1
|
Wei Y, Wang D, Wu J, Zhang J. JAK2 inhibitors improve RA combined with pulmonary fibrosis in rats by downregulating SMAD3 phosphorylation. Int J Rheum Dis 2024; 27:e15164. [PMID: 38706209 DOI: 10.1111/1756-185x.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/01/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-β1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFβ-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1β and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFβ-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-β1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.
Collapse
Affiliation(s)
- Yimei Wei
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Dandan Wang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
- Department of Pulmonary Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Juan Wu
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
2
|
Cuesta-López L, Escudero-Contreras A, Hanaee Y, Pérez-Sánchez C, Ruiz-Ponce M, Martínez-Moreno JM, Pérez-Pampin E, González A, Plasencia-Rodriguez C, Martínez-Feito A, Balsa A, López-Medina C, Ladehesa-Pineda L, Rojas-Giménez M, Ortega-Castro R, Calvo-Gutiérrez J, López-Pedrera C, Collantes-Estévez E, Arias-de la Rosa I, Barbarroja N. Exploring candidate biomarkers for rheumatoid arthritis through cardiovascular and cardiometabolic serum proteome profiling. Front Immunol 2024; 15:1333995. [PMID: 38420123 PMCID: PMC10900234 DOI: 10.3389/fimmu.2024.1333995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction RA patients are at higher risk of cardiovascular disease, influenced by therapies. Studying their cardiovascular and cardiometabolic proteome can unveil biomarkers and insights into related biological pathways. Methods This study included two cohorts of RA patients: newly diagnosed individuals (n=25) and those with established RA (disease duration >25 years, n=25). Both cohorts were age and sex-matched with a control group (n=25). Additionally, a longitudinal investigation was conducted on a cohort of 25 RA patients treated with methotrexate and another cohort of 25 RA patients treated with tofacitinib for 6 months. Clinical and analytical variables were recorded, and serum profiling of 184 proteins was performed using the Olink technology platform. Results RA patients exhibited elevated levels of 75 proteins that might be associated with cardiovascular disease. In addition, 24 proteins were increased in RA patients with established disease. Twenty proteins were commonly altered in both cohorts of RA patients. Among these, elevated levels of CTSL1, SORT1, SAA4, TNFRSF10A, ST6GAL1 and CCL18 discriminated RA patients and HDs with high specificity and sensitivity. Methotrexate treatment significantly reduced the levels of 13 proteins, while tofacitinib therapy modulated the expression of 10 proteins. These reductions were associated with a decrease in DAS28. Baseline levels of SAA4 and high levels of BNP were associated to the non-response to methotrexate. Changes in IL6 levels were specifically linked to the response to methotrexate. Regarding tofacitinib, differences in baseline levels of LOX1 and CNDP1 were noted between non-responder and responder RA patients. In addition, response to tofacitinib correlated with changes in SAA4 and TIMD4 levels. Conclusion In summary, this study pinpoints molecular changes linked to cardiovascular disease in RA and proposes candidate protein biomarkers for distinguishing RA patients from healthy individuals. It also highlights how methotrexate and tofacitinib impact these proteins, with distinct alterations corresponding to each drug's response, identifying potential candidates, as SAA4, for the response to these therapies.
Collapse
Affiliation(s)
- Laura Cuesta-López
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Yas Hanaee
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- Scientific department, Cobiomic Bioscience S.L, Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- Scientific department, Cobiomic Bioscience S.L, Cordoba, Spain
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - Miriam Ruiz-Ponce
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | | | - Eva Pérez-Pampin
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
| | - Antonio González
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
| | - Chamaida Plasencia-Rodriguez
- Rheumatology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Ana Martínez-Feito
- Rheumatology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Alejandro Balsa
- Rheumatology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Clementina López-Medina
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Lourdes Ladehesa-Pineda
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Marta Rojas-Giménez
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Rafaela Ortega-Castro
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Jerusalem Calvo-Gutiérrez
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Chary López-Pedrera
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Eduardo Collantes-Estévez
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- Scientific department, Cobiomic Bioscience S.L, Cordoba, Spain
| |
Collapse
|
3
|
Chiu YH, Liang YH, Hwang JJ, Wang HS. IL-1β stimulated human umbilical cord mesenchymal stem cells ameliorate rheumatoid arthritis via inducing apoptosis of fibroblast-like synoviocytes. Sci Rep 2023; 13:15344. [PMID: 37714911 PMCID: PMC10504325 DOI: 10.1038/s41598-023-42585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial proliferation and lymphocyte accumulation leading to progressive damage of the periarticular bone and the articular cartilage. The hyperplasia of the synovial intima lining mainly consists of fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) which exhibit apoptosis-resistance, hyper-proliferation, and high invasiveness. The therapeutic efficacy of mesenchymal stem cells (MSCs) treatment in RA has been shown to be due to its immuno-regulatory ability. However, the exact factors and mechanisms involved in MSCs treatment in RA remain unclear. In this study, TRAIL receptor-Death receptor 4 (DR4), DR5, and LFA-1 ligand-intercellular adhesion molecule-1 (ICAM-1) were upregulated in IL-1β-stimulated HFLS-RA. We demonstrated that the total cell number of IL-1β-stimulated hUCMSCs adhering to IL-1β-stimulated HFLA-RA increased via LFA-1/ICAM-1 interaction. Direct co-culture of IL-1β-stimulated hUCMSCs with IL-1β-stimulated HFLS-RA increased the apoptosis of HFLS-RA. RA symptoms in the CIA mouse model improved after administration of IL-1β-stimulated hUCMSCs. In conclusion, IL-1β-stimulated hUCMSCs adhering to HFLS-RA occurred via LFA-1/ICAM-1 interaction, apoptosis of HFLS-RA was induced via TRAIL/DR4, DR5 contact, and RA symptoms and inflammation were significantly improved in a CIA mouse model. The results of this study suggest that IL-1β-stimulated hUCMSCs have therapeutic potential in RA treatment.
Collapse
Affiliation(s)
- Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Ya-Han Liang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital affiliated with Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 402, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
4
|
Dong G, Gao H, Chen Y, Yang H. Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid arthritis. Front Genet 2023; 14:1238407. [PMID: 37779906 PMCID: PMC10533932 DOI: 10.3389/fgene.2023.1238407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Although rheumatoid arthritis (RA) is a common autoimmune disease, the precise pathogenesis of the disease remains unclear. Recent research has unraveled the role of autophagy in the development of RA. This research aims to explore autophagy-related diagnostic biomarkers in the peripheral blood of RA patients. Methods: The gene expression profiles of GSE17755 were retrieved from the gene expression ontology (GEO) database. Differentially expressed autophagy-related genes (DE-ARGs) were identified for the subsequent research by inserting autophagy-related genes and differentially expressed genes (DEGs). Three machine learning algorithms, including random forest, support vector machine recursive feature elimination (SVM-RFE), and least absolute shrinkage and selection operator (LASSO), were employed to identify diagnostic biomarkers. A nomogram model was constructed to assess the diagnostic value of the biomarkers. The CIBERSORT algorithm was performed to investigate the correlation of the diagnostic biomarkers with immune cells and immune factors. Finally, the diagnostic efficacy and differential expression trend of diagnostic biomarkers were validated in multiple cohorts containing different tissues and diseases. Results: In this study, 25 DE-ARGs were identified between RA and healthy individuals. In addition to "macroautophagy" and "autophagy-animal," DE-ARGs were also associated with several types of programmed cell death and immune-related pathways according to GO and KEGG analysis. Three diagnostic biomarkers, EEF2, HSP90AB1 and TNFSF10, were identified by the random forest, SVM-RFE, and LASSO. The nomogram model demonstrated excellent diagnostic value in GSE17755 (AUC = 0.995, 95% CI: 0.988-0.999). Furthermore, immune infiltration analysis showed a remarkable association between EEF2, HSP90AB1, and TNFSF10 expression with various immune cells and immune factors. The three diagnostic biomarkers also exhibited good diagnostic efficacy and demonstrated the same trend of differential expression in multiple validation cohorts. Conclusion: This study identified autophagy-related diagnostic biomarkers based on three machine learning algorithms, providing promising targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
| | | | | | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. Cell Death Dis 2021; 12:1089. [PMID: 34789726 PMCID: PMC8599458 DOI: 10.1038/s41419-021-04383-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptosis in cancer cells but not in normal ones, where its effects remain to be fully understood. Previous studies have shown that in high-fat diet (HFD)-fed mice, TRAIL treatment reduced body weight gain, insulin resistance, and inflammation. TRAIL was also able to increase skeletal muscle free fatty acid oxidation. The aim of the present work was to evaluate TRAIL actions on skeletal muscle. Our in vitro data on C2C12 cells showed that TRAIL treatment significantly increased myogenin and MyHC and other hallmarks of myogenic differentiation, which were reduced by Dr5 (TRAIL receptor) silencing. In addition, TRAIL treatment significantly increased AKT phosphorylation, which was reduced by Dr5 silencing, as well as glucose uptake (alone and in combination with insulin). Our in vivo data showed that TRAIL increased myofiber size in HFD-fed mice as well as in db/db mice. This was associated with increased myogenin and PCG1α expression. In conclusion, TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. These data shed light onto a pathway that might hold therapeutic potential not only for the metabolic disturbances but also for the muscle mass loss that are associated with diabetes.
