1
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
2
|
Heat Shock Proteins and Maternal Contribution to Oogenesis and Early Embryogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:1-27. [PMID: 28389748 DOI: 10.1007/978-3-319-51409-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early embryos develop from fertilized eggs using materials that are stored during oocyte growth and which can be defined as maternal contribution (molecules, factors, or determinants). Several heat shock proteins (HSPs) and the heat shock transcriptional factor (HSF) are part of the maternal contribution that is critical for successful embryogenesis and reproduction. A maternal role for heat shock-related genes was mainly demonstrated in genetic experimental organisms (e.g., fly, nematode, mouse). Nowadays, an increasing number of "omics" data are produced from a large panel of organisms implementing a catalog of maternal and/or embryonic HSPs and HSFs. However, for most of them, it remains to better understand their potential roles in this context. Existing and future genome-wide screens mainly set up to create loss-of-function are likely to improve this situation. This chapter will discuss available data from various experimental organisms following the developmental steps from egg production to early embryogenesis.
Collapse
|
3
|
Corporeau C, Vanderplancke G, Boulais M, Suquet M, Quéré C, Boudry P, Huvet A, Madec S. Proteomic identification of quality factors for oocytes in the Pacific oyster Crassostrea gigas. J Proteomics 2012; 75:5554-63. [DOI: 10.1016/j.jprot.2012.07.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/02/2012] [Accepted: 07/21/2012] [Indexed: 12/26/2022]
|
4
|
Raiford KL, Park J, Lin KW, Fang S, Crews AL, Adler KB. Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome". Respir Res 2011; 12:118. [PMID: 21896166 PMCID: PMC3184067 DOI: 10.1186/1465-9921-12-118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/06/2011] [Indexed: 01/11/2023] Open
Abstract
Background Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secretion, including the specific proteins involved in the process, have yet to be elucidated. Previously, we have shown that the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein regulates mucin secretion by orchestrating translocation of mucin granules from the cytosol to the plasma membrane, where the granules dock, fuse and release their contents into the airway lumen. Associated with MARCKS in this process are chaperone (Heat Shock Protein 70 [HSP70], Cysteine string protein [CSP]) and cytoskeletal (actin, myosin) proteins. However, additional granule-associated proteins that may be involved in secretion have not yet been elucidated. Methods Here, we isolated mucin granules and granule membranes from primary cultures of well differentiated human bronchial epithelial cells utilizing a novel technique of immuno-isolation, based on the presence of the calcium activated chloride channel hCLCA1 (the human ortholog of murine Gob-5) on the granule membranes, and verified via Western blotting and co-immunoprecipitation that MARCKS, HSP70, CSP and hCLCA1 were present on the granule membranes and associated with each other. We then subjected the isolated granules/membranes to liquid chromatography mass spectrometry (LC-MS/MS) to identify other granule associated proteins. Results A number of additional cytoskeletal (e.g. Myosin Vc) and regulatory proteins (e.g. Protein phosphatase 4) associated with the granules and could play a role in secretion were discovered. This is the first description of the airway goblet cell "granulome."
Collapse
Affiliation(s)
- Kimberly L Raiford
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
5
|
Johnson JN, Ahrendt E, Braun JEA. CSPalpha: the neuroprotective J protein. Biochem Cell Biol 2010; 88:157-65. [PMID: 20453918 DOI: 10.1139/o09-124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine string protein (CSPalpha, also called DnaJC5) is unique among J proteins. Similar to other J proteins, CSPalpha interacts with and activates the ATPase of Hsc70s (heat shock proteins of 70 kDa), thereby harnessing the ATPase activity for conformational work on client proteins. In contrast to other J proteins, CSPalpha is anchored to synaptic vesicles, as well as to exocrine, endocrine and neuroendocrine secretory granules, and has been shown to have an essential anti-neurodegenerative role. CSPalpha-null organisms exhibit progressive neurodegeneration, behavioural deficits, and premature death, most likely due to the progressive misfolding of one or more client proteins. Here we highlight recent advances in our understanding of the critical role that CSPalpha plays in governing exocytotic secretory functions.
