1
|
Cheng K, An R, Cui Y, Zhang Y, Han X, Sui Z, Chen H, Liang X, Komiyama M. RNA ligation of very small pseudo nick structures by T4 RNA ligase 2, leading to efficient production of versatile RNA rings. RSC Adv 2019; 9:8620-8627. [PMID: 35518706 PMCID: PMC9061723 DOI: 10.1039/c9ra01513b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023] Open
Abstract
T4 RNA ligase 2 catalyses two types of reactions: (i) sealing of a nick structure in double-stranded RNA and (ii) connection of two single-stranded RNA strands. In order to obtain comprehensive views on these two types of reactions and widen the application scope of this RNA ligase, we here systematically analysed the connection of single-stranded RNA strands having different secondary structures. It has been found that the ligation is enormously promoted when a stem of only 4-bp or longer is formed in the 3′-OH side of the joining site. Additional placement of a stem in the 5′-phosphate side further facilitates the ligation. In contrast, perturbation of the stem structures in RNA substrates suppresses the ligation. These results indicate that ligation of two single-stranded RNA strands by T4 RNA ligase 2 is greatly promoted by forming a “nick-like intermediate”. Even the unstable intermediate, formed only temporarily in the solution, is sufficiently effective. By designing the synthetic systems in terms of this finding, short single-stranded RNA rings of versatile sizes, which are otherwise hard to be obtained, are efficiently prepared in high selectivity and yield. T4 Rnl2 ligates ssRNA via nick-like structures, leading to efficient production of versatile RNA rings for various applications.![]()
Collapse
Affiliation(s)
- Kai Cheng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Ran An
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Laboratory for Marine Drugs and Bioproducts
| | - Yixiao Cui
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Yaping Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Xutiange Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Zhe Sui
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Hui Chen
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Xingguo Liang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Laboratory for Marine Drugs and Bioproducts
| | - Makoto Komiyama
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
2
|
Shigematsu M, Honda S, Kirino Y. Dumbbell-PCR for Discriminative Quantification of a Small RNA Variant. Methods Mol Biol 2018; 1680:65-73. [PMID: 29030841 DOI: 10.1007/978-1-4939-7339-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cellular RNAs are often expressed as multiple isoforms of complex heterogeneity in both length and terminal sequences. IsomiRs, the isoforms of microRNAs, are such an example. Distinct quantification of each RNA variant is necessary to unravel the biogenesis mechanism and biological significance of heterogenetic RNA expression. Here we describe Dumbbell-PCR (Db-PCR), a TaqMan RT-PCR-based method that distinctively quantifies a specific small RNA variant with single-nucleotide resolution at terminal sequences. Db-PCR enables the quantitative analysis of RNA terminal heterogeneity without performing Next-Generation Sequencing.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, JAH Suite #M77, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Shigematsu M, Honda S, Loher P, Telonis AG, Rigoutsos I, Kirino Y. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res 2017; 45:e70. [PMID: 28108659 PMCID: PMC5605243 DOI: 10.1093/nar/gkx005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022] Open
Abstract
Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Gu H, Yoshinari S, Ghosh R, Ignatochkina AV, Gollnick PD, Murakami KS, Ho CK. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis. Nucleic Acids Res 2016; 44:2337-47. [PMID: 26896806 PMCID: PMC4797309 DOI: 10.1093/nar/gkw094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/08/2016] [Indexed: 11/15/2022] Open
Abstract
An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex.
Collapse
Affiliation(s)
- Huiqiong Gu
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Shigeo Yoshinari
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Raka Ghosh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna V Ignatochkina
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Paul D Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - C Kiong Ho
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Chauleau M, Shuman S. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA). Nucleic Acids Res 2016; 44:2298-309. [PMID: 26857547 PMCID: PMC4797296 DOI: 10.1093/nar/gkw049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/18/2016] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions.