Collapse
|
7
|
Zhu C, Wen S, Li J, Meng H, Zhang J, Zhao K, Wang L, Zhang Y. FTY720 Inhibits the Development of Collagen-Induced Arthritis in Mice by Suppressing the Recruitment of CD4 + T Lymphocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1981-1992. [PMID: 34007158 PMCID: PMC8123953 DOI: 10.2147/dddt.s293876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
Background Fingolimod (FTY720), a novel immunomodulator, was found to suppress the severity of collagen-induced arthritis (CIA) in mice. However, the potential molecular mechanisms are still unknown, and the effect of FTY720 on the recruitment of immune cells in the affected joints in the CIA model is not clear. Materials and Methods Following the oral administration of FTY720 (2 mg/kg) was treated into CIA mice per day for 35 days, intravital microscopy and immunofluorescence assays were performed to examine immune cell recruitment in the affected joints. Human MH7A synoviocytes were stimulated with tumour necrosis factor (TNF)-α and incubated with FTY720. Interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) mRNA and protein expression were evaluated using RT-PCR and enzyme-linked immunosorbent assay, respectively. Signal transduction pathway protein expression was measured by Western blotting. Nuclear translocation of nuclear factor (NF)-κB was also analyzed by fluorescence microscopy. Results In vivo experiments showed that FTY720 inhibited the recruitment of CD4+ lymphocytes in the affected joints of CIA mice. FTY720 reduced the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. FTY720 also inhibited TNF-α-induced phosphorylation of NF-κBp65 and IκBα, as well as NF-κBp65 nuclear translocation, in a dose- and time-dependent manner. Interestingly, FTY720 blocked PI3K/Akt, the upstream targets of the NF-κB pathway. Conclusion Our findings demonstrated that oral administration of FTY720 exerted beneficial effects in CIA mice by inhibiting CD4+ T lymphocyte recruitment to the affected joints. Our data also indicated that FTY720 inhibited TNF-α-induced inflammation by suppressing the AKT/PI3K/NF-κB pathway in MH7A cells.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junyong Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Hongyu Meng
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Junzhe Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Kuo Zhao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Ling Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China.,Chinese Academy of Engineering, Beijing, People's Republic of China
| |
Collapse
|
8
|
Chandrasekar AP, Maynes M, Badley AD. The long road to TRAIL therapy: a TRAILshort detour. Oncotarget 2021; 12:589-591. [PMID: 33868580 PMCID: PMC8021024 DOI: 10.18632/oncotarget.27902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | - Andrew D. Badley
- Correspondence to: Andrew D. Badley, Department of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA email
| |
Collapse
|
9
|
Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol 2021; 17:581-596. [PMID: 33401962 DOI: 10.2217/fon-2020-0727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, can induce apoptosis in cancer cells, sparing normal cells when bound to its associated death receptors (DR4/DR5). This unique mechanism makes TRAIL a potential anticancer therapeutic agent. However, clinical trials of recombinant TRAIL protein and TRAIL receptor agonist monoclonal antibodies have shown disappointing results due to its short half-life, poor pharmacokinetics and the resistance of the cancer cells. This review summarizes TRAIL-induced apoptotic and survival pathways as well as mechanisms leading to apoptotic resistance. Recent development of methods to overcome cancer cell resistance to TRAIL-induced apoptosis, such as protein modification, combination therapy and TRAIL-based gene therapy, appear promising. We also discuss the challenges and opportunities in the development of TRAIL-based therapies for the treatment of human cancers.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
11
|
von Karstedt S, Walczak H. An unexpected turn of fortune: targeting TRAIL-Rs in KRAS-driven cancer. Cell Death Discov 2020; 6:14. [PMID: 32194994 PMCID: PMC7078304 DOI: 10.1038/s41420-020-0249-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Twenty-one percent of all human cancers bear constitutively activating mutations in the proto-oncogene KRAS. This incidence is substantially higher in some of the most inherently therapy-resistant cancers including 30% of non-small cell lung cancers (NSCLC), 50% of colorectal cancers, and 95% of pancreatic ductal adenocarcinomas (PDAC). Importantly, survival of patients with KRAS-mutated PDAC and NSCLC has not significantly improved since the 1970s highlighting an urgent need to re-examine how oncogenic KRAS influences cell death signaling outputs. Interestingly, cancers expressing oncogenic KRAS manage to escape antitumor immunity via upregulation of programmed cell death 1 ligand 1 (PD-L1). Recently, the development of next-generation KRASG12C-selective inhibitors has shown therapeutic efficacy by triggering antitumor immunity. Yet, clinical trials testing immune checkpoint blockade in KRAS-mutated cancers have yielded disappointing results suggesting other, additional means endow these tumors with the capacity to escape immune recognition. Intriguingly, oncogenic KRAS reprograms regulated cell death pathways triggered by death receptors of the tumor necrosis factor (TNF) receptor superfamily. Perverting the course of their intended function, KRAS-mutated cancers use endogenous TNF-related apoptosis-inducing ligand (TRAIL) and its receptor(s) to promote tumor growth and metastases. Yet, endogenous TRAIL-TRAIL-receptor signaling can be therapeutically targeted and, excitingly, this may not only counteract oncogenic KRAS-driven cancer cell migration, invasion, and metastasis, but also the immunosuppressive reprogramming of the tumor microenvironment it causes. Here, we provide a concise summary of the current literature on oncogenic KRAS-mediated reprogramming of cell death signaling and antitumor immunity with the aim to open novel perspectives on combinatorial treatment strategies involving death receptor targeting.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Henning Walczak
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London, WC1E 6BT UK
| |
Collapse
|
12
|
Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J. TRAILblazing Strategies for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11040456. [PMID: 30935038 PMCID: PMC6521007 DOI: 10.3390/cancers11040456] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities. Thus, several so-called TRAIL receptor agonists (TRAs) were developed. Unfortunately, clinical testing of these TRAs did not reveal any significant anticancer activity, presumably due to inherent or acquired TRAIL resistance of most primary tumour cells. Since the potential power of TRAIL-based therapies still lies in TRAIL's explicit cancer cell-selectivity, a desirable approach going forward for TRAIL-based cancer therapy is the identification of substances that sensitise tumour cells for TRAIL-induced apoptosis while sparing normal cells. Numerous of such TRAIL-sensitising strategies have been identified within the last decades. However, many of these approaches have not been verified in animal models, and therefore potential toxicity of these approaches has not been taken into consideration. Here, we critically summarise and discuss the status quo of TRAIL signalling in cancer cells and strategies to force tumour cells into undergoing apoptosis triggered by TRAIL as a cancer therapeutic approach. Moreover, we provide an overview and outlook on innovative and promising future TRAIL-based therapeutic strategies.