Collapse
Affiliation(s)
- Jadah N Johnson
- Department of Physiology and Pharmacology and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
6
|
Zahoor Z, Davies AJ, Kirk RS, Rollinson D, Walker AJ. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata. Cell Stress Chaperones 2010; 15:639-50. [PMID: 20182834 PMCID: PMC3006636 DOI: 10.1007/s12192-010-0176-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 11/26/2022] Open
Abstract
Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the approximately 70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host.
Collapse
Affiliation(s)
- Zahida Zahoor
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE UK
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Angela J. Davies
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE UK
| | - Ruth S. Kirk
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE UK
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Anthony John Walker
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE UK
| |
Collapse
|
7
|
Andreyeva A, Leshchyns'ka I, Knepper M, Betzel C, Redecke L, Sytnyk V, Schachner M. CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PLoS One 2010; 5:e12018. [PMID: 20711454 PMCID: PMC2920317 DOI: 10.1371/journal.pone.0012018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and αSGT. CHL1, Hsc70, CSP and αSGT form predominantly CHL1/Hsc70/αSGT and CHL1/CSP complexes in synapses. Among the various complexes formed by CHL1, Hsc70, CSP and αSGT, SNAP25 and VAMP2 induce chaperone activity only in CHL1/Hsc70/αSGT and CHL1/CSP complexes, respectively, indicating a remarkable selectivity of a presynaptic chaperone activity for proteins of the exocytotic machinery. In mice with genetic ablation of CHL1, chaperone activity in synapses is reduced and the machinery for synaptic vesicle exocytosis and, in particular, the SNARE complex is unable to sustain prolonged synaptic activity. Thus, we reveal a novel role for a cell adhesion molecule in selective activation of the presynaptic chaperone machinery.
Collapse
Affiliation(s)
- Aksana Andreyeva
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- Institute of Neuro- und Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Knepper
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (MS); (VS)
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MS); (VS)
| |
Collapse
|
8
|
Gundersen CB, Kohan SA, Souda P, Whitelegge JP, Umbach JA. Cysteine string protein β is prominently associated with nerve terminals and secretory organelles in mouse brain. Brain Res 2010; 1332:1-11. [DOI: 10.1016/j.brainres.2010.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 11/16/2022]
|
9
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
10
|
Weng N, Baumler MD, Thomas DDH, Falkowski MA, Swayne LA, Braun JEA, Groblewski GE. Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1030-9. [PMID: 19282376 PMCID: PMC2696211 DOI: 10.1152/ajpgi.90592.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The heat shock protein 70 family members Hsc70 and Hsp70 are known to play a protective role against the onset of experimental pancreatitis, yet their molecular function in acini is unclear. Cysteine string protein (CSP-alpha) is a zymogen granule (ZG) membrane protein characterized by an NH(2)-terminal "J domain" and a central palmitoylated string of cysteine residues. The J domain functions as a cochaperone by modulating the activity of Hsc70/Hsp70 family members. A role for CSP-alpha in regulating digestive enzyme exocytosis from pancreas was investigated by introducing CSP-alpha truncations into isolated acini following their permeabilization with Perfringolysin O. Incubation of acini with CSP-alpha(1-82), containing the J domain, significantly augmented Ca(2+)-stimulated amylase secretion. Effects of CSP-alpha(1-82) were concentration dependent, with a maximum 80% increase occurring at 200 microg/ml of protein. Although CSP-alpha(1-82) had no effects on basal secretion measured in the presence of < or =10 nM free Ca(2+), it did significantly augment GTP-gammaS-induced secretion under basal Ca(2+) conditions by approximately 25%. Mutation of the J domain to abolish its cochaperone activity failed to augment Ca(2+)-stimulated secretion, implicating the CSP-alpha/Hsc70 cochaperone system as a regulatory component of the secretory pathway. CSP-alpha physically associates with vesicle-associated membrane protein 8 (VAMP 8) on ZGs, and the CSP-alpha-VAMP 8 interaction was dependent on amino acids 83-112 of CSP-alpha. Immunofluorescence analysis of acinar lobules or purified ZGs confirmed the CSP-alpha colocalization with VAMP 8. These data establish a role for CSP-alpha in regulating digestive enzyme secretion and suggest that CSP-alpha and Hsc70 modulate specific soluble N-ethylmaleimide-sensitive attachment receptor interactions necessary for exocytosis.