Collapse
Affiliation(s)
- Mathieu Chauleau
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
6
|
Honda S, Shigematsu M, Morichika K, Telonis AG, Kirino Y. Four-leaf clover qRT-PCR: A convenient method for selective quantification of mature tRNA. RNA Biol 2016; 12:501-8. [PMID: 25833336 DOI: 10.1080/15476286.2015.1031951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Transfer RNAs (tRNAs) play a central role in translation and also recently appear to have a variety of other functions in biological processes beyond translation. Here we report the development of Four-Leaf clover qRT-PCR (FL-PCR), a convenient PCR-based method, which can specifically quantify individual mature tRNA species. In FL-PCR, T4 RNA ligase 2 specifically ligates a stem-loop adapter to mature tRNAs but not to precursor tRNAs or tRNA fragments. Subsequent TaqMan qRT-PCR amplifies only unmodified regions of the tRNA-adapter ligation products; therefore, FL-PCR quantification is not influenced by tRNA post-transcriptional modifications. FL-PCR has broad applicability for the quantification of various tRNAs in different cell types, and thus provides a much-needed simple method for analyzing tRNA abundance and heterogeneity.
Collapse
Affiliation(s)
- Shozo Honda
- a Computational Medicine Center ; Sidney Kimmel Medical College ; Thomas Jefferson University ; Philadelphia , PA USA
| | | | | | | | | |
Collapse
|
7
|
Unciuleac MC, Shuman S. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi. RNA (NEW YORK, N.Y.) 2015; 21:824-832. [PMID: 25740837 PMCID: PMC4408790 DOI: 10.1261/rna.049197.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3'-OH/5'-PO4 duplexes in which the 3'-OH strand is RNA. It does so via the "classic" ligase pathway, entailing reaction with ATP to form a covalent NgrRnl-AMP intermediate, transfer of AMP to the nick 5'-PO4, and attack of the RNA 3'-OH on the adenylylated nick to form a 3'-5' phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3'-OH/5'-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new "Rnl5 family" of nick-sealing ligases with a signature domain organization.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
8
|
Honda S, Kirino Y. Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res 2015; 43:e77. [PMID: 25779041 PMCID: PMC4499115 DOI: 10.1093/nar/gkv218] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/04/2015] [Indexed: 12/15/2022] Open
Abstract
Recent advances in next-generation sequencing technologies have revealed that cellular functional RNAs are not always expressed as single entities with fixed terminal sequences but as multiple isoforms bearing complex heterogeneity in both length and terminal sequences, such as isomiRs, the isoforms of microRNAs. Unraveling the biogenesis and biological significance of heterogenetic RNA expression requires distinctive analysis of each RNA variant. Here, we report the development of dumbbell PCR (Db-PCR), an efficient and convenient method to distinctively quantify a specific individual small RNA variant. In Db-PCR, 5′- and 3′-stem–loop adapters are specifically hybridized and ligated to the 5′- and 3′-ends of target RNAs, respectively, by T4 RNA ligase 2 (Rnl2). The resultant ligation products with ‘dumbbell-like’ structures are subsequently quantified by TaqMan RT-PCR. We confirmed that high specificity of Rnl2 ligation and TaqMan RT-PCR toward target RNAs assured both 5′- and 3′-terminal sequences of target RNAs with single nucleotide resolution so that Db-PCR specifically detected target RNAs but not their corresponding terminal variants. Db-PCR had broad applicability for the quantification of various small RNAs in different cell types, and the results were consistent with those from other quantification method. Therefore, Db-PCR provides a much-needed simple method for analyzing RNA terminal heterogeneity.