Collapse
Affiliation(s)
- Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Straße 26, 50931 Cologne, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Liu F, Feng XX, Zhu SL, Huang HY, Chen YD, Pan YF, June RR, Zheng SG, Huang JL. Sonic Hedgehog Signaling Pathway Mediates Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via MAPK/ERK Signaling Pathway. Front Immunol 2018; 9:2847. [PMID: 30568656 PMCID: PMC6290332 DOI: 10.3389/fimmu.2018.02847] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the major effector cells that lead to rheumatoid arthritis (RA) synovitis and joint destruction. Our previous studies showed that Sonic Hedgehog (SHH) signaling pathway is involved in aberrant activation of RA-FLSs and inhibition of SHH pathway decreases proliferation and migration of RA-FLSs. The objective of this study was to investigate if the SHH pathway mediates proliferation and migration of RA-FLSs via the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. SHH signaling was studied by using SHH agonist (Purmorphamine) and antagonist (Cyclopamine) targeting the Smoothened (SMO) in FLSs. U0126-EtOH was used to inhibit the MAPK/ERK signaling pathway. The phosphorylation of ERK 1/2 (p-ERKl/2) was examined by western blot. Cell viability was detected using cell proliferation and cytotoxicity kit-8 (CCK8), and cell cycle distribution and proliferating cells were evaluated by the flow cytometry. Cell migration was examined by Transwell assay. Results showed that, compared with the control group, Purmorphamine increased the levels of p-ERK1/2 in concentration-and time-dependent manners (P < 0.01). Co-treated with Purmorphamine and U0126-EtOH or Cyclopamine both decreased the levels of p-ERK1/2 (P < 0.05). RA-FLSs treated with Purmorphamine resulted in alteration of cell cycle distribution, increasing of proliferating cells, cell viability, and migration cells compared to controls (P < 0.01). However, the above phenomenon can be abolished by U0126-EtOH (P < 0.05). The findings suggest that SHH signaling pathway mediates proliferation and migration of RA-FLSs via MAPK/ERK pathway and may contribute to progression of RA. Targeting SHH signaling may have a therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Xiao Xue Feng
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shang Ling Zhu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Yu Huang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Ying Di Chen
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Rayford R June
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Jian Lin Huang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Shervington L, Darekar A, Shaikh M, Mathews R, Shervington A. Identifying Reliable Diagnostic/Predictive Biomarkers for Rheumatoid Arthritis. Biomark Insights 2018; 13:1177271918801005. [PMID: 30262983 PMCID: PMC6153528 DOI: 10.1177/1177271918801005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction and objective: Elevated C-reactive protein is usually a good indicator of rheumatoid
arthritis (RA); however, there are limitations that compromise its
specificity and therefore there is an urgent need to identify more reliable
diagnostic biomarkers to detect early stages of RA. In addition, identifying
the correct therapeutic biomarker for the treatment of RA using methotrexate
(MTX) would greatly increase the benefits experienced by the patients. Materials and methods: Primary normal synoviocytes human fibroblast-like synoviocytes (HFLS) and its
phenotype rheumatic HFLS-RA cells were chosen for this study. The
HFLS-RA–untreated and MTX-treated cells were subjected to microarray
analysis. Results: Microarray data identified 74 differentially expressed genes. These genes
were mapped against an RA inflammatory pathway, shortlisting 10 candidate
genes. Gene expression profiling of the 10 genes were studied. Fold change
(FC) was calculated to determine the differential expression of the
samples. Discussion: The transcription profiles of the 10 candidate genes were highly induced in
HFLS-RA cells compared with HFLS cells. However, on treating the HFLS-RA
cells with MTX, the transcription profiles of these genes were highly
downregulated. The most significant expression FC difference between HFLS
and HFLS-RA (treated and untreated) was observed with HSPA6, MMP1,
MMP13, and TNFSF10 genes. Conclusions: The data from this study suggest the use of HSPA6, MMP1,
MMP13, and TNFSF10 gene expression profiles as
potential diagnostic biomarkers. In addition, these gene profiles can help
in predicting the therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Leroy Shervington
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | - Murassa Shaikh
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Roshini Mathews
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Amal Shervington
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
15
|
Abstract
Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is unique to selectively induce apoptosis in tumor cells while sparing normal cells. Thus there is tremendous interest in Apo2L/TRAIL therapy; however, drug resistance is a serious limitation. Autophagy is a cellular housekeeping process that controls protein and organelle turnover, and is almost consistently activated in response to apoptosis-inducing stimuli, including Apo2L/TRAIL. Unlike apoptosis, autophagy leads to cell death or survival depending on the context. Various molecular mechanisms by which autophagy regulates Apo2L/TRAIL-induced apoptosis have been identified. Further, whether autophagy is completed (intact autophagic flux) or not could determine the fate of cancer cells, either cell survival or death. Thus, targeting autophagy is an attractive strategy to overcome Apo2L/TRAIL resistance. We present the current view of how these regulatory mechanisms of this interplay between autophagy and apoptosis may dictate cancer cell response to Apo2L/TRAIL therapy.
Collapse
Affiliation(s)
- Arishya Sharma
- a Department of Cancer Biology , Lerner Research Institute , Cleveland , OH , USA
| | - Alexandru Almasan
- a Department of Cancer Biology , Lerner Research Institute , Cleveland , OH , USA.,b Department of Radiation Oncology , Taussig Cancer Institute , Cleveland , OH , USA
| |
Collapse
|
16
|
Audo R, Deckert V, Daien CI, Che H, Elhmioui J, Lemaire S, Pais de Barros JP, Desrumaux C, Combe B, Hahne M, Lagrost L, Morel J. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity. PLoS One 2018; 13:e0193815. [PMID: 29565987 PMCID: PMC5863966 DOI: 10.1371/journal.pone.0193815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA.
Collapse
Affiliation(s)
- Rachel Audo
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| | - Valérie Deckert
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Claire I. Daien
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Hélène Che
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Jamila Elhmioui
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Stéphanie Lemaire
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jean-Paul Pais de Barros
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Catherine Desrumaux
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- INSERM U1198, (MMDN), EiAlz Team, University Montpellier 2, EPHE, Montpellier, France
| | - Bernard Combe
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Michael Hahne
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Laurent Lagrost
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jacques Morel
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| |
Collapse
|
17
|
Should We Keep Walking along the Trail for Pancreatic Cancer Treatment? Revisiting TNF-Related Apoptosis-Inducing Ligand for Anticancer Therapy. Cancers (Basel) 2018; 10:cancers10030077. [PMID: 29562636 PMCID: PMC5876652 DOI: 10.3390/cancers10030077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2) also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex (DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review, we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for successful treatment.
Collapse
|
18
|
Parisis N, Krasinska L, Harker B, Urbach S, Rossignol M, Camasses A, Dewar J, Morin N, Fisher D. Initiation of DNA replication requires actin dynamics and formin activity. EMBO J 2017; 36:3212-3231. [PMID: 28982779 DOI: 10.15252/embj.201796585] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms.
Collapse
Affiliation(s)
- Nikolaos Parisis
- IGMM, CNRS Univ. Montpellier, Montpellier, France.,Laboratory of Functional Proteomics, INRA, Montpellier, France
| | | | | | - Serge Urbach
- Functional Proteomics Platform (FPP), Institute of Functional Genomics (IGF), CNRS UMR 5203 INSERM U661, Montpellier, France
| | | | | | | | | | | |
Collapse
|
19
|
Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H, Boss GR, Tiziani S, Murphy AN, Guma M. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol 2017; 68:1614-26. [PMID: 26815411 DOI: 10.1002/art.39608] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. METHODS Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-d-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. RESULTS Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo, significantly decreased the severity of arthritis in this mouse model. CONCLUSION Targeting metabolic pathways is a novel approach to understanding the mechanisms of disease. Inhibition of glycolysis may directly modulate synoviocyte-mediated inflammatory functions and could be an effective treatment strategy for arthritis.
Collapse
Affiliation(s)
| | | | | | | | - Arindam Saha
- University of California, San Diego School of Medicine, La Jolla
| | - Hilde Cheroutre
- La Jolla Institute for Allergy & Immunology, La Jolla, California
| | - Gerry R Boss
- University of California, San Diego School of Medicine, La Jolla
| | | | - Anne N Murphy
- University of California, San Diego School of Medicine, La Jolla
| | - Monica Guma
- University of California, San Diego School of Medicine, La Jolla
| |
Collapse
|
20
|
An apoptosis-independent role of TRAIL in suppressing joint inflammation and inhibiting T-cell activation in inflammatory arthritis. Cell Mol Immunol 2017; 15:846-857. [PMID: 28392572 DOI: 10.1038/cmi.2017.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been implicated in the regulation of inflammation in rheumatoid arthritis (RA), primarily due to its ability to promote apoptosis in synoviocytes and infiltrating lymphocytes. The aim of this study was to investigate the immunomodulatory mechanism and role of TRAIL in inflammatory arthritis. We created an animal model of inflammatory arthritis and demonstrated that TRAIL significantly inhibited joint inflammation and reduced the severity of arthritis. The suppression of joint inflammation was not due to the TRAIL-mediated induction of apoptosis in T cells, macrophages or synovial fibroblasts. In contrast, TRAIL directly inhibited T-cell proliferation and suppressed the production of cytokines, which indicated that TRAIL exerted its anti-inflammatory effects by direct inhibition of T-cell activation. Moreover, TRAIL receptor (TRAIL-R)-knockout mice developed more severe disease, and the protective effects of TRAIL were abolished in the experimental arthritis model in TRAIL-R knockout mice. From these results, we conclude that TRAIL suppresses joint inflammation via an apoptosis-independent pathway and directly inhibits T-cell activation. Our results provide a novel apoptosis-independent, immune regulatory role for TRAIL in suppressing inflammatory arthritis and shed light on the development of effective new therapies for autoimmune inflammatory diseases.