Collapse
Affiliation(s)
- Ning Weng
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Megan D. Baumler
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Diana D. H. Thomas
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Michelle A. Falkowski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Leigh Anne Swayne
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Janice E. A. Braun
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| |
Collapse
|
11
|
Park J, Fang S, Crews AL, Lin KW, Adler KB. MARCKS regulation of mucin secretion by airway epithelium in vitro: interaction with chaperones. Am J Respir Cell Mol Biol 2008; 39:68-76. [PMID: 18314541 DOI: 10.1165/rcmb.2007-0139oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have reported previously that myristoylated alanine-rich C kinase substrate (MARCKS) is a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. The results of those studies supported a mechanism whereby MARCKS, upon phosphorylation by protein kinase C (PKC), translocates from plasma membrane to cytoplasm, where its binding to membranes of intracellular mucin granules is a key component of the secretory pathway. It remains unknown how MARCKS is targeted to and/or preferentially attaches to mucin granule membranes. We hypothesized that the chaperone cysteine string protein (CSP) may play an important role in this process. CSP was shown to associate with membranes of intracellular mucin granules in well-differentiated normal human bronchial epithelial (NHBE) cells in vitro, as determined by ultrastructural immunohistochemistry and Western blotting of isolated granule membranes. CSP in these cells complexed with MARCKS, as shown by co-immunoprecipitation. Given reported associations between CSP and a second chaperone, heat shock protein 70 (HSP70), a role for HSP70 in the MARCKS-dependent secretory mechanism also was investigated. HSP70 appeared to form a trimeric complex with MARCKS and CSP associated with mucin granule membranes within airway epithelial cells. Transfection of the HBE1 human bronchial epithelial cell line with siRNAs targeting sequences of MARCKS, CSP, or HSP70 resulted, in each case, in significant knockdown of expression of these proteins and subsequent attenuation of mucin secretion. The results provide the first evidence that CSP and HSP70, and their interactions with MARCKS, are involved in mucin secretion.
Collapse
Affiliation(s)
- Joungjoa Park
- North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
12
|
Schietroma C, Yu HY, Wagner MC, Umbach JA, Bement WM, Gundersen CB. A role for myosin 1e in cortical granule exocytosis in Xenopus oocytes. J Biol Chem 2007; 282:29504-13. [PMID: 17702742 PMCID: PMC2820112 DOI: 10.1074/jbc.m705825200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xenopus oocytes undergo dynamic structural changes during maturation and fertilization. Among these, cortical granule exocytosis and compensatory endocytosis provide effective models to study membrane trafficking. This study documents an important role for myosin 1e in cortical granule exocytosis. Myosin 1e is expressed at the earliest stage that cortical granule exocytosis can be detected in oocytes. Prior to exocytosis, myosin 1e relocates to the surface of cortical granules. Overexpression of myosin 1e augments the kinetics of cortical granule exocytosis, whereas tail-derived fragments of myosin 1e inhibit this secretory event (but not constitutive exocytosis). Finally, intracellular injection of myosin 1e antibody inhibits cortical granule exocytosis. Further experiments identified cysteine string proteins as interacting partners for myosin 1e. As constituents of the membrane of cortical granules, cysteine string proteins are also essential for cortical granule exocytosis. Future investigation of the link between myosin 1e and cysteine string proteins should help to clarify basic mechanisms of regulated exocytosis.
