1
|
Impact of Negative Feedbacks on De Novo Pyrimidines Biosynthesis in Escherichia coli. Int J Mol Sci 2023; 24:ijms24054806. [PMID: 36902235 PMCID: PMC10003070 DOI: 10.3390/ijms24054806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Earlier studies aimed at investigating the metabolism of endogenous nucleoside triphosphates in synchronous cultures of E. coli cells revealed an auto-oscillatory mode of functioning of the pyrimidine and purine nucleotide biosynthesis system, which the authors associated with the dynamics of cell division. Theoretically, this system has an intrinsic oscillatory potential, since the dynamics of its functioning are controlled through feedback mechanisms. The question of whether the nucleotide biosynthesis system has its own oscillatory circuit is still open. To address this issue, an integral mathematical model of pyrimidine biosynthesis was developed, taking into account all experimentally verified negative feedback in the regulation of enzymatic reactions, the data of which were obtained under in vitro conditions. Analysis of the dynamic modes of the model functioning has shown that in the pyrimidine biosynthesis system, both the steady-state and oscillatory functioning modes can be realized under certain sets of kinetic parameters that fit in the physiological boundaries of the investigated metabolic system. It has been demonstrated that the occurrence of the oscillatory nature of metabolite synthesis depended on the ratio of two parameters: the Hill coefficient, hUMP1-the nonlinearity of the UMP effect on the activity of carbamoyl-phosphate synthetase, and the parameter r characterizing the contribution of the noncompetitive mechanism of UTP inhibition to the regulation of the enzymatic reaction of UMP phosphorylation. Thus, it has been theoretically shown that the E. coli pyrimidine biosynthesis system possesses its own oscillatory circuit whose oscillatory potential depends to a significant degree on the mechanism of regulation of UMP kinase activity.
Collapse
|
2
|
Kleinwort KJH, Hobmaier BF, Mayer R, Hölzel C, Degroote RL, Märtlbauer E, Hauck SM, Deeg CA. Mycobacterium avium subsp. paratuberculosis Proteome Changes Profoundly in Milk. Metabolites 2021; 11:metabo11080549. [PMID: 34436489 PMCID: PMC8399727 DOI: 10.3390/metabo11080549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) are detectable viable in milk and other dairy products. The molecular mechanisms allowing the adaptation of MAP in these products are still poorly understood. To obtain information about respective adaptation of MAP in milk, we differentially analyzed the proteomes of MAP cultivated for 48 h in either milk at 37 °C or 4 °C or Middlebrook 7H9 broth as a control. From a total of 2197 MAP proteins identified, 242 proteins were at least fivefold higher in abundance in milk. MAP responded to the nutritional shortage in milk with upregulation of 32% of proteins with function in metabolism and 17% in fatty acid metabolism/synthesis. Additionally, MAP upregulated clusters of 19% proteins with roles in stress responses and immune evasion, 19% in transcription/translation, and 13% in bacterial cell wall synthesis. Dut, MmpL4_1, and RecA were only detected in MAP incubated in milk, pointing to very important roles of these proteins for MAP coping with a stressful environment. Dut is essential and plays an exclusive role for growth, MmpL4_1 for virulence through secretion of specific lipids, and RecA for SOS response of mycobacteria. Further, 35 candidates with stable expression in all conditions were detected, which could serve as targets for detection. Data are available via ProteomeXchange with identifier PXD027444.
Collapse
Affiliation(s)
- Kristina J. H. Kleinwort
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Bernhard F. Hobmaier
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Ricarda Mayer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Christina Hölzel
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
- Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, D-24098 Kiel, Germany
| | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Erwin Märtlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
- Correspondence:
| |
Collapse
|
3
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
4
|
Awad A, Gassama-Diagne A. PI3K/SHIP2/PTEN pathway in cell polarity and hepatitis C virus pathogenesis. World J Hepatol 2017; 9:18-29. [PMID: 28105255 PMCID: PMC5220268 DOI: 10.4254/wjh.v9.i1.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects hepatocytes, polarized cells in the liver. Chronic HCV infection often leads to steatosis, fibrosis, cirrhosis and hepatocellular carcinoma, and it has been identified as the leading cause of liver transplantation worldwide. The HCV replication cycle is dependent on lipid metabolism and particularly an accumulation of lipid droplets in host cells. Phosphoinositides (PIs) are minor phospholipids enriched in different membranes and their levels are tightly regulated by specific PI kinases and phosphatases. PIs are implicated in a vast array of cellular responses that are central to morphogenesis, such as cytoskeletal changes, cytokinesis and the recruitment of downstream effectors to govern mechanisms involved in polarization and lumen formation. Important reviews of the literature identified phosphatidylinositol (PtdIns) 4-kinases, and their lipid products PtdIns(4)P, as critical regulators of the HCV life cycle. SH2-containing inositol polyphosphate 5-phosphatase (SHIP2), phosphoinositide 3-kinase (PI3K) and their lipid products PtdIns(3,4)P2 and PtdIns(3,4,5)P3, respectively, play an important role in the cell membrane and are key to the establishment of apicobasal polarity and lumen formation. In this review, we will focus on these new functions of PI3K and SHIP2, and their deregulation by HCV, causing a disruption of apicobasal polarity, actin organization and extracellular matrix assembly. Finally we will highlight the involvement of this pathway in the event of insulin resistance and nonalcoholic fatty liver disease related to HCV infection.