Collapse
|
21
|
Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell 2017; 65:715-729.e5. [DOI: 10.1016/j.molcel.2017.01.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
|
22
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
23
|
1, 25-dihydroxy-vitamin D3 with tumor necrosis factor-alpha protects against rheumatoid arthritis by promoting p53 acetylation-mediated apoptosis via Sirt1 in synoviocytes. Cell Death Dis 2016; 7:e2423. [PMID: 27763638 PMCID: PMC5133971 DOI: 10.1038/cddis.2016.300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023]
Abstract
Impaired apoptosis of fibroblast-like synoviocytes (FLSs) causes synovial hyperplasia, facilitating destruction of cartilage and bone in rheumatoid arthritis (RA). Tumor necrosis factor (TNF)-α, a dominant inflammatory mediator in RA pathogenesis, promotes progression of RA symptoms. Prevalence of 1, 25-dihydroxy-vitamin D3 (hereafter termed VD) deficiency is 30-63% in patients with RA. Whether VD leads to apoptosis or enhances TNF-α-mediated apoptosis in FLSs to ameliorate RA is unclear. To determine this, 10-week-old CYP27B1-deficient (CYP27B1-/-) mice with collagen-induced arthritis (CIA) were intraperitoneally treated with 1 μg/kg VD every other day for 9 weeks. RA phenotypes were compared between vehicle-treated CYP27B1-/- and wild-type CIA mice. Human rheumatoid FLS-MH7A cells were treated with Dulbecco's modified Eagle's medium (DMEM) without fetal bovine serum (FBS) for 24 h, then with different concentrations of VD and TNF-α, human vitamin D receptor (VDR) siRNA or the p53 pro-apoptotic inhibitor pifithrin-α. Apoptosis and p53 pro-apoptotic signaling were analyzed. The 19-week-old vehicle-treated CYP27B1-/- CIA mice had increased cumulative arthritis scores and levels of serous rheumatoid factors and C-reactive protein. They had exacerbated articular cartilage and bone destruction, joint space narrowing, joint stiffness, deformity and dysfunction, synovitis and TNF-α secretion, FLS hyperplasia with increased proliferation and decreased apoptosis compared to CIA mice. These RA phenotypes that were aggravated in CIA mice by CYP27B1 deficiency were largely rescued by VD treatment. In vitro, VD with TNF-α treatment upregulated p53 acetylation-mediated apoptosis in MH7A cells by promoting Sirt1 translocation from the nucleus to the cytoplasm. These findings indicated that VD with TNF-α protected against RA by promoting apoptosis of FLSs. The results indicated that clinical administration of VD could be a specific therapy to promote FLS apoptosis and prevent RA progression.
Collapse
|
24
|
Hua C, Audo R, Yeremenko N, Baeten D, Hahne M, Combe B, Morel J, Daïen C. A proliferation inducing ligand (APRIL) promotes IL-10 production and regulatory functions of human B cells. J Autoimmun 2016; 73:64-72. [PMID: 27372914 DOI: 10.1016/j.jaut.2016.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
B cells may have a negative regulatory role, mainly mediated by interleukin 10 (IL-10). We recently showed that regulatory B-cell functions are impaired in patients with rheumatoid arthritis (RA) and that mice transgenic for a proliferation-inducing ligand (APRIL) are protected against collagen-induced arthritis. We aimed to explore the effect of APRIL on human B-cell IL-10 production, in healthy subjects and in patients with RA. The IL-10 production of B-cell was greater with APRIL than with BLyS or control medium, in a dose dependent manner. TACI expression was greater in IL-10 producing B cells (B10) than non-IL-10-producing B cells whereas BAFF-R expression was lower. TNF-α and IFN-γ secretion of T-cells were decreased by APRIL-stimulated B cells. APRIL stimulated STAT3 and STAT3 inhibition decreased B10 cells. APRIL also promoted B10 cells in RA patients. In conclusion, APRIL but not BLyS promotes IL-10 production by CpG-activated B cells and enhances the regulatory role of B cells on T cells. B10 cells in RA patients are responsive to APRIL, which suggests a possible therapeutic application of APRIL to expand B10 cells. This could also explain the difference of clinical efficacy observed between belimumab and atacicept in RA.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoimmunity/immunology
- B-Cell Activating Factor/antagonists & inhibitors
- B-Cell Activating Factor/metabolism
- B-Cell Activation Factor Receptor/metabolism
- B-Lymphocytes, Regulatory/drug effects
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- Cells, Cultured
- Female
- Humans
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Leukocytes, Mononuclear
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- Oligodeoxyribonucleotides/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 13/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Charlotte Hua
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Rachel Audo
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Nataliya Yeremenko
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique Baeten
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Hahne
- UMR5535, IGMM, CNRS, Montpellier, France; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernard Combe
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Jacques Morel
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Claire Daïen
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France.
| |
Collapse
|
25
|
de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ 2016; 23:733-47. [PMID: 26943322 PMCID: PMC4832109 DOI: 10.1038/cdd.2015.174] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Collapse
Affiliation(s)
- D de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - J Lemke
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - A Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - H Walczak
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - L Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón, Zaragoza, Spain
| |
Collapse
|
26
|
Forde H, Harper E, Davenport C, Rochfort KD, Wallace R, Murphy RP, Smith D, Cummins PM. The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: A review of the evidence. Atherosclerosis 2016; 247:87-96. [DOI: 10.1016/j.atherosclerosis.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023]
|
27
|
Niclosamide induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2016; 31:45-9. [DOI: 10.1016/j.intimp.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 11/24/2022]
|
28
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
29
|
Audo R, Hegglin A, Severac D, Dantec C, Combe B, Hahne M, Morel J. Identification of genes regulating TRAIL-induced apoptosis in rheumatoid arthritis fibroblasts-like synoviocytes. Genes Immun 2015; 16:462-9. [DOI: 10.1038/gene.2015.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
|
30
|
Liu H, Yang Y, Cai X, Gao Y, Du J, Chen S. The effects of arctigenin on human rheumatoid arthritis fibroblast-like synoviocytes. PHARMACEUTICAL BIOLOGY 2015; 53:1118-1123. [PMID: 25609147 DOI: 10.3109/13880209.2014.960945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) play an important role in the initiation and progression of RA, which are resistant to apoptosis and proliferate in an anchorage-independent manner. OBJECTIVE The effects of arctigenin on the proliferation and apoptosis of RAFLSs were explored. MATERIALS AND METHODS Arctigenin (0-160 µM) was used to treat RAFLSs for 48 h. Cell viability and apoptosis were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay and annexin V/propidium iodide staining. Western blot analysis was performed to detect the changes in apoptosis-related genes. RESULTS AND DISCUSSION Arctigenin decreased cell viability by 23, 30, and 38% at the dose of 10, 20, and 30 µM, respectively. The half maximal inhibitory concentration (IC50) of arctignein on RAFLSs was about 38 µM. Moreover, 9, 15, and 21% of RAFLSs are induced apoptosis by 10, 20, and 30 µM of arctigenin. The apoptotic response was due to the loss of mitochondrial membrane potential, coupled with the release of cytochrome C into cytoplasm, the up-regulation of pro-apoptotic protein, Bax, and down-regulation of antiapoptotic protein, B cell lymphoma 2 (Bcl-2). The activation of mitochondrial pathway in arctigenin-treated RAFLSs induced the cleavage of caspase-9, caspase-3, and poly (ADP-ribose) polymerase (PARP). Additionally, arctigenin inhibited the nuclear translocation of p65, decreased the degradation of inhibitor of kappa B alpha (IκBα), and attenuated the phosphorylation of Akt. CONCLUSION Our results reveal that arctigenin inhibits cell proliferation and induces mitochondrial apoptosis of RAFLSs, which is associated with the modulation of NF-κB and Akt signaling pathways.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Orthopedics, The 97th Hospital of People's Liberation Army , Xuzhou, Jiangsu , China
| | | | | | | | | | | |
Collapse
|
31
|
Audo R, Daien C, Papon L, Lukas C, Vittecoq O, Hahne M, Combe B, Morel J. Osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand as prognostic factors in rheumatoid arthritis: results from the ESPOIR cohort. Arthritis Res Ther 2015. [PMID: 26220665 PMCID: PMC4518710 DOI: 10.1186/s13075-015-0705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Introduction We previously reported that low ratio of osteoprotegerin (OPG) to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was associated with Disease Activity Score in 28 joints (DAS28) remission at 6 months in patients with early rheumatoid arthritis (RA). Here, we aimed to evaluate the value of baseline OPG/TRAIL ratio in predicting clinical and radiological outcomes in patients with early RA in the ESPOIR cohort. Methods OPG and TRAIL serum concentrations were assessed in the ESPOIR cohort patients. Patients with definite RA were included in this study. Patients were excluded if they had high erosion score at baseline (>90th percentile) or received biological therapy during the first 2 years of follow-up. Data were analyzed by univariate analysis and multivariate logistic regression to predict 1-year DAS28 remission and 2-year radiographic disease progression. Results On univariate analysis of 399 patients, OPG/TRAIL ratio at baseline was significantly lower in patients with than without remission at 1 year (p = 0.015). On multivariate logistic regression including age, gender, body mass index and DAS28, low OPG/TRAIL ratio was independently associated with remission at 1 year (odds ratio 1.68 [95 % confidence interval 1.01–2.79]). On univariate analysis, high OPG/TRAIL ratio at baseline was associated with rapid progression of erosion at 2 years (p = 0.041), and on multivariate logistic regression including age, anti-citrullinated protein antibody positivity and C-reactive protein level, OPG/TRAIL ratio independently predicted rapid progression of erosion at 2 years. Conclusions OPG/TRAIL ratio at baseline was an independent predictor of 1-year remission and 2-year rapid progression of erosion for patients with early rheumatoid arthritis. Thus, OPG/TRAIL ratio could be included in matrix prediction scores to predict rapid radiographic progression. Further confirmation in an independent cohort is warranted.
