1
|
Elhabal SF, Abdelaal N, Saeed Al-Zuhairy SAK, Elrefai MFM, Elsaid Hamdan AM, Khalifa MM, Hababeh S, Khasawneh MA, Khamis GM, Nelson J, Mohie PM, Gad RA, Rizk A, Kabil SL, El-Ashery MK, Jasti BR, Elzohairy NA, Elnawawy T, Hassan FE, El- Nabarawi MA. Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways. Int J Nanomedicine 2024; 19:3045-3070. [PMID: 38559447 PMCID: PMC10981898 DOI: 10.2147/ijn.s455270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Sandra Hababeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Gehad M Khamis
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jakline Nelson
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amira Rizk
- Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta, Egypt
| | - Soad L Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Kandeel El-Ashery
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Tayseer Elnawawy
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed A El- Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Hwang HS, Park YY, Shin SJ, Go H, Park JM, Yoon SY, Lee JL, Cho YM. Involvement of the TNF-α Pathway in TKI Resistance and Suggestion of TNFR1 as a Predictive Biomarker for TKI Responsiveness in Clear Cell Renal Cell Carcinoma. J Korean Med Sci 2020; 35:e31. [PMID: 32030920 PMCID: PMC7008069 DOI: 10.3346/jkms.2020.35.e31] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mechanism and predictive biomarkers for tyrosine kinase inhibitor (TKI) resistance of advanced clear cell renal cell carcinoma (ccRCC) have not been fully evaluated. METHODS We performed gene expression profiling on samples from an acquired TKI resistance cohort that consisted of 10 cases of TKI-treated ccRCC patients with matched tumor tissues harvested at pre-treatment and TKI-resistant post-treatment periods. In addition, a public microarray dataset from patient-derived xenograft model for TKI-treated ccRCC (GSE76068) was retrieved. Commonly altered pathways between the datasets were investigated by Ingenuity Pathway Analysis using commonly regulated differently expressed genes (DEGs). The significance of candidate DEG on intrinsic TKI resistance was assessed through immunohistochemistry in a separate cohort of 101 TKI-treated ccRCC cases. RESULTS TNFRSF1A gene expression and tumor necrosis factor (TNF)-α pathway were upregulated in ccRCCs with acquired TKI resistance in both microarray datasets. Also, high expression (> 10% of labeled tumor cells) of TNF receptor 1 (TNFR1), the protein product of TNFRSF1A gene, was correlated with sarcomatoid dedifferentiation and was an independent predictive factor of clinically unfavorable response and shorter survivals in separated TKI-treated ccRCC cohort. CONCLUSION TNF-α signaling may play a role in TKI resistance, and TNFR1 expression may serve as a predictive biomarker for clinically unfavorable TKI responses in ccRCC.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Yong Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su Jin Shin
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja Min Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Sun Young Yoon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells. Oncogene 2018; 37:3456-3470. [PMID: 29559745 PMCID: PMC6013421 DOI: 10.1038/s41388-018-0221-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/10/2018] [Accepted: 02/25/2018] [Indexed: 12/22/2022]
Abstract
Chemoresistance remains a major obstacle to successful treatment of breast cancer. Although soluble tumor necrosis factor-α (sTNF-α) has been implicated in mediating drug-resistance in human cancers, whether transmembrane tumor necrosis factor-α (tmTNF-α) plays a role in chemoresistance remains unclear. Here we found that over 50% of studied patients expressed tmTNF-α at high levels in breast cancer tissues and tmTNF-α expression positively correlated with resistance to anthracycline chemotherapy. Alteration of tmTNF-α expression changed the sensitivity of primary human breast cancer cells and breast cancer cell lines to doxorubicin (DOX). Overexpression of N-terminal fragment (NTF) of tmTNF-α, a mutant form with intact intracellular domain of tmTNF-α to transmit reverse signals, induced DOX-resistance. Mechanistically, the tmTNF-α/NTF-ERK-GST-π axis and tmTNF-α/NTF-NF-κB-mediated anti-apoptotic functions were required for tmTNF-α-induced DOX-resistance. In a xenograft mouse model, the combination of tmTNF-α suppression with chemotherapy significantly enhanced the efficacy of DOX. Our data indicate that tmTNF-α mediates DOX-resistance through reverse signaling and targeting tmTNF-α may be beneficial for the treatment of DOX-resistant breast cancer.
Collapse
|
4
|
Adenovirus-delivered PDCD5 counteracts adriamycin resistance of osteosarcoma cells through enhancing apoptosis and inhibiting Pgp. Int J Clin Exp Med 2015; 7:5429-36. [PMID: 25664052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/25/2014] [Indexed: 09/28/2022]
Abstract
In the present study, we investigated the roles of PDCD5 (programmed cell death 5) in multidrug re-sistance (MDR) of osteosarcoma cells and the possible lurking mechanisms. An adenovirus expression vector of PDCD5 was constructed and transfected into human adriamycin-resistant osteosarcoma cell line Saos-2/ADM. We found that up-regulation of PDCD5 could significantly enhance the sensitivity of Saos-2/ADM cells towards vincristine, methotrexate, cisplatin and arsenic trioxide (As2O3), and could decrease the capacity of cells to efflux adriamycin. PDCD5 could significantly down regulate the expression of P-glycoprotein (Pgp), but not affect the expression of multidrug resistance associated protein (MRP) or the glutathione S-transferase (GST). PDCD5 was also able to significantly increase the apoptotic activity of modified osteosarcoma cells. Further study of the biological functions of PDCD5 might be helpful in the understanding of the mechanisms of multidrug resistance (MDR) in osteosarcoma and exploring PDCD5 based adjuvant genetic therapy.