Collapse
|
5
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
6
|
Huang Y, Zhang H, Tian H, Li C, Han S, Lin Y, Zheng S. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:7527-37. [DOI: 10.1007/s00253-015-6469-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/24/2022]
|
7
|
Uridine monophosphate kinase as potential target for tuberculosis: From target to lead identification. Interdiscip Sci 2014; 5:296-311. [DOI: 10.1007/s12539-013-0180-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
|
8
|
Mikoulinskaia GV, Taran SA, Skoblov YS, Feofanov SA. The study of the bacteriophage T5 deoxynucleoside monophosphate kinase active site by site-directed mutagenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1068162013060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Doig P, Gorseth E, Nash T, Patten A, Gao N, Blackett C. Screening-based discovery of the first novel ATP competitive inhibitors of the Staphylococcus aureus essential enzyme UMP kinase. Biochem Biophys Res Commun 2013; 437:162-7. [PMID: 23806686 DOI: 10.1016/j.bbrc.2013.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
UMP kinase (PyrH) is an essential enzyme found only in bacteria, making it ideal as a target for the discovery of antibacterials. To identify inhibitors of PyrH, an assay employing Staphylococcus aureus PyrH coupled to pyruvate kinase/lactate dehydrogenase was developed and was used to perform a high throughput screen. A validated aminopyrimidine series was identified from screening. Kinetic characterization of this aminopyrimidine indicated it was a competitive inhibitor of ATP. We have shown that HTS can be used to identify potential leads for this novel target, the first ATP competitive inhibitor of PyrH reported.
Collapse
Affiliation(s)
- Peter Doig
- Discovery Sciences, AstraZeneca R&D Boston, Waltham, MA 02451, United States.
| | | | | | | | | | | |
Collapse
|
10
|
Chu CH, Liu MH, Chen PC, Lin MH, Li YC, Hsiao CD, Sun YJ. Structures of Helicobacter pylori uridylate kinase: insight into release of the product UDP. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:773-83. [PMID: 22751662 DOI: 10.1107/s0907444912011407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022]
Abstract
Uridylate kinase (UMPK; EC 2.7.4.22) transfers the γ-phosphate of ATP to UMP, forming UDP. It is allosterically regulated by GTP. Structures of Helicobacter pylori UMPK (HpUMPK) complexed with GTP (HpUMPK-GTP) and with UDP (HpUMPK-UDP) were determined at 1.8 and 2.5 Å resolution, respectively. As expected, HpUMPK-GTP forms a hexamer with six GTP molecules at its centre. Interactions between HpUMPK and GTP are made by the β3 strand of the sheet, loop β3α4 and the α4 helix. In HpUMPK-UDP, the hexameric symmetry typical of UMPKs is absent. Only four of the HpUMPK molecules bind UDP; the other two HpUMPK molecules are in the UDP-free state. The asymmetric hexamer of HpUMPK-UDP, which has an exposed dimer interface, may assist in UDP release. Furthermore, the flexibility of the α2 helix, which interacts with UDP, is found to increase when UDP is absent in HpUMPK-UDP. In HpUMPK-GTP, the α2 helix is too flexible to be observed. This suggests that GTP binding may affect the conformation of the α2 helix, thereby promoting UDP release.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kowalewski B, Poppe J, Demmer U, Warkentin E, Dierks T, Ermler U, Schneider K. Nature's polyoxometalate chemistry: X-ray structure of the Mo storage protein loaded with discrete polynuclear Mo-O clusters. J Am Chem Soc 2012; 134:9768-74. [PMID: 22612644 DOI: 10.1021/ja303084n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 Å X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex. The structurally identical Mo(8) clusters (three layers of two, four, and two MoO(n) octahedra) are distinguishable from the [Mo(8)O(26)](4-) cluster formed in acidic solutions by two displaced MoO(n) octahedra implicating three kinetically labile terminal ligands. Stabilization in the covalent Mo(8) cluster is achieved by Mo bonding to Hisα156-N(ε2) and Gluα129-O(ε1). The absence of covalent protein interactions in the noncovalent Mo(8) cluster is compensated by a more extended hydrogen-bond network involving three pronounced histidines. One displaced MoO(n) octahedron might serve as nucleation site for an inhomogeneous Mo(5-7) cluster largely surrounded by bulk solvent. In the Mo(3) cluster located on the 3-fold axis, the three accurately positioned His140-N(ε2) atoms of the α subunits coordinate to the Mo atoms. The formed polyoxomolybdate clusters of MoSto, not detectable in bulk solvent, are the result of an interplay between self- and protein-driven assembly processes that unite inorganic supramolecular and protein chemistry in a host-guest system. Template, nucleation/protection, and catalyst functions of the polypeptide as well as perspectives for designing new clusters are discussed.