Collapse
Affiliation(s)
- Rachel Audo
- Department of Rheumatology, Lapeyronie Hospital, Montpellier University, 371 avenue doyen Giraud, 34295, Montpellier, France. .,Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France.
| | - Claire Daien
- Department of Rheumatology, Lapeyronie Hospital, Montpellier University, 371 avenue doyen Giraud, 34295, Montpellier, France. .,Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France.
| | - Laura Papon
- Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France.
| | - Cédric Lukas
- Department of Rheumatology, Lapeyronie Hospital, Montpellier University, 371 avenue doyen Giraud, 34295, Montpellier, France. .,Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France.
| | - Olivier Vittecoq
- Department of Rheumatology and CIC/CRB 1404, Rouen University Hospital, Inserm U 905, Institute for Research and Innovation in Biomedicine, 1, rue de Germont, 76031 Rouen, France.
| | - Michael Hahne
- Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France. .,Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Bernard Combe
- Department of Rheumatology, Lapeyronie Hospital, Montpellier University, 371 avenue doyen Giraud, 34295, Montpellier, France. .,Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France.
| | - Jacques Morel
- Department of Rheumatology, Lapeyronie Hospital, Montpellier University, 371 avenue doyen Giraud, 34295, Montpellier, France. .,Montpellier University, 163 rue Auguste Broussonnet, 34000, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
32
|
Feng S, Madsen SH, Viller NN, Neutzsky-Wulff AV, Geisler C, Karlsson L, Söderström K. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology 2015; 145:367-79. [PMID: 25684021 DOI: 10.1111/imm.12449] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoclasts reside on bone and are the main bone resorbing cells playing an important role in bone homeostasis, while natural killer (NK) cells are bone-marrow-derived cells known to play a crucial role in immune defence against viral infections. Although mature NK cells traffic through bone marrow as well as to inflammatory sites associated with enhanced bone erosion, including the joints of patients with rheumatoid arthritis, little is known about the impact NK cells may have on mature osteoclasts and bone erosion. We studied the interaction between human NK cells and autologous monocyte-derived osteoclasts from healthy donors in vitro. We show that osteoclasts express numerous ligands for receptors present on activated NK cells. Co-culture experiments revealed that interleukin-15-activated, but not resting, NK cells trigger osteoclast apoptosis in a dose-dependent manner, resulting in drastically decreased bone erosion. Suppression of bone erosion requires contact between NK cells and osteoclasts, but soluble factors also play a minor role. Antibodies masking leucocyte function-associated antigen-1, DNAX accessory molecule-1 or tumour necrosis factor-related apoptosis-inducing ligand enhance osteoclast survival when co-cultured with activated NK cells and restore the capacity of osteoclasts to erode bone. These results suggest that interleukin-15-activated NK cells may directly affect bone erosion under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shan Feng
- Department of Cellular Pharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark.,Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suzi H Madsen
- Department of Cellular Pharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Natasja N Viller
- Department of Immunopharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Anita V Neutzsky-Wulff
- Department of Cellular Pharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark.,F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, IBD Drug Discovery and Development, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Karlsson
- Department of Cellular Pharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Kalle Söderström
- Department of Cellular Pharmacology, Autoimmune Disease Research, Novo Nordisk A/S, Måløv, Denmark.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Funcke JB, Zoller V, El Hay MA, Debatin KM, Wabitsch M, Fischer-Posovszky P. TNF-related apoptosis-inducing ligand promotes human preadipocyte proliferation via ERK1/2 activation. FASEB J 2015; 29:3065-75. [PMID: 25857555 DOI: 10.1096/fj.14-267278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
Upon obesity, adipose tissue is excessively expanded and characterized by pathologic processes like hypoxia, fibrosis, and inflammation. Death ligands belonging to the TNF superfamily such as TNF-α are important contributors to these derangements and exert a pronounced influence on the metabolic and cellular homeostasis of adipose tissue. Here, we sought to identify the effect of the death ligand TNF-related apoptosis-inducing ligand (TRAIL) on the adipose tissue precursor cell pool and therefore investigated its influence on preadipocyte proliferation. Treatment of human preadipocytes with TRAIL resulted in a time- and dose-dependent increase in proliferation (EC50 3.4 ng/ml) comparable to IGF-1. Although no apoptosis was observed, TRAIL triggered a rapid cleavage of caspase-8 and -3. Neither inhibition of caspase activity by zVAD.fmk (20 µM) nor ablation of caspase-8 expression by lentivirus-delivered small hairpin RNA (shRNA) abolished the proliferative response. TRAIL triggered a delayed and sustained activation of ERK1/2, leaving Akt, p38, JNK, and NF-κB unaffected. Importantly, inhibition of ERK1/2 activation by PD0325901 (300 nM) or AZD6244 (5 or 10 µM) completely abolished the proliferative response. We thus reveal a hitherto unknown function of TRAIL in regulating adipose tissue homeostasis by promoting the proliferation of tissue-resident precursor cells.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| | - Verena Zoller
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| | - Muad Abd El Hay
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| | - Martin Wabitsch
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- *Division of Pediatric Endocrinology and Diabetes and Department of Pediatrics and Adolescent Medicine, Ulm Medical Center, Ulm, Germany
| |
Collapse
|
34
|
Audo R, Calmon-Hamaty F, Papon L, Combe B, Morel J, Hahne M. Distinct effects of soluble and membrane-bound fas ligand on fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheumatol 2015; 66:3289-99. [PMID: 25078097 DOI: 10.1002/art.38806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/24/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Injection of agonistic anti-Fas antibody has been shown to decrease disease symptoms in mouse models of arthritis. Additionally, membrane-bound FasL (mFasL) has been shown to induce cell death in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. However, levels of soluble FasL (sFasL) are increased in the joints of RA patients and have been associated with disease severity, indicating that mFasL and sFasL play opposing roles in RA. The purpose of this study was to analyze the effects of FasL on RA FLS responses. METHODS The responses of FLS from RA and osteoarthritis (OA) patients to soluble and oligomeric FasL, the latter mimicking mFasL, were analyzed by fluorescence-activated cell sorting and proliferation assays, using 3 different FasL variants. The signaling pathways that trigger FasL responses were characterized by Western blotting. RESULTS We found that mFasL and sFasL have distinct roles in RA FLS. Crosslinked FasL preferentially induced apoptosis, whereas sFasL stimulated proliferation. Moreover, sFasL activated several signaling pathways in RA FLS, such as ERK-1/2, phosphatidylinositol 3-kinase, caspase 8, and JNK, with a prominent role of JNK, since only the blockade of this pathway rendered FLS more susceptible to FasL-induced apoptosis. Crosslinked FasL induced apoptosis in FLS from OA patients, but sFasL failed to stimulate their proliferation. CONCLUSION Our findings suggest that sFasL is a disease promoter in RA, a finding consistent with previous reports describing a tumor-promoting role of FasL. Therefore, blocking of sFasL could be a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Rachel Audo