Collapse
Affiliation(s)
- Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Zhao B, Song J, Guan Y. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification. Acta Biochim Biophys Sin (Shanghai) 2015; 47:130-6. [PMID: 25534778 DOI: 10.1093/abbs/gmu121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rolling circle amplification (RCA) is a new method based on virus DNA reproduction, which has been widely used in the field of miRNA detection. However, discrimination of highly homologous miRNAs is a bottleneck in the research of miRNA. In this study, the RCA process was creatively used to conduct the discrimination of miRNAs. Results showed that T4 RNA ligase 2 could reach the highest circularization efficiency during the RCA process with higher specificity. By using RCA technology, a member of highly homologous miRNAs, let-7, could be discriminated at the amount of 2.5 fmol. This sensitivity could not be achieved by using traditional reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. In addition, detection of miRNAs by using RCA could reach the amount limit of fmol with a good linearity. Optimal RCA technology used in this study is better than RT-qPCR in discriminating highly homologous family miRNAs. Results from this study can promote the applications of RCA in clinical diagnosis, environment protection, health care, disease inspection and prevention, and national security.
Collapse
Affiliation(s)
- Bin Zhao
- Key Laboratory of National Sport Bureau, Department of Human Movement Sciences, Shenyang Sport University, Shenyang 110102, China
| | - Jirui Song
- Key Laboratory of National Sport Bureau, Department of Human Movement Sciences, Shenyang Sport University, Shenyang 110102, China
| | - Yifu Guan
- Key Laboratory of Medical Cell Biology (Ministry of Education), Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Chauleau M, Shuman S. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3'-OH base mispairs and damaged base lesions. RNA (NEW YORK, N.Y.) 2013; 19:1840-7. [PMID: 24158792 PMCID: PMC3884662 DOI: 10.1261/rna.041731.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
T4 RNA ligase 2 (Rnl2) repairs 3'-OH/5'-PO4 nicks in duplex nucleic acids in which the broken 3'-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the 5'-PO4 of the nick to form an activated AppN- intermediate (step 2); and attack by the nick 3'-OH on the AppN- strand to form a 3'-5' phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2-AMP. For substrates with correctly base-paired 3'-OH nick termini, kstep2 was fast (9.5 to 17.9 sec(-1)) and similar in magnitude to kstep3 (7.9 to 32 sec(-1)). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3'-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3'-OH elicited severe decrements in the rate of 5'-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3'-terminal ribonucleoside at the nick for optimal 5'-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage.
Collapse
|
11
|
Munafó DB, Robb GB. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA (NEW YORK, N.Y.) 2010; 16:2537-52. [PMID: 20921270 PMCID: PMC2995414 DOI: 10.1261/rna.2242610] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/30/2010] [Indexed: 05/23/2023]
Abstract
Small regulatory RNA repertoires in biological samples are heterogeneous mixtures that may include species arising from varied biosynthetic pathways and modification events. Small RNA profiling and discovery approaches ought to capture molecules in a way that is representative of expression level. It follows that the effects of RNA modifications on representation should be minimized. The collection of high-quality, representative data, therefore, will be highly dependent on bias-free sample manipulation in advance of quantification. We examined the impact of 2'-O-methylation of the 3'-terminal nucleotide of small RNA on key enzymatic reactions of standard front-end manipulation schemes. Here we report that this common modification negatively influences the representation of these small RNA species. Deficits occurred at multiple steps as determined by gel analysis of synthetic input RNA and by quantification and sequencing of derived cDNA pools. We describe methods to minimize the effects of 2'-O-methyl modification of small RNA 3'-termini using T4 RNA ligase 2 truncated, and other optimized reaction conditions, demonstrating their use by quantifying representation of miRNAs and piRNAs in cDNA pools prepared from biological samples.
Collapse
|
12
|
Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed Engl 2009; 48:3268-72. [PMID: 19219883 DOI: 10.1002/anie.200805665] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One-nucleotide differences in microRNAs (miRNAs) can be discriminated in an assay based on a branched rolling-circle amplification (BRCA) reaction and fluorescence quantification. With the proposed method miRNA can be detected at concentrations as low as 10 fM, and the miRNA in a total RNA sample of a few nanograms can be determined.