Collapse
Affiliation(s)
- Björn Kowalewski
- Biochemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Functional dissection of N-acetylglutamate synthase (ArgA) of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity. J Bacteriol 2012; 194:2791-801. [PMID: 22447897 DOI: 10.1128/jb.00125-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. The arginine inhibition of Pseudomonas aeruginosa NAGS was strongly hampered, abolished, or even reverted to modest activation by changes in the length/sequence of the short linker connecting both domains, supporting a crucial role of this linker in arginine regulation. Linker cleavage or recombinant domain production allowed the isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the GNAT domain was monomeric/dimeric and catalytically active although with ∼50-fold-increased and ∼3-fold-decreased K(m)(glutamate) and k(cat) values, respectively, with arginine not influencing its activity. The deletion of N-terminal residues 1 to 12 dissociated NAGS into active dimers, catalyzing the reaction with substrate kinetics and arginine insensitivity identical to those for the GNAT domain. Therefore, the interaction between the AAK and GNAT domains from different dimers modulates GNAT domain activity, whereas the hexameric architecture appears to be essential for arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, shedding light on the origin of classical NAGS, by showing that a double mutation (M26K L240K) in the isolated NAGS AAK domain elicited NAGK activity.
Collapse
|
13
|
Marcos E, Crehuet R, Bahar I. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members. PLoS Comput Biol 2011; 7:e1002201. [PMID: 21980279 PMCID: PMC3182869 DOI: 10.1371/journal.pcbi.1002201] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/04/2011] [Indexed: 11/25/2022] Open
Abstract
Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. Protein function requires a three-dimensional structure with specific dynamic features for catalytic and binding events, and, in many cases, the structure results from the assembly of more than one polypeptide chain (also called monomer or subunit) to form an oligomer or multimer. Proteins such as hemoglobin or chaperonin GroEL are oligomers formed by 2 and 14 subunits, respectively, whereas virus capsids are multimers composed of hundreds of monomers. In these cases, the architecture of the interface between the subunits and the overall assembly geometry are essential in determining the functional motions that these sophisticated structures are able to perform under physiological conditions. Here we present results from our computational study of the large-amplitude motions of dimeric and hexameric proteins that belong to the Amino Acid Kinase family. Our study reveals that the monomers in these oligomeric proteins are arranged in such a way that the oligomer inherits the intrinsic dynamic features of its components. The packing geometry additionally confers the ability to perform highly cooperative conformational changes that involve all monomers and enable the biological activity of the multimer. The study highlights the significance of the quaternary design in favoring the oligomer dynamics that enables ligand-binding and allosteric regulation functions.
Collapse
Affiliation(s)
- Enrique Marcos
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
| | - Ramon Crehuet
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
- * E-mail: (RC) (RC); (IB) (IB)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (RC) (RC); (IB) (IB)
| |
Collapse
|
14
|
Labesse G, Benkali K, Salard-Arnaud I, Gilles AM, Munier-Lehmann H. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation. Nucleic Acids Res 2010; 39:3458-72. [PMID: 21149268 PMCID: PMC3082897 DOI: 10.1093/nar/gkq1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(–) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.
Collapse
Affiliation(s)
- Gilles Labesse
- Atelier de Bio- et Chimie Informatique Structurale, CNRS, UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
15
|
Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J. Molecular Mechanisms Modulating Glutamate Kinase Activity. Identification of the Proline Feedback Inhibitor Binding Site. J Mol Biol 2010; 404:890-901. [DOI: 10.1016/j.jmb.2010.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/16/2022]
|
16
|
Rostirolla DC, Breda A, Rosado LA, Palma MS, Basso LA, Santos DS. UMP kinase from Mycobacterium tuberculosis: Mode of action and allosteric interactions, and their likely role in pyrimidine metabolism regulation. Arch Biochem Biophys 2010; 505:202-12. [PMID: 21035424 DOI: 10.1016/j.abb.2010.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/28/2022]
Abstract
The pyrH-encoded uridine 5'-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg²(+) as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents.
Collapse
Affiliation(s)
- Diana C Rostirolla
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Identification and biochemical characterization of a unique Mn2+-dependent UMP kinase from Helicobacter pylori. Arch Microbiol 2010; 192:739-46. [PMID: 20602229 DOI: 10.1007/s00203-010-0600-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 05/20/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Uridine monophosphate (UMP) kinase converts UMP to the corresponding UDP in the presence of metal ions and ATP and is allosterically regulated by nucleotides such as UTP and GTP. Although the UMP kinase reported to date is Mg(2+)-dependent, we found in this study that the UMP kinase of Helicobacter pylori had a preference for Mn(2+) over Mg(2+), which may be related to a conformational difference between the Mn(2+)-bound and Mg(2+)-bound UMP kinase. Similar to previous findings, the UMP kinase activity of H. pylori UMP kinase was inhibited by UTP and activated by GTP. However, a relatively low GTP concentration (0.125 mM) was required to activate H. pylori UMP kinase to a level similar to other bacterial UMP kinases using a higher GTP concentration (0.5 mM). In addition, depending on the presence of either Mg(2+) or Mn(2+), a significant difference in the level of GTP activation was observed. It is therefore hypothesized that the Mg(2+)-bound and Mn(2+)-bound H. pylori UMP kinase may be activated by GTP through different mechanisms.