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, Université Montpellier Sud de France, Montpellier 1 University, and Lapeyronie Teaching Hospital, Montpellier, France
| | | | | | | | | | | |
Collapse
|
35
|
Orphan nuclear receptor NR4A2 induces transcription of the immunomodulatory peptide hormone prolactin. JOURNAL OF INFLAMMATION-LONDON 2015; 12:13. [PMID: 25717285 PMCID: PMC4339243 DOI: 10.1186/s12950-015-0059-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/30/2015] [Indexed: 01/05/2023]
Abstract
Background Nuclear receptor 4A2 (NR4A2) is an orphan nuclear receptor and constitutively active transcription factor expressed at elevated levels in inflamed joint tissues from patients with arthritis. Inflammatory mediators rapidly and potently induce NR4A2 expression in resident joint cells and infiltrating immune cells. This receptor promotes synovial hyperplasia by increasing proliferation of synoviocytes and inducing transcription of matrix degrading enzymes and pro-inflammatory mediators. In order to further elucidate the molecular mechanisms of NR4A2, we conducted a gene expression screen to identify novel transcriptional targets of NR4A2 that may contribute to arthritis progression. Methods NR4A2 was over-expressed in human synoviocytes by lentiviral transduction and gene expression changes were measured using qPCR arrays specific for inflammation, proliferation, adhesion, and migration pathways. Subsequent analysis focused on the most potently induced gene prolactin (PRL). Messenger RNA levels of PRL and PRL receptor (PRL-R) were measured by RT-qPCR and protein levels were measured by ELISA. PRL promoter studies were conducted in synoviocytes transiently transfected with NR4A2 and PRL reporter constructs. Molecular responses to PRL in synoviocytes were addressed using qPCR arrays specific for JAK/STAT signaling pathways. Results PRL was the most potently induced gene on the qPCR arrays, exhibiting a 68-fold increase in response to ectopic NR4A2. This gene encodes an immunomodulatory peptide hormone with roles in autoimmune diseases and inflammation. Induction of PRL mRNA and secreted protein by NR4A2 was confirmed in subsequent experiments, with increases of 300-fold and 18-fold respectively. Depletion of endogenous NR4A receptors with shRNA reduced basal and PGE2-induced PRL levels by 95%. At the transcriptional level, NR4A2 requires a functional DNA binding domain to transactivate the distal PRL promoter. Deletional analysis indicates that NR4A2 targets a region of the distal PRL promoter spanning −270 to -32 bp. In synoviocytes, recombinant PRL regulates several genes involved in inflammation, proliferation, and cell survival, suggesting that NR4A2 induced PRL may also impact these pathways and contribute to arthritis progression. Conclusions These results provide the first evidence for transcriptional regulation of the immunomodulatory peptide hormone PRL by NR4A2 in synoviocytes, and highlight a novel molecular pathway in inflammatory arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0059-2) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Byeon HJ, Min SY, Kim I, Lee ES, Oh KT, Shin BS, Lee KC, Youn YS. Human Serum Albumin-TRAIL Conjugate for the Treatment of Rheumatoid Arthritis. Bioconjug Chem 2014; 25:2212-21. [DOI: 10.1021/bc500427g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hyeong Jun Byeon
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sun Young Min
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Insoo Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Eun Seong Lee
- Division
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Kyung Taek Oh
- College
of Pharmacy, Chung-Ang University, Seoul, 155-756, Republic of Korea
| | - Beom Soo Shin
- College of
Pharmacy, Catholic University of Daegu, Gyeongsan si, Gyeongsangbuk-do 712-702, Republic of Korea
| | - Kang Choon Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Yu Seok Youn
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| |
Collapse
|
37
|
Li J, Li J, Yue Y, Hu Y, Cheng W, Liu R, Pan X, Zhang P. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:315-23. [PMID: 24669186 PMCID: PMC3962316 DOI: 10.2147/dddt.s52354] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims Genistein, an isoflavone derivative found in soy, is known as a promising treatment for rheumatoid arthritis (RA). However, the detailed molecular mechanism of genistein in suppression of proinflammatory cytokine production remains ambiguous. The aim of this work was to evaluate the signal pathway by which genistein modulates inflammatory cytokine expression. Materials and methods MH7A cells were stimulated with tumor necrosis factor (TNF)-α and incubated with genistein, and interleukin (IL)-1β, IL-6, and IL-8 production was measured by enzyme-linked immunosorbent assay. Nuclear translocation of nuclear factor (NF)-κB was measured by a confocal fluorescence microscopy. The intracellular accumulation of reactive oxygen species (ROS) was monitored using the fluorescent probe 5-6-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate. Signal-transduction protein expression was measured by Western blot. Results Genistein decreased the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. Genistein prevented TNF-α-induced NF-κB translocation as well as phosphorylation of IκB kinase-α/β and IκBα, and also suppressed TNF-α-induced AMPK inhibition. The production of IL-1β, IL-6, and IL-8 induced by TNF-α was decreased by the phosphatidylinositol-3 kinase inhibitor LY294002, suggesting that inhibition of Akt activation might inhibit IL-1β, IL-6, and IL-8 production induced by TNF-α. In addition, we also found that pretreatment with the adenosine monophosphate-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside obviously inhibited TNF-α-induced proinflammatory cytokine production. These observations suggest that the inhibitory effect of genistein on TNF-α-induced proinflammatory cytokine production is dependent on AMPK activation. Conclusion These findings indicate that genistein suppressed TNF-α-induced inflammation by inhibiting the ROS/Akt/NF-κB pathway and promoting AMPK activation in MH7A cells.
Collapse
Affiliation(s)
- Jinchao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Jun Li
- Emergency Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Ye Yue
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Yiping Hu
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Ruoxi Liu
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaohua Pan
- Department of Orthopedics, Second Clinical Medical College, Jinan University, Shenzhen, People's Republic of China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| |
Collapse
|
38
|
Xu Z, Wu G, Wei X, Chen X, Wang Y, Chen L. Celastrol induced DNA damage, cell cycle arrest, and apoptosis in human rheumatoid fibroblast-like synovial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:615-28. [PMID: 23711145 DOI: 10.1142/s0192415x13500432] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Celastrol is one of the principal active ingredients of Tripterygium wilfordii Hook.f., a toxic Chinese medical herb traditionally prescribed for controlling pain and inhibiting inflammation in various chronic inflammatory diseases, including rheumatoid arthritis (RA). Resistance to apoptosis of fibroblast-like synoviocytes is considered a major characteristic of RA. In this study, we test celastrol's cytotoxic effect and potential mechanisms in human rheumatoid synovial fibroblasts (RA-FLS). In the cytotoxic assay, we found that celastrol dose-dependently decreased RA-FLS viability and increased LDH release. The apoptotic nuclear morphology was observed after celastrol treatment as determined by DAPI fluorescence staining. Flow cytometry analysis with PI and Annexin V revealed that celastrol induced RA-FLS cell cycle arrest in the G2/M phase and apoptosis. Furthermore, celastrol dramatically increased expression of Bax/Bcl-2, proteolytic cleavage of Caspase-3, -9, PARP, and decreased expression of FasR. In addition, celastrol treatment resulted in DNA damage. Collectively, we concluded that celastrol inhibits RA-FLS proliferation by inducing DNA damage, cell cycle arrest, and apoptosis in vitro, which might provide data for its application in RA treatment.