Collapse
Affiliation(s)
- Yongqiang Cheng
- Key Laboratory of Medicine Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environment Science, Hebei University, Baoding 071002, Hebei Province, China
| | | | | | | | | | | |
Collapse
|
13
|
Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805665] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008; 379:579-88. [PMID: 18466919 DOI: 10.1016/j.jmb.2008.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
Collapse
Affiliation(s)
- Marcel Dupasquier
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
15
|
Nair PA, Nandakumar J, Smith P, Odell M, Lima CD, Shuman S. Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat Struct Mol Biol 2007; 14:770-8. [PMID: 17618295 DOI: 10.1038/nsmb1266] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/05/2007] [Indexed: 11/09/2022]
Abstract
Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-A crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3'-OH-5'-PO4 nick reveals a new mode of DNA envelopment, in which a short surface loop emanating from the OB domain forms a beta-hairpin 'latch' that inserts into the DNA major groove flanking the nick. A network of interactions with the 3'-OH and 5'-PO4 termini in the active site illuminates the DNA adenylylation mechanism and the crucial roles of AMP in nick sensing and catalysis. Addition of a divalent cation triggered nick sealing in crystallo, establishing that the nick complex is a bona fide intermediate in the DNA repair pathway.
Collapse
Affiliation(s)
- Pravin A Nair
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
16
|
Raymond A, Shuman S. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick. Nucleic Acids Res 2007; 35:839-49. [PMID: 17204483 PMCID: PMC1807946 DOI: 10.1093/nar/gkl1090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3'-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5'-PO(4). Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure-activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes.
Collapse
Affiliation(s)
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145; Fax: +1 212 717 3623;
| |
Collapse
|
17
|
Nandakumar J, Shuman S, Lima CD. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Cell 2006; 127:71-84. [PMID: 17018278 DOI: 10.1016/j.cell.2006.08.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/20/2006] [Accepted: 08/04/2006] [Indexed: 11/24/2022]
Abstract
T4 RNA ligase 2 (Rnl2) and kinetoplastid RNA editing ligases exemplify a family of RNA repair enzymes that seal 3'OH/5'PO(4) nicks in duplex RNAs via ligase adenylylation (step 1), AMP transfer to the nick 5'PO(4) (step 2), and attack by the nick 3'OH on the 5'-adenylylated strand to form a phosphodiester (step 3). Crystal structures are reported for Rnl2 at discrete steps along this pathway: the covalent Rnl2-AMP intermediate; Rnl2 bound to an adenylylated nicked duplex, captured immediately following step 2; and Rnl2 at an adenylylated nick in a state poised for step 3. These structures illuminate the stereochemistry of nucleotidyl transfer and reveal how remodeling of active-site contacts and conformational changes propel the ligation reaction forward. Mutational analysis and comparison of nick-bound structures of Rnl2 and human DNA ligase I highlight common and divergent themes of substrate recognition that can explain their specialization for RNA versus DNA repair.
Collapse
|
18
|
Wang LK, Schwer B, Shuman S. Structure-guided mutational analysis of T4 RNA ligase 1. RNA (NEW YORK, N.Y.) 2006; 12:2126-34. [PMID: 17068206 PMCID: PMC1664725 DOI: 10.1261/rna.271706] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that circumvents an RNA-damaging host antiviral response. Whereas the three-step reaction scheme of Rnl1 is well established, the structural basis for catalysis has only recently been appreciated as mutational and crystallographic approaches have converged. Here we performed a structure-guided alanine scan of nine conserved residues, including side chains that either contact the ATP substrate via adenine (Leu179, Val230), the 2'-OH (Glu159), or the gamma phosphate (Tyr37) or coordinate divalent metal ions at the ATP alpha phosphate (Glu159, Tyr246) or beta phosphate (Asp272, Asp273). We thereby identified Glu159 and Tyr246 as essential for RNA sealing activity in vitro and for tRNA repair in vivo. Structure-activity relationships at Glu159 and Tyr246 were clarified by conservative substitutions. Eliminating the phosphate-binding Tyr37, and the magnesium-binding Asp272 and Asp273 side chains had little impact on sealing activity in vitro or in vivo, signifying that not all atomic interactions in the active site are critical for function. Analysis of mutational effects on individual steps of the ligation pathway underscored how different functional groups come into play during the ligase-adenylylation reaction versus the subsequent steps of RNA-adenylylation and phosphodiester formation. Moreover, the requirements for sealing exogenous preformed RNA-adenylate are more stringent than are those for sealing the RNA-adenylate intermediate formed in situ during ligation of a 5'-PO4 RNA.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