Collapse
|
18
|
Dellas N, Noel JP. Mutation of archaeal isopentenyl phosphate kinase highlights mechanism and guides phosphorylation of additional isoprenoid monophosphates. ACS Chem Biol 2010; 5:589-601. [PMID: 20392112 PMCID: PMC2887675 DOI: 10.1021/cb1000313] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The biosynthesis of isopentenyl diphosphate (IPP) from either the mevalonate (MVA) or the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway provides the key metabolite for primary and secondary isoprenoid biosynthesis. Isoprenoid metabolism plays crucial roles in membrane stability, steroid biosynthesis, vitamin production, protein localization, defense and communication, photoprotection, sugar transport, and glycoprotein biosynthesis. Recently, an alternative branch of the MVA pathway was discovered in the archaeon Methanocaldococcus jannaschii involving a small molecule kinase, isopentenyl phosphate kinase (IPK). IPK belongs to the amino acid kinase (AAK) superfamily. In vitro, IPK phosphorylates isopentenyl monophosphate (IP) in an ATP and Mg2+-dependent reaction producing IPP. Here, we describe crystal structures of IPK from M. jannaschii refined to nominal resolutions of 2.0−2.8 Å. Notably, an active site histidine residue (His60) forms a hydrogen bond with the terminal phosphate of both substrate and product. This His residue serves as a marker for a subset of the AAK family that catalyzes phosphorylation of phosphate or phosphonate functional groups; the larger family includes carboxyl-directed kinases, which lack this active site residue. Using steady-state kinetic analysis of H60A, H60N, and H60Q mutants, the protonated form of the Nε2 nitrogen of His60 was shown to be essential for catalysis, most likely through hydrogen bond stabilization of the transition state accompanying transphosphorylation. Moreover, the structures served as the starting point for the engineering of IPK mutants capable of the chemoenzymatic synthesis of longer chain isoprenoid diphosphates from monophosphate precursors.
Collapse
Affiliation(s)
- Nikki Dellas
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 Torrey Pines Road, La Jolla, California 92037
- Department of Chemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
19
|
Mabanglo MF, Schubert HL, Chen M, Hill CP, Poulter CD. X-ray structures of isopentenyl phosphate kinase. ACS Chem Biol 2010; 5:517-27. [PMID: 20402538 PMCID: PMC2879073 DOI: 10.1021/cb100032g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Isoprenoid compounds are ubiquitous in nature, participating in important biological phenomena such as signal transduction, aerobic cellular respiration, photosynthesis, insect communication, and many others. They are derived from the 5-carbon isoprenoid substrates isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In Archaea and Eukarya, these building blocks are synthesized via the mevalonate pathway. However, the genes required to convert mevalonate phosphate (MP) to IPP are missing in several species of Archaea. An enzyme with isopentenyl phosphate kinase (IPK) activity was recently discovered in Methanocaldococcus jannaschii (MJ), suggesting a departure from the classical sequence of converting MP to IPP. We have determined the high-resolution crystal structures of isopentenyl phosphate kinases in complex with both substrates and products from Thermoplasma acidophilum (THA), as well as the IPK from Methanothermobacter thermautotrophicus (MTH), by means of single-wavelength anomalous diffraction (SAD) and molecular replacement. A histidine residue (His50) in THA IPK makes a hydrogen bond with the terminal phosphates of IP and IPP, poising these molecules for phosphoryl transfer through an in-line geometry. Moreover, a lysine residue (Lys14) makes hydrogen bonds with nonbridging oxygen atoms at P(alpha) and P(gamma) and with the P(beta)-P(gamma) bridging oxygen atom in ATP. These interactions suggest a transition-state-stabilizing role for this residue. Lys14 is a part of a newly discovered "lysine triangle" catalytic motif in IPKs that also includes Lys5 and Lys205. Moreover, His50, Lys5, Lys14, and Lys205 are conserved in all IPKs and can therefore serve as fingerprints for identifying new homologues.
Collapse
Affiliation(s)
- Mark F. Mabanglo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - Mo Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.,Corresponding author:
| |
Collapse
|
20
|
Hein P, Stöckel J, Bennewitz S, Oelmüller R. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 69:517-28. [PMID: 19037728 DOI: 10.1007/s11103-008-9433-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/10/2008] [Indexed: 05/06/2023]
Abstract
Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.
Collapse
Affiliation(s)
- Paul Hein
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, Dornburgerstr. 159, 07743, Jena, Germany
| | | | | | | |
Collapse
|
21
|
Minh PNL, Devroede N, Massant J, Maes D, Charlier D. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 2009; 37:1463-76. [PMID: 19136463 PMCID: PMC2655662 DOI: 10.1093/nar/gkn1078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multifunctional Aminopeptidase A (PepA) from Escherichia coli is involved in the control of two distinct DNA transaction processes: transcriptional repression of the carAB operon, encoding carbamoyl phosphate synthase and site-specific resolution of ColE1-type plasmid multimers. Both processes require communication at a distance along a DNA molecule and PepA is the major structural component of the nucleoprotein complexes that underlie this communication. Atomic Force Microscopy was used to analyze the architecture of PepA·carAB and PepA·cer site complexes. Contour length measurements, bending angle analyses and volume determinations demonstrate that the carP1 operator is foreshortened by ∼235 bp through wrapping around one PepA hexamer. The highly deformed part of the operator extends from slightly upstream of the –35 hexamer of the carP1 promoter to just downstream of the IHF-binding site, and comprises the binding sites for the PurR and RutR transcriptional regulators. This extreme remodeling of the carP1 control region provides a straightforward explanation for the strict requirement of PepA in the establishment of pyrimidine and purine-specific repression of carAB transcription. We further provide a direct physical proof that PepA is able to synapse two cer sites in direct repeat in a large interwrapped nucleoprotein complex, likely comprising two PepA hexamers.