Collapse
Affiliation(s)
- Zengtao Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
39
|
Lahoti TS, John K, Hughes JM, Kusnadi A, Murray IA, Krishnegowda G, Amin S, Perdew GH. Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes. Ann Rheum Dis 2013; 72:1708-16. [PMID: 23349129 PMCID: PMC4041386 DOI: 10.1136/annrheumdis-2012-202639] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Rheumatoid Arthritis (RA) is a chronic inflammatory disease of unclear aetiology, which is associated with inflamed human fibroblast-like synoviocytes (HFLS). Epidemiological studies have identified a positive correlation between tobacco smoking (a rich source of aryl hydrocarbon receptor (AHR) agonists) and aggressive RA phenotype. Thus, we hypothesise that antagonism of AHR activity by a potent AHR antagonist GNF351 can attenuate the inflammatory phenotype of HFLS-RA cells. METHODS Quantitative PCR was used to examine IL1B-induced mRNA expression in primary HFLS-RA cells. A structurally diverse AHR antagonist CH223191 and transient AHR repression using AHR small interfering RNA (siRNA) in primary HFLS-RA cells were used to demonstrate that effects observed by GNF351 are AHR-mediated. The levels of PTGS2 were determined by western blot and secretory cytokines such as IL1B and IL6 by ELISA. Chromatin-immunoprecipitation was used to assess occupancy of the AHR on the promoters of IL1B and IL6. RESULTS Many of the chemokine and cytokine genes induced by IL1B in HFLS-RA cells are repressed by co-treatment with GNF351 at both the mRNA and protein level. Pretreatment of HLFS-RA cells with CH223191 or transient gene ablation of AHR by siRNA confirmed that the effects of GNF351 are AHR-mediated. GNF351 inhibited the recruitment of AHR to the promoters of IL1B and IL6 confirming occupancy of AHR at these promoters is required for enhanced inflammatory signalling. CONCLUSIONS These data suggest that AHR antagonism may represent a viable adjuvant therapeutic strategy for the amelioration of inflammation associated with RA.
Collapse
Affiliation(s)
- Tejas S Lahoti
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaarthik John
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware, USA
| | - Jarod M Hughes
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ann Kusnadi
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Shantu Amin
- Department of Pharmacology, The Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
40
|
Aurora and IKK kinases cooperatively interact to protect multiple myeloma cells from Apo2L/TRAIL. Blood 2013; 122:2641-53. [PMID: 23974204 DOI: 10.1182/blood-2013-02-482356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Constitutive activation of the canonical and noncanonical nuclear factor-κB (NF-κB) pathways is frequent in multiple myeloma (MM) and can compromise sensitivity to TRAIL. In this study, we demonstrate that Aurora kinases physically and functionally interact with the key regulators of canonical and noncanonical NF-κB pathways IκB kinase β (IKKβ) and IKKα to activate NF-κB in MM, and the pharmacological blockade of Aurora kinase activity induces TRAIL sensitization in MM because it abrogates TRAIL-induced activation of NF-κB. We specifically found that TRAIL induces prosurvival signaling by increasing the phosphorylation state of both Aurora and IKK kinases and their physical interactions, and the blockade of Aurora kinase activity by pan-Aurora kinase inhibitors (pan-AKIs) disrupts TRAIL-induced survival signaling by effectively reducing Aurora-IKK kinase interactions and NF-κB activation. Pan-AKIs consistently blocked TRAIL induction of the antiapoptotic NF-κB target genes A1/Bfl-1 and/or Mcl-1, both important targets for TRAIL sensitization in MM cells. In summary, these results identify a novel interaction between Aurora and IKK kinases and show that these pathways can cooperate to promote TRAIL resistance. Finally, combining pan-AKIs with TRAIL in vivo showed dramatic efficacy in a multidrug-resistant human myeloma xenograft model. These findings suggest that combining Aurora kinase inhibitors with TRAIL may have therapeutic benefit in MM.
Collapse
|
41
|
Audo R, Combe B, Hahne M, Morel J. The two directions of TNF-related apoptosis-inducing ligand in rheumatoid arthritis. Cytokine 2013; 63:81-90. [DOI: 10.1016/j.cyto.2013.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
|
42
|
Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FAE. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 2013; 20:858-868. [PMID: 23579241 PMCID: PMC3679459 DOI: 10.1038/cdd.2013.28] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand can activate non-canonical cell survival or proliferation pathways in resistant tumor cells through the same death receptors, which is counterproductive for therapy. Even more, recent studies indicate metastases-promoting activity of TRAIL. In this review, the remarkable dichotomy in TRAIL signaling is highlighted. An overview of the currently known mechanisms involved in non-canonical TRAIL signaling and the subsequent activation of various kinases is provided. These kinases include RIP1, IκB/ NF-κB, MAPK p38, JNK, ERK1/2, MAP3K TAK1, PKC, PI3K/Akt and Src. The functional consequences of their activation, often being stimulation of tumor cell survival and in some cases enhancement of their invasive behavior, are discussed. Interestingly, the non-canonical responses triggered by TRAIL in resistant tumor cells resemble that of TRAIL-induced signals in non-transformed cells. Better knowledge of the mechanism underlying the dichotomy in TRAIL receptor signaling may provide markers for selecting patients who will likely benefit from TRAIL-based therapy and could provide a rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.
Collapse
Affiliation(s)
- K Azijli
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - B Weyhenmeyer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - S de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - F A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Liu Y, Mei C, Du R, Shen L. Protective effect of allograft inflammatory factor-1 on the apoptosis of fibroblast-like synoviocytes in patients with rheumatic arthritis induced by nitro oxide donor sodium nitroprusside. Scand J Rheumatol 2013; 42:349-55. [DOI: 10.3109/03009742.2013.772233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Marotte H, Tsou PS, Rabquer BJ, Pinney AJ, Fedorova T, Lalwani N, Koch AE. Blocking of interferon regulatory factor 1 reduces tumor necrosis factor α-induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein a: role of the nuclear interferon regulatory factor 1-NF-κB-c-jun complex. ACTA ACUST UNITED AC 2013; 63:3253-62. [PMID: 21834067 DOI: 10.1002/art.30583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To examine the role of interferon regulatory factor 1 (IRF-1) in tumor necrosis factor α (TNFα)-induced interleukin-18 binding protein a (IL-18BPa) expression in rheumatoid arthritis synovial fibroblasts (RASFs). METHODS TNFα-induced IRF-1 expression was assessed by real-time quantitative polymerase chain reaction and Western blotting. The effect of TNFα on IRF-1 was assessed using nuclear and cytoplasmic extracts, Western blots, and immunofluorescence. Chemical inhibitors of NF-κB or MAP kinases were used to analyze the signaling pathways of TNFα-induced IRF-1 expression and IRF-1 nuclear translocation. Control and IRF-1 small interfering RNA (siRNA) were used to analyze the effect of IRF-1 down-regulation on TNFα-induced IL-18BP expression. IL-18BPa expression was assessed by enzyme-linked immunosorbent assay, and IL-18 was assessed at the transcription and bioactivity levels using KG-1 cells. RESULTS TNFα induced RASF IRF-1 expression at the messenger RNA and protein levels, with a maximal effect at 2 hours (P < 0.05; n ≥ 3). Furthermore, TNFα induced nuclear translocation of IRF-1, with maximal translocation at 2 hours (∼6 fold-induction) (P < 0.05; n = 4). Blocking of the NF-κB or JNK-2 pathways reduced TNFα-induced IRF-1 nuclear translocation by 35% and 50%, respectively (P < 0.05; n ≥ 4). Using siRNA to knock down IRF-1, we observed reduced IL-18BPa expression. Additionally, IL-18 bioactivity was higher when siRNA was used to knock down IRF-1 expression. CONCLUSION These results show that IRF-1 is a key regulator of IL-18BPa expression and IL-18 bioactivity in RASFs. Regulation of IRF-1 will be a new therapeutic target in RA.
Collapse
Affiliation(s)
- Hubert Marotte
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Tian J, Chen JW, Gao JS, Li L, Xie X. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol Int 2013; 33:1829-35. [PMID: 23328930 DOI: 10.1007/s00296-012-2657-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 12/28/2012] [Indexed: 11/29/2022]
Abstract
Resveratrol (trans-3,4'-trihydroxystilbene), a natural phytoalexin, possesses anti-inflammatory, anti-proliferative, and immunomodulatory properties and has the potential for treating inflammatory disorders. The present study was designed to investigate the effects of resveratrol on TNF-α-induced inflammatory cytokines production of IL-1β and MMP3 in Rheumatoid arthritis (RA) Fibroblast-like synoviocytes (FLS) and further to explore the role of PI3K/Akt signaling pathway by which resveratrol modulates those cytokines production. The levels of IL-1β, MMP-3 in cultural supernatants among groups were measured by enzyme-linked immunosorbent assay. Messenger RNA expression of IL-1β and MMP-3 in RA FLS was analyzed using a reverse transcription-polymerase chain reaction. Western blot analysis was used to detect proteins expression in RA FLS intervened by resveratrol. Resveratrol inhibited both mRNA and proteins expressions of IL-1β and MMP-3 on RA FLS in a dose-dependent manner. Resveratrol also decreased significantly the expression of phosphorylated Akt dose dependently. Activation of PI3K/Akt signaling pathway exists in TNF-α-induced production of IL-1β and MMP3 on RA FLS, which is hampered by PI3K inhibitor LY294002. Immunofluorescence staining showed that TNF-α alone increased the production of P-Akt, whereas LY294002 and 50 μM resveratrol suppressed the TNF-α-stimulated expression of P-Akt. Resveratrol attenuates TNF-α-induced production of IL-1β and MMP-3 via inhibition of PI3K-Akt signaling pathway in RA FLS, suggesting that resveratrol plays an anti-inflammatory role and might have beneficial effects in preventing and treating RA.
