibits the lectin pathway activation and complement killing expressing the complement C2 receptor inhibitor trispanning (CRIT) protein. Transgenic parasites overexpressing CRIT were highly resistant to complement-mediated killing. CRIT-derived peptides inhibited both C2 binding to the surface of T. cruzi and parasite killing. Biochemical studies revealed that the CRIT extracellular domain 1 inhibits MASP2 cleavage of C2 factor and thereby impairs C3 convertase formation. Our findings establish that the complement lectin pathway recognizes T. cruzi and provide molecular insights into how the infectious stage inhibits this activation to resist complement system killing.
Collapse
Affiliation(s)
- Igor dos S Cestari
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, 21040-900, Brazil
| | | | | | | | | |
Collapse
|
32
|
Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1407-17. [PMID: 19633269 PMCID: PMC2747833 DOI: 10.1128/ec.00178-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB(3)H(4) labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB(3)H(4) labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.
Collapse
|
33
|
Affiliation(s)
- Rosa M de Lederkremer
- Departamento de Quimica Organica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | |
Collapse
|
34
|
GPIomics: global analysis of glycosylphosphatidylinositol-anchored molecules of Trypanosoma cruzi. Mol Syst Biol 2009; 5:261. [PMID: 19357640 PMCID: PMC2683718 DOI: 10.1038/msb.2009.13] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/23/2009] [Indexed: 02/01/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a common, relevant posttranslational modification of eukaryotic surface proteins. Here, we developed a fast, simple, and highly sensitive (high attomole-low femtomole range) method that uses liquid chromatography-tandem mass spectrometry (LC-MSn) for the first large-scale analysis of GPI-anchored molecules (i.e., the GPIome) of a eukaryote, Trypanosoma cruzi, the etiologic agent of Chagas disease. Our genome-wise prediction analysis revealed that approximately 12% of T. cruzi genes possibly encode GPI-anchored proteins. By analyzing the GPIome of T. cruzi insect-dwelling epimastigote stage using LC-MSn, we identified 90 GPI species, of which 79 were novel. Moreover, we determined that mucins coded by the T. cruzi small mucin-like gene (TcSMUG S) family are the major GPI-anchored proteins expressed on the epimastigote cell surface. TcSMUG S mucin mature sequences are short (56–85 amino acids) and highly O-glycosylated, and contain few proteolytic sites, therefore, less likely susceptible to proteases of the midgut of the insect vector. We propose that our approach could be used for the high throughput GPIomic analysis of other lower and higher eukaryotes.
Collapse
|
35
|
Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008; 47:6991-7000. [PMID: 18557633 PMCID: PMC2663890 DOI: 10.1021/bi8006324] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
36
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
37
|
Utz S, Roditi I, Kunz Renggli C, Almeida IC, Acosta-Serrano A, Bütikofer P. Trypanosoma congolense procyclins: unmasking cryptic major surface glycoproteins in procyclic forms. EUKARYOTIC CELL 2006; 5:1430-40. [PMID: 16896226 PMCID: PMC1539152 DOI: 10.1128/ec.00067-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/20/2006] [Indexed: 11/20/2022]
Abstract
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.
Collapse
Affiliation(s)
- Silvia Utz
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
MacRae JI, Obado SO, Turnock DC, Roper JR, Kierans M, Kelly JM, Ferguson MAJ. The suppression of galactose metabolism in Trypanosoma cruzi epimastigotes causes changes in cell surface molecular architecture and cell morphology. Mol Biochem Parasitol 2006; 147:126-36. [PMID: 16569451 DOI: 10.1016/j.molbiopara.2006.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 02/09/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The cell surface of the epimastigote form of Trypanosoma cruzi is covered by glycoconjugates rich in galactose. The parasite cannot take up galactose through its hexose transporter, suggesting that the epimerisation of UDP-glucose to UDP-galactose may be the parasite's only route to this sugar. The T. cruzi UDP-glucose 4'-epimerase is encoded by the TcGALE gene. We were unable to make a CL-Brener strain T. cruzi epimastigote TcGALE-/- null mutant, suggesting that the gene is essential. Two TcGALE+/- single-allele knockout clones displayed aberrant morphology and haploid deficiency with respect to galactose metabolism. The morphological phenotypes included shortened flagella, increased incidence of spheromastigotes, agglutination and a novel walnut-like appearance. The reduced supply of UDP-galactose was manifest in the two clones as a six- or nine-fold reduction in the expression of galactopyranose-containing cell surface mucins and negligible or two-fold reduction in the expression of galactofuranose-containing glycoinositolphospholipids. The major loss of mucins as opposed to glycoinositolphospholipids may indicate that the latter are more important for basic parasite survival in culture. The apparent haploid deficiency suggests that epimerase levels are close to limiting, at least in the epimastigote form, and might be exploited as a potential drug target.
Collapse
Affiliation(s)
- James I MacRae
- Division of Biological Chemistry & Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Mendonça-Previato L, Todeschini AR, Heise N, Previato JO. Protozoan parasite-specific carbohydrate structures. Curr Opin Struct Biol 2006; 15:499-505. [PMID: 16154349 DOI: 10.1016/j.sbi.2005.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/11/2005] [Accepted: 08/30/2005] [Indexed: 11/16/2022]
Abstract
The carbohydrate moieties displayed by pathogenic protozoan parasites exhibit many unusual structural features and their expression is often developmentally regulated. These unique structures suggest a specific relationship between such carbohydrates and parasite pathogenicity. Studies of infected humans indicate that immune responses to protozoan parasites are elicited by glycan determinants on cell-surface or secreted molecules. Infections by protozoa are a major worldwide health problem, and no vaccines or efficacious treatments exist to date. Recent progress has been made in elucidating the structure and function of carbohydrates displayed by major protozoan parasites that infect man. These structures can be used as prototypes for the chemical or combined chemo-enzymatic synthesis of new compounds for diagnosis and vaccine development, or as inhibitors specifically designed to target parasite glycan biosynthesis.
Collapse
Affiliation(s)
- Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde-Bloco G, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21 944 970, Rio de Janeiro, Brasil.
| | | | | | | |
Collapse
|
40
|
Jung HR, Jensen ON. Proteomic analysis of GPI-anchored membrane proteins. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:339-346. [PMID: 24980538 DOI: 10.1016/j.ddtec.2006.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell-type specific surface molecules, candidate biomarkers and potential therapeutic targets.:
Collapse
Affiliation(s)
- Hye Ryung Jung
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Ole Nørregaard Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark.
| |
Collapse
|