Collapse
Affiliation(s)
- Phu Nguyen Le Minh
- Erfelijkheidsleer en Microbiologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | |
Collapse
|
22
|
Marco-Marín C, Rubio V. The site for the allosteric activator GTP of Escherichia coli UMP kinase. FEBS Lett 2008; 583:185-9. [PMID: 19071117 DOI: 10.1016/j.febslet.2008.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/13/2008] [Accepted: 11/28/2008] [Indexed: 11/17/2022]
Abstract
UMP kinase (UMPK), a key bacterial pyrimidine nucleotide biosynthesis enzyme, is UTP-inhibited and GTP-activated. We delineate the GTP site of Escherichia coli UMPK by alanine mutagenesis of R92, H96, R103, W119 or R130, abolishing GTP activation; of S124 and R127, decreasing affinity for GTP; and of N111 and D115, with little detrimental effect. We exclude the correspondence with the modulatory ATP site of Bacillus anthracis UMPK, confirming the functionality of the GTP site found by Evrin. Mutants R92A, H96A and R127A are constitutively activated, suggesting key roles of these residues in allosteric signal transduction and of positive charge neutralization in triggering activation. No mutation hampered UTP inhibition, excluding overlapping of the UTP and GTP sites.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | | |
Collapse
|
23
|
Tu JL, Chin KH, Wang AHJ, Chou SH. Unique GTP-binding pocket and allostery of uridylate kinase from a gram-negative phytopathogenic bacterium. J Mol Biol 2008; 385:1113-26. [PMID: 19059268 DOI: 10.1016/j.jmb.2008.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/03/2008] [Accepted: 11/12/2008] [Indexed: 11/29/2022]
Abstract
Using X-ray diffraction methodology, we have successfully determined the tertiary structures of the apo- and GTP-bound forms of uridylate kinase (UMPK) from the gram-negative plant pathogen Xanthomonas campestris with crystals grown under a strong magnetic field. The flexible ATP- and UMP-binding loops are clearly shown under this situation. X. campestris UMPK contains a unique patch of noticeably positive nature from residue R100 to residue R127, allowing it to form a special GTP-binding pocket in the central hole of the structure. Although GTP is found to be situated in a pocket similar to that of the ATP-binding pocket in Bacillus anthracis UMPK, superimposition between the two pockets indicates that they adopt very distinct conformations. Detailed structural analyses of X. campestris UMPK between its apo- and GTP-bound forms reveal that binding of GTP does not induce global conformational change for X. campestris UMPK and only moderates movements for the ATP- and UMP-binding loops. Binding of GTP effector seems to "heat up" X. campestris UMPK, causing overall increases of B-factors for the protein, except for residues interacting with the guanine base. Moderate increase of enzyme activity, as is the case detected in other gram-negative bacteria, is observed for X. campestris UMPK in the presence of an allosteric GTP effector. Given that the GTP molecules bind in the central cavity of the hexamer and that each GTP molecule interacts with more than one monomer, it is likely that binding of GTP modifies the hexameric assembly to exert long-range allosteric control on X. campestris UMPK, similar to that suggested for the effect of ATP effector on B. anthracis UMPK.
Collapse
Affiliation(s)
- Jhe-Le Tu
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|
24
|
Meyer P, Evrin C, Briozzo P, Joly N, Bârzu O, Gilles AM. Structural and functional characterization of Escherichia coli UMP kinase in complex with its allosteric regulator GTP. J Biol Chem 2008; 283:36011-8. [PMID: 18945668 DOI: 10.1074/jbc.m802614200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial UMP kinases are essential enzymes involved in the multistep synthesis of UTP. They are hexamers regulated by GTP (allosteric activator) and UTP (inhibitor). We describe here the 2.8 angstroms crystal structure of Escherichia coli UMP kinase bound to GTP. The GTP-binding site, situated at 15 angstroms from the UMP-binding site and at 24 angstroms from the ATP-binding site, is delineated by two contiguous dimers. The overall structure, as compared with those bound to UMP, UDP, or UTP, shows a rearrangement of its quaternary structure: GTP induces an 11 degrees opening of the UMP kinase dimer, resulting in a tighter dimer-dimer interaction. A nucleotide-free UMP kinase dimer has an intermediate opening. Superposition of our structure with that of archaeal UMP kinases, which are also hexamers, shows that a loop appears to hamper any GTP binding in archeal enzymes. This would explain the absence of activating effect of GTP on this group of UMP kinases. Among GTP-binding residues, the Asp-93 is the most conserved in bacterial UMP kinases. In the previously published structures of E. coli UMP kinase, this residue was shown to be involved in hydrogen bonds between the subunits of a dimer. Its substitution by an alanine decreases the cooperativity for UTP binding and suppresses the reversal by GTP of UTP inhibition. This demonstrates that the previously described mutual exclusion of these two nucleotides is mediated by Asp-93.