Collapse
Affiliation(s)
- Jing Tian
- Department of Rheumatology and Immunology, Xiang Ya Second Hospital, Central South University, Changsha 410011, China
| | | | | | | | | |
Collapse
|
46
|
Neve A, Corrado A, Cantatore FP. TNF-related apoptosis-inducing ligand (TRAIL) in rheumatoid arthritis: what's new? Clin Exp Med 2012; 14:115-20. [PMID: 23275079 DOI: 10.1007/s10238-012-0226-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein of the TNF superfamily that serves as an extracellular signal that triggers programmed cell death in tumor cells, without affecting normal cells. Recently, scientists have turned their attention to the emerging role of TRAIL in immune and autoimmune responses. TRAIL has been shown to down-regulate the self-antigens in autoimmune diseases, such as rheumatoid arthritis (RA) by exerting its apoptotic effect on activated T cells and synoviocytes and by its local anti-inflammatory effect. The impact of TRAIL molecular variants and agonistic monoclonal antibodies in the regulation of TRAIL activity in arthritis animal models strongly supports the idea of testing the role of TRAIL in humans, with the aim of developing new effective therapies that promote apoptosis of synoviocytes and/or infiltrating lymphocytes, by targeting TRAIL. The aim of this review is to summarize recent progress and current knowledge of TRAIL functions in RA.
Collapse
Affiliation(s)
- Anna Neve
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia, Ospedale "Col. D'Avanzo", V.le degli Aviatori 1, 71100, Foggia, Italy
| | | | | |
Collapse
|
47
|
Altered AKT1 and MAPK1 gene expression on peripheral blood mononuclear cells and correlation with T-helper-transcription factors in systemic lupus erythematosus patients. Mediators Inflamm 2012; 2012:495934. [PMID: 23125486 PMCID: PMC3483815 DOI: 10.1155/2012/495934] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/21/2012] [Accepted: 09/03/2012] [Indexed: 01/04/2023] Open
Abstract
Kinases have been implicated in the immunopathological mechanisms of Systemic Lupus Erythematosus (SLE). v-akt murine-thymoma viral-oncogene-homolog 1 (AKT1) and mitogen-activated-protein-kinase 1 (MAPK1) gene expressions in peripheral mononuclear cells from thirteen SLE patients with inactive or mild disease were evaluated using quantitative real-time reverse-transcription polymerase-chain-reaction and analyzed whether there was any correlation with T-helper (Th) transcription factors (TF) gene expression, cytokines, and S100A8/S100A9-(Calprotectin). Age- and gender-matched thirteen healthy controls were examined. AKT1 and MAPK1 expressions were upregulated in SLE patients and correlated with Th17-(Retinoic acid-related orphan receptor (ROR)-C), T-regulatory-(Treg)-(Transforming Growth Factor Beta (TGFB)-2), and Th2-(interleukin (IL)-5)-related genes. MAPK1 expression correlated with Th1-(IL-12A, T-box TF-(T-bet)), Th2-(GATA binding protein-(GATA)-3), and IL-10 expressions. IL-10 expression was increased and correlated with plasma Tumor Necrosis Factor (TNF)-α and Th0-(IL-2), Th1-(IL-12A, T-bet), GATA3, Treg-(Forkhead/winged-helix transcription factor- (FOXP)-3), and IL-6 expressions. FOXP3 expression, FOXP3/RORC, and FOXP3/GATA3 expression ratios were increased. Plasma IL-1β, IL-12(p70), Interferon-(IFN)-γ, and IL-6 cytokines were augmented. Plasma IL-1β, IL-6, IL-2, IFN-γ, TNF-α, IL-10, and IL-13 correlated with C-reactive protein, respectively. Increased Calprotectin correlated with neutrophils. Conclusion, SLE patients presented a systemic immunoinflammatory activity, augmented AKT1 and MAPK1 expressions, proinflammatory cytokines, and Calprotectin, together with increased expression of Treg-related genes, suggesting a regulatory feedback opposing the inflammatory activity.
Collapse
|
48
|
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory disease of the musculoskeletal system primarily affecting the joints. It is characterized by massive synovial hyperplasia and subsequent destruction of articular cartilage and bone. Although various aspects in the pathogenesis of RA remain unclear, genetic, environmental and of course immunological factors have been involved. Defects in apoptosis seem to play a role in both initiation and perpetuation of RA. Apo2 ligand/ tumor necrosis factor (TNF) related apoptosis-inducing ligand (Apo2L/TRAIL) is a cytokine that belongs to the TNF superfamily capable of inducing apoptosis on tumor cells through activation of the extrinsic pathway. Besides this function, like other members of the TNF superfamily, Apo2L/TRAIL has been shown to exert important functions in the regulation of the immune system. Concerning pathological conditions, the Apo2L/TRAIL signaling pathway plays an important role in the response to infections, in immune surveillance against tumors and in autoimmune diseases such as RA. Furthermore, its implication in suppression of autoimmunity suggests that Apo2L/TRAIL has potential as therapeutic agent not only in cancer but also in autoimmune diseases. In fact, Apo2L/TRAIL-based therapies have been shown effective in various animal models of RA. This review summarizes the current knowledge on the biology of Apo2L/TRAIL and its role in RA.
Collapse
|
49
|
Shi J, Diao Z, Zhou J, Zhu J, Yuan H, You X, Liu Y, Zheng D. Epirubicin potentiates recombinant adeno-associated virus type 2/5-mediated TRAIL expression in fibroblast-like synoviocytes and augments the antiarthritic effects of rAAV2/5-TRAIL. ACTA ACUST UNITED AC 2012; 64:1345-54. [PMID: 22131069 DOI: 10.1002/art.33492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Synovial cells in rheumatoid synovium display abnormal proliferation, which leads to joint destruction. TRAIL has been described as a proapoptotic factor in fibroblast-like synoviocytes (FLS). This study was undertaken to investigate the functions of rAAV2/5-TRAIL in human FLS and in arthritic mice. METHODS Primary human FLS were infected with rAAV2/5-TRAIL in the presence or absence of epirubicin. Transgene expression was monitored by both enzyme-linked immunosorbent assay and flow cytometry. The disease-modulating activity of epirubicin plus rAAV2/5-TRAIL was investigated in mice with collagen-induced arthritis (CIA). RESULTS Subtoxic doses of epirubicin potentiated rAAV2/5-mediated TRAIL expression in FLS and simultaneously enhanced the sensitivity of FLS to TRAIL. Epirubicin treatment up-regulated death receptor 4 (DR-4) and DR-5 expression and down-regulated FLIP expression, thereby enhancing the activation of procaspase 3, procaspase 8, and procaspase 9. An in vivo study showed that the combination of rAAV2/5-TRAIL gene therapy and epirubicin chemotherapy provided augmented antiarthritic effects in a mouse model of CIA. The intraarticular injection of rAAV2/5-TRAIL combined with epirubicin treatment significantly reduced the severity and incidence of CIA and joint swelling in the animals. Histologic evaluations revealed that inflammatory cell infiltration, cartilage destruction, and bone erosion were significantly reduced in the joints of the mice receiving the synthetic treatment. Results of a viral genome copy number assay indicated that epirubicin dramatically augmented the expression of rAAV2/5-TRAIL without altering its tissue distribution. CONCLUSION These results suggest that epirubicin enhances the antiarthritic effect of rAAV2/5-TRAIL and that combination treatment might be an important therapeutic alternative, with practical significance for rheumatoid arthritis.
Collapse
Affiliation(s)
- Juan Shi
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bartok B, Boyle DL, Liu Y, Ren P, Ball ST, Bugbee WD, Rommel C, Firestein GS. PI3 Kinase δ Is a Key Regulator of Synoviocyte Function in Rheumatoid Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1906-16. [DOI: 10.1016/j.ajpath.2012.01.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|