Collapse
|
5
|
Zhao T, Sun Q, del Rincon SV, Lovato A, Marques M, Witcher M. Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo. PLoS One 2014; 9:e92853. [PMID: 24658335 PMCID: PMC3962455 DOI: 10.1371/journal.pone.0092853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/27/2014] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.
Collapse
Affiliation(s)
- Tiejun Zhao
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Qiang Sun
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Sonia V. del Rincon
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Amanda Lovato
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Maud Marques
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael Witcher
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
6
|
Liu D, Liu X, Xing M. Activities of multiple cancer-related pathways are associated with BRAF mutation and predict the resistance to BRAF/MEK inhibitors in melanoma cells. Cell Cycle 2013; 13:208-19. [PMID: 24200969 DOI: 10.4161/cc.26971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.
Collapse
Affiliation(s)
- Dingxie Liu
- Laboratory for Cellular and Molecular Thyroid Research; Division of Endocrinology and Metabolism; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Xuan Liu
- Department of Electrical and Computer Engineering; Johns Hopkins University; Baltimore, MD USA
| | - Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research; Division of Endocrinology and Metabolism; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
7
|
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 2010; 14:45-55. [PMID: 20001209 DOI: 10.1517/14728220903431069] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Nuclear factor kappa B (NF-kappaB) is activated by a variety of cancer-promoting agents. The reciprocal activation between NF-kappaB and inflammatory cytokines makes NF-kappaB important for inflammation-associated cancer development. Both the constitutive and anticancer therapeutic-induced NF-kappaB activation blunts the anticancer activities of the therapy. Elucidating the roles of NF-kappaB in cancer facilitates developing approaches for cancer prevention and therapy. AREAS COVERED IN THIS REVIEW By searching PubMed, we summarize the progress of studies on NF-kappaB in carcinogenesis and cancer cells' drug resistance in recent 10 years. WHAT THE READER WILL GAIN The mechanisms by which NF-kappaB activation pathways are activated; the roles and mechanisms of NF-kappaB in cell survival and proliferation, and in carcinogenesis and cancer cells' response to therapy; recent development of NF-kappaB-modulating means and their application in cancer prevention and therapy. TAKE HOME MESSAGE NF-kappaB is involved in cancer development, modulating NF-kappaB activation pathways has important implications in cancer prevention and therapy. Due to the complexity of NF-kappaB roles in different cancers, careful evaluation of NF-kappaB's in each cancer type is crucial in this regard. More cancer cell-specific NF-kappaB inhibiting means are desired for improving anticancer efficacy and reducing systemic toxicity.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
8
|
Higashimoto T, Chan N, Lee YK, Zandi E. Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1. J Biol Chem 2008; 283:35354-67. [PMID: 18957422 PMCID: PMC2602907 DOI: 10.1074/jbc.m806258200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/24/2008] [Indexed: 01/09/2023] Open
Abstract
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.
Collapse
Affiliation(s)
- Tomoyasu Higashimoto
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089-9176, USA
| | | | | | | |
Collapse
|
9
|
Hong L, Zhao Y, Wang J, Han Y, Guo W, Jin H, Zhai H, Bai F, Zhang X, Qiao T, Chen Z, Fan D. Reversal of multidrug resistance of adriamycin-resistant gastric adenocarcinoma cells through the up-regulation of DARPP-32. Dig Dis Sci 2008; 53:101-7. [PMID: 17492506 DOI: 10.1007/s10620-007-9829-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 03/16/2007] [Indexed: 12/09/2022]
Abstract
We have investigated the roles of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the multidrug resistance (MDR) of gastric cancer cells and the possible underlying mechanisms. The up-regulation of DARPP-32 was found to significantly enhance the sensitivity of cells of human adriamycin (ADR)-resistant gastric adenocarcinoma cell line SGC7901/ADR to vincristine, ADR, 5-fludrouracil and cisplatin. The results of an in vivo drug sensitivity assay confirmed that DARPP-32 may play a specific role in the MDR of gastric cancer. DARPP-32 significantly down-regulated the expression of P-glycoprotein and zinc ribbon domain-containing 1 (ZNRD1), but did not alter the expression of MDR-associated protein or glutathione-S-transferase. The up-regulation of ZNRD1 significantly inhibited the drug sensitivity of gastric cancer cells over-expressing DARPP-32, indicating that ZNRD1 may be important in the DARPP-32-mediated MDR of gastric cancer. DARPP-32 was also able to significantly decrease the anti-apoptotic activity of SGC7901/ADR cells. Further study of the biological functions of DARPP-32 may be helpful for understanding the mechanisms of MDR of gastric cancer cells and developing possible strategies to treat gastric cancer.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hong L, Wang J, Zhao Y, Han Z, Zhou X, Guo W, Zhang X, Jin H, Wu K, Ding J, Fan D. DARPP-32 mediates multidrug resistance of gastric cancer through regulation of P-gp and ZNRD1. Cancer Invest 2007; 25:699-705. [PMID: 18058465 DOI: 10.1080/07357900701566304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here, we firstly investigated the roles of DARPP-32 in multidrug resistance of gastric cancer cells. Inhibition of DARPP-32 by small interfering RNA led to decreased sensitivity of cells to chemotherapeutic drugs, accompanied by increased capacity of cells to efflux adriamycin. Inhibition of DARPP-32 expression could significantly up-regulate the expression of permeability glycoprotein (P-gp) and zinc ribbon domain-containing 1 (ZNRD1), but not alter the expression of multidrug resistance-associated protein or glutathione transferase. The DARPP-32 siRNA-mediated MDR could be reversed by inhibitor of P-gp or siRNA of ZNRD1, indicating DARPP-32 might mediate MDR of gastric cancer through regulation of P-gp and ZNRD1.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|