Collapse
Affiliation(s)
- Philippe Meyer
- Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Pakhomova S, Bartlett SG, Augustus A, Kuzuyama T, Newcomer ME. Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis. J Biol Chem 2008; 283:28518-26. [PMID: 18701452 DOI: 10.1074/jbc.m803709200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fosfomycin resistance protein FomA inactivates fosfomycin by phosphorylation of the phosphonate group of the antibiotic in the presence of ATP and Mg(II). We report the crystal structure of FomA from the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis in complex with diphosphate and in ternary complex with the nonhydrolyzable ATP analog adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP), Mg(II), and fosfomycin, at 1.53 and 2.2 angstroms resolution, respectively. The polypeptide exhibits an open alphabetaalpha sandwich fold characteristic for the amino acid kinase family of enzymes. The diphosphate complex shows significant disorder in loops surrounding the active site. As a result, the nucleotide-binding site is wide open. Binding of the substrates is followed by the partial closure of the active site and ordering of the alpha2-helix. Structural comparison with N-acetyl-L-glutamate kinase shows several similarities in the site of phosphoryl transfer: 1) preservation of architecture of the catalytical amino acids of N-acetyl-L-glutamate kinase (Lys9, Lys216, and Asp150 in FomA); 2) good superposition of the phosphate acceptor groups of the substrates, and 3) good superposition of the diphosphate molecule with the beta- and gamma-phosphates of AMPPNP, suggesting that the reaction could proceed by an associative in-line mechanism. However, differences in conformations of the triphosphate moiety of AMPPNP molecules, the long distance (5.1 angstroms) between the phosphate acceptor and donor groups in FomA, and involvement of Lys18 instead of Lys9 in binding with the gamma-phosphate may indicate a different reaction mechanism. The present work identifies the active site residues of FomA responsible for substrate binding and specificity and proposes their roles in catalysis.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
26
|
Meier C, Carter LG, Sainsbury S, Mancini EJ, Owens RJ, Stuart DI, Esnouf RM. The crystal structure of UMP kinase from Bacillus anthracis (BA1797) reveals an allosteric nucleotide-binding site. J Mol Biol 2008; 381:1098-105. [PMID: 18625239 DOI: 10.1016/j.jmb.2008.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/12/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
Uridine monophosphate (UMP) kinase is a conserved enzyme that catalyzes the ATP-driven conversion of uridylate monophosphate into uridylate diphosphate, an essential metabolic step. In prokaryotes, the enzyme exists as a homohexamer that is regulated by various metabolites. Whereas the enzymatic mechanism of UMP kinase (UK) is well-characterized, the molecular basis of its regulation remains poorly understood. Here we report the crystal structure of UK from Bacillus anthracis (BA1797) in complex with ATP at 2.82 A resolution. It reveals that the cofactor, in addition to binding in the active sites, also interacts with separate binding pockets located near the center of the hexameric structure. The existence of such an allosteric binding site had been predicted by biochemical studies, but it was not identified in previous crystal structures of prokaryotic UKs. We show that this putative allosteric pocket is conserved across different bacterial species, suggesting that it is a feature common to bacterial UKs, and we present a structural model for the allosteric regulation of this enzyme.
Collapse
Affiliation(s)
- Christoph Meier
- Oxford Protein Production Facility, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Schemberg J, Schneider K, Fenske D, Müller A. Azotobacter vinelandii metal storage protein: "classical" inorganic chemistry involved in Mo/W uptake and release processes. Chembiochem 2008; 9:595-602. [PMID: 18273850 DOI: 10.1002/cbic.200700446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The release of Mo (as molybdate) from the Mo storage protein (MoSto), which is unique among all existing metalloproteins, is strongly influenced by temperature and pH value; other factors (incubation time, protein concentration, degree of purity) have minor, though significant effects. A detailed pH titration at 12 degrees C revealed that three different steps can be distinguished for the Mo-release process. A proportion of approximately 15% at pH 6.8-7.0, an additional 25% at pH 7.2-7.5 and ca. 50% (up to 90% in total) at pH 7.6-7.8. This triphasic process supports the assumption of the presence of different types of molybdenum-oxide-based clusters that exhibit different pH lability. The complete release of Mo was achieved by increasing the temperature to 30 degrees C and the pH value to >7.5. The Mo-release process does not require ATP; on the contrary, ATP prevents, or at least reduces the degree of metal release, depending on the concentration of the nucleotide. From this point of view, the intracellular ATP concentration is suggested to play-in addition to the pH value-an indirect but crucial role in controlling the extent of Mo release in the cell. The binding of molybdenum to the apoprotein (reconstitution process) was confirmed to be directly dependent on the presence of a nucleotide (preferably ATP) and MgCl2. Maximal reincorporation of Mo required 1 mM ATP, which could partly be replaced by GTP. When the storage protein was purified in the presence of ATP and MgCl2 (1 mM each), the final preparation contained 80 Mo atoms per protein molecule. Maximal metal loading (110-115 atoms/MoSto molecule) was only achieved, if Mo was first completely released from the native protein and subsequently (re-) bound under optimal reconstitution conditions: 1 h incubation at pH 6.5 and 12 degrees C in the presence of ATP, MgCl2 and excess molybdate. A corresponding tungsten-containing storage protein ("WSto") could not only be synthesized in vivo by growing cells, but could also be constructed in vitro by a metalate-ion exchange procedure by using the isolated MoSto protein. The high W content of the isolated cell-made WSto (approximately 110 atoms/protein molecule) and the relatively low amount of tungstate that was released from the protein under optimal "release conditions", demonstrates that the W-oxide-based clusters are more stable inside the protein cavity than the Mo-oxide analogues, as expected from the corresponding findings in polyoxometalate chemistry. The optimized isolation of the W-loaded protein form allowed us to get single crystals, and to determine the crystal X-ray structure. This proved that the protein contains remarkably different types of polyoxotungstates, the formation of which is templated in an unprecedented process by the different protein pockets. (Angew. Chem. Int. Ed. 2007, 46, 2408-2413).