Collapse
Affiliation(s)
- Cataldo Schietroma
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, UCLA, Los Angeles, California 90095
| | - Hoi-Ying Yu
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark C. Wagner
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joy A. Umbach
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, UCLA, Los Angeles, California 90095
| | - William M. Bement
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706
| | - Cameron B. Gundersen
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, UCLA, Los Angeles, California 90095
- To whom correspondence should be addressed. Tel.: 310-825-3423; Fax: 310-206-8975;
| |
Collapse
|
13
|
Heikkila JJ, Kaldis A, Morrow G, Tanguay RM. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 2007; 25:385-95. [PMID: 17459646 DOI: 10.1016/j.biotechadv.2007.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 11/26/2022]
Abstract
The analysis of the expression and function of heat shock protein (hsp) genes, a class of molecular chaperones, has been greatly aided by studies carried out with Xenopus oocytes. The large size of the oocyte facilitates microinjection of DNA, mRNA or protein, permits manual dissection of nuclei, and allows certain assays to be performed with single oocytes. These and other characteristics were useful in identifying the cis- and trans-acting factors involved in hsp gene transcription as well as the role of chaperones and co-chaperones in the repression and activation of heat shock factor. Xenopus oocytes were used to examine heat shock protein (HSP) molecular chaperone function as well as their involvement in intracellular trafficking, maturation, and secretion of protein. Possible new areas of research with this system include the role of membranes in the heat shock response, involvement of HSPs in viral replication and maturation, and in vivo NMR spectroscopy of microinjected HSPs.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | |
Collapse
|
14
|
Swayne LA, Beck KE, Braun JEA. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006; 348:83-91. [PMID: 16875662 DOI: 10.1016/j.bbrc.2006.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 12/15/2022]
Abstract
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
15
|
Zhang H, Schmidt BZ, Sun F, Condliffe SB, Butterworth MB, Youker RT, Brodsky JL, Aridor M, Frizzell RA. Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 2006; 281:11312-21. [PMID: 16469739 DOI: 10.1074/jbc.m512013200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of the cysteine string protein (Csp) in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis in relation to another J-domain protein, Hdj-2, a recognized CFTR cochaperone. Increased expression of Csp produced a dose-dependent reduction in mature (band C) CFTR and an increase in immature (band B) CFTR. Exogenous expression of Hdj-2 also increased CFTR band B, but unlike Csp, Hdj-2 increased band C as well. The Csp-induced block of CFTR maturation required Hsp70, because a J-domain mutant (H43Q) that interferes with the ability of Csp to stimulate Hsp70 ATPase activity relieved the Csp-induced block of CFTR maturation. Nevertheless, Csp H43Q still increased immature CFTR. Csp-induced band B CFTR was found adjacent to the nucleus, co-localizing with calnexin, and it remained detergent-soluble. These data indicate that Csp did not block CFTR maturation by promoting the aggregation or degradation of immature CFTR. Csp knockdown by RNA interference produced a 5-fold increase in mature CFTR and augmented cAMP-stimulated CFTR currents. Thus, the production of mature CFTR is inversely related to the expression level of Csp. Both Csp and Hdj-2 associated with the CFTR R-domain in vitro, and Hdj-2 binding was displaced by Csp, suggesting common interaction sites. Combined expression of Csp and Hdj-2 mimicked the effect of Csp alone, a block of CFTR maturation. But together, Csp and Hdj-2 produced additive increases in CFTR band B, and this did not depend on their interactions with Hsp70, consistent with direct chaperone actions of these proteins. Like Hdj-2, Csp reduced the aggregation of NBD1 in vitro in the absence of Hsp70. Our data suggest that both Csp and Hdj-2 facilitate the biosynthesis of immature CFTR, acting as direct CFTR chaperones, but in addition, Csp is positioned later in the CFTR biogenesis cascade where it regulates the production of mature CFTR by limiting its exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|