19
|
Jackson BR, Noble C, Lavesa-Curto M, Bond PL, Bowater RP. Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon "Ferroplasma acidarmanus" Fer1. Extremophiles 2006; 11:315-27. [PMID: 17136487 DOI: 10.1007/s00792-006-0041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/17/2006] [Indexed: 01/05/2023]
Abstract
Analysis of the genome of "Ferroplasma acidarmanus" Fer1, an archaeon that is an extreme acidophile, identified an open reading frame encoding a putative ATP-dependent DNA ligase, which we termed FaLig. The deduced amino acid sequence of FaLig contains 595 amino acids, with a predicted molecular mass of 67.8 kDa. "F. acidarmanus" Fer1 is classified as a Euryarchaeote, but phylogenetic analysis using amino acid sequences showed that FaLig is more similar to DNA ligases from Crenarchaeota, suggesting that lateral transfer of these genes has occurred among archaea. The gene sequence encoding FaLig was cloned into a bacterial expression vector harbouring an upstream His-tag to aid purification. Conditions for expression and purification from Escherichia coli were identified and recombinant FaLig was confirmed to be an ATP-dependent DNA ligase. Optimal conditions for nick-joining by the protein were pH 6-7, 0.5 mM ATP, in the presence of either Mg(2+) or Mn(2+). Using a range of nicked, double-stranded nucleic acids, ligation was detected with the same substrates as previously determined for other DNA ligases. Although FaLig is the DNA ligase from one of the most extreme acidophilic organism yet studied, this characterization suggests that its biochemical mechanism is analogous to that of enzymes from other cellular systems.
Collapse
Affiliation(s)
- Brian R Jackson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
20
|
Bullard D, Bowater R. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J 2006; 398:135-44. [PMID: 16671895 PMCID: PMC1525015 DOI: 10.1042/bj20060313] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 degrees C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 degrees C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'.
Collapse
Affiliation(s)
- Desmond R. Bullard
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Benarroch D, Shuman S. Characterization of mimivirus NAD+-dependent DNA ligase. Virology 2006; 353:133-43. [PMID: 16844179 DOI: 10.1016/j.virol.2006.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes a cornucopia of proteins with imputed functions in DNA replication, modification, and repair. Here we produced, purified, and characterized mimivirus DNA ligase (MimiLIG), an NAD+-dependent nick joining enzyme homologous to bacterial LigA and entomopoxvirus DNA ligase. MimiLIG is a 636-aa polypeptide composed of an N-terminal NAD+ specificity module (domain Ia), linked to nucleotidyltransferase, OB-fold, helix-hairpin-helix, and BRCT domains, but it lacks the tetracysteine Zn-binding module found in all bacterial LigA enzymes. MimiLIG requires conserved domain Ia residues Tyr36, Asp46, Tyr49, and Asp50 for its initial reaction with NAD+ to form the ligase-AMP intermediate, but not for the third step of phosphodiester formation at a preadenylylated nick. MimiLIG differs from bacterial LigA enzymes in that its activity is strongly dependent on the C-terminal BRCT domain, deletion of which reduced its specific activity in nick joining by 75-fold without affecting the ligase adenylylation step. The DeltaBRCT mutant of MimiLIG was impaired in sealing at a preadenylylated nick. We propose that eukaryal DNA viruses acquired the NAD+-dependent ligases by horizontal transfer from a bacterium and that MimiLIG predates entomopoxvirus ligase, which lacks both the tetracysteine and BRCT domains. We speculate that the dissemination of NAD+-dependent ligase from bacterium to eukaryotic virus might have occurred within an amoebal host.
Collapse
Affiliation(s)
- Delphine Benarroch
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|