Collapse
Affiliation(s)
- Jörg Schemberg
- Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
28
|
Shi D, Sagar V, Jin Z, Yu X, Caldovic L, Morizono H, Allewell NM, Tuchman M. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation. J Biol Chem 2008; 283:7176-84. [PMID: 18184660 PMCID: PMC4099063 DOI: 10.1074/jbc.m707678200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, The George Washington University, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Egeblad-Welin L, Welin M, Wang L, Eriksson S. Structural and functional investigations of Ureaplasma parvum UMP kinase--a potential antibacterial drug target. FEBS J 2007; 274:6403-14. [PMID: 18021254 DOI: 10.1111/j.1742-4658.2007.06157.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of uridine monophosphate kinase (UMP kinase, UMPK) from the opportunistic pathogen Ureaplasma parvum was determined and showed similar three-dimensional fold as other bacterial and archaeal UMPKs that all belong to the amino acid kinase family. Recombinant UpUMPK exhibited Michaelis-Menten kinetics with UMP, with K(m) and V(max) values of 214 +/- 4 microm and 262 +/- 24 micromol.min(-1).mg(-1), respectively, but with ATP as variable substrate the kinetic analysis showed positive cooperativity, with an n value of 1.5 +/- 0.1. The end-product UTP was a competitive inhibitor against UMP and a noncompetitive inhibitor towards ATP. Unlike UMPKs from other bacteria, which are activated by GTP, GTP had no detectable effect on UpUMPK activity. An attempt to create a GTP-activated enzyme was made using site-directed mutagenesis. The mutant enzyme F133N (F133 corresponds to the residue in Escherichia coli that is involved in GTP activation), with F133A as a control, were expressed, purified and characterized. Both enzymes exhibited negative cooperativity with UMP, and GTP had no effect on enzyme activity, demonstrating that F133 is involved in subunit interactions but apparently not in GTP activation. The physiological role of UpUMPK in bacterial nucleic acid synthesis and its potential as target for development of antimicrobial agents are discussed.
Collapse
Affiliation(s)
- Louise Egeblad-Welin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Sweden
| | | | | | | |
Collapse
|
30
|
Schemberg J, Schneider K, Demmer U, Warkentin E, Müller A, Ermler U. Towards biological supramolecular chemistry: a variety of pocket-templated, individual metal oxide cluster nucleations in the cavity of a mo/w-storage protein. Angew Chem Int Ed Engl 2007; 46:2408-13. [PMID: 17304608 DOI: 10.1002/anie.200604858] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jörg Schemberg
- Fakultät für Chemie der Universität, Postfach 100131, 33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Marco-Marín C, Gil-Ortiz F, Pérez-Arellano I, Cervera J, Fita I, Rubio V. A Novel Two-domain Architecture Within the Amino Acid Kinase Enzyme Family Revealed by the Crystal Structure of Escherichia coli Glutamate 5-kinase. J Mol Biol 2007; 367:1431-46. [PMID: 17321544 DOI: 10.1016/j.jmb.2007.01.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/25/2007] [Accepted: 01/27/2007] [Indexed: 11/17/2022]
Abstract
Glutamate 5-kinase (G5K) makes the highly unstable product glutamyl 5-phosphate (G5P) in the initial, controlling step of proline/ornithine synthesis, being feedback-inhibited by proline or ornithine, and causing, when defective, clinical hyperammonaemia. We determined two crystal structures of G5K from Escherichia coli, at 2.9 A and 2.5 A resolution, complexed with glutamate and sulphate, or with G5P, sulphate and the proline analogue 5-oxoproline. E. coli G5K presents a novel tetrameric (dimer of dimers) architecture. Each subunit contains a 257 residue AAK domain, typical of acylphosphate-forming enzymes, with characteristic alpha(3)beta(8)alpha(4) sandwich topology. This domain is responsible for catalysis and proline inhibition, and has a crater on the beta sheet C-edge that hosts the active centre and bound 5-oxoproline. Each subunit contains a 93 residue C-terminal PUA domain, typical of RNA-modifying enzymes, which presents the characteristic beta(5)beta(4) sandwich fold and three alpha helices. The AAK and PUA domains of one subunit associate non-canonically in the dimer with the same domains of the other subunit, leaving a negatively charged hole between them that hosts two Mg ions in one crystal, in line with the G5K requirement for free Mg. The tetramer, formed by two dimers interacting exclusively through their AAK domains, is flat and elongated, and has in each face, pericentrically, two exposed active centres in alternate subunits. This would permit the close apposition of two active centres of bacterial glutamate-5-phosphate reductase (the next enzyme in the proline/ornithine-synthesising route), supporting the postulated channelling of G5P. The structures clarify substrate binding and catalysis, justify the high glutamate specificity, explain the effects of known point mutations, and support the binding of proline near glutamate. Proline binding may trigger the movement of a loop that encircles glutamate, and which participates in a hydrogen bond network connecting active centres, which is possibly involved in the cooperativity for glutamate.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC) and Center for Biomedical Research on Rare Diseases (CIBERER-ISCIII), Jaume Roig 11, Valencia-46010, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Schemberg J, Schneider K, Demmer U, Warkentin E, Müller A, Ermler U. Towards Biological Supramolecular Chemistry: A Variety of Pocket-Templated, Individual Metal Oxide Cluster Nucleations in the Cavity of a Mo/W-Storage Protein. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604858] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Lee SE, Kim SY, Kim CM, Kim MK, Kim YR, Jeong K, Ryu HJ, Lee YS, Chung SS, Choy HE, Rhee JH. The pyrH gene of Vibrio vulnificus is an essential in vivo survival factor. Infect Immun 2007; 75:2795-801. [PMID: 17371864 PMCID: PMC1932866 DOI: 10.1128/iai.01499-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have suggested an important role of the pyrH gene during the infectious process of Vibrio vulnificus. Previously, we have identified 12 genes expressed preferentially during human infections by using in vivo-induced antigen technology. Among the in vivo-expressed genes, pyrH encodes UMP kinase catalyzing UMP phosphorylation. Introduction of a deletion mutation to the pyrH gene was lethal to V. vulnificus, and an insertional mutant showed a high frequency of curing. We constructed a site-directed mutant strain (R62H/D77N) on Arg-62 and Asp-77, both predicted to be involved in UMP binding, and characterized the R62H/D77N strain compared with the previously reported insertional mutant. We further investigated the essential role of the pyrH gene in the establishment of infection using the R62H/D77N strain. Cytotoxicity was decreased in the R62H/D77N strain, and the defect was restored by an in trans complementation. The intraperitoneal 50% lethal dose of the R62H/D77N strain increased by 26- and 238,000-fold in normal and iron-overloaded mice, respectively. The growth of the R62H/D77N strain in 50% HeLa cell lysate, 100% human ascitic fluid, and 50% human serum was significantly retarded compared to that of the isogenic wild-type strain. The R62H/D77N mutant also had a critical defect in the ability to survive and replicate even in iron-overloaded mice. These results demonstrate that pyrH is essential for the in vivo survival and growth of V. vulnificus and should be an attractive new target for the development of antibacterial drugs and replication-controllable live attenuated vaccines.
Collapse
Affiliation(s)
- Shee Eun Lee
- Clinical Vaccine R&D Center and Department of Biomedical Sciences and Microbiology, Chonnam National University Medical School, 5 Hak-Dong, Dong-Ku, Gwangju 501-746, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jensen KS, Johansson E, Jensen KF. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation. Biochemistry 2007; 46:2745-57. [PMID: 17297917 DOI: 10.1021/bi0618159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pyrH gene encoding uridylate kinase (UMPK) from the extreme thermoacidophilic archaeon Sulfolobus solfataricus was cloned and expressed in Escherichia coli, and the enzyme (SsUMPK) was purified. Size exclusion chromatography and sedimentation experiments showed that the oligomeric state in solution is hexameric. SsUMPK shows maximum catalytic rate at pH 7.0, and variation of pH only influences the turnover number. Catalysis proceeds by a sequential reaction mechanism of random order and depends on a divalent cation. The enzyme exhibits high substrate specificity toward UMP and ATP and is inhibited by UTP, whereas CTP and GTP do not influence activity. UTP binds to the enzyme with a sigmoid binding curve, whereas GTP does not bind. The crystal structure of SsUMPK was determined for three different complexes, a ternary complex with UMP and the nonhydrolyzable ATP analogue beta,gamma-methylene-ATP, a complex with UMP, and a complex with UTP to 2.1, 2.2, and 2.8 A resolution, respectively. One UTP molecule was bound in the acceptor site per subunit, leading to the exclusion of both substrates from the active site. In all cases, SsUMPK crystallized as a hexamer with the main fold shared with other prokaryotic UMPKs. Similar to UMPK from Pyrococcus furiosus, SsUMPK has an active site enclosing loop. This loop was only ordered in one subunit in the ternary complex, which also contained an unusual arrangement of ligands (possibly a dinucleotide) in the active site and an altered orientation of the catalytic residue Arg48 relative to the other five subunits of the hexamer.
Collapse
Affiliation(s)
- Kristine Steen Jensen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
35
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Slavova-Azmanova N, Najdenski H. Bacterial Uridine Monophosphate Kinases—Biochemical Properties and Regulatory Mechanisms. BIOTECHNOL BIOTEC EQ 2007. [DOI: 10.1080/13102818.2007.10817405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
37
|
Pérez-Arellano I, Rubio V, Cervera J. Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett 2006; 580:6247-53. [PMID: 17069808 DOI: 10.1016/j.febslet.2006.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/10/2006] [Accepted: 10/12/2006] [Indexed: 11/24/2022]
Abstract
Glutamate-5-kinase (G5K) catalyzes the controlling first step of proline biosynthesis. Substrate binding, catalysis and feed-back inhibition by proline are functions of the N-terminal approximately 260-residue domain of G5K. We study here the impact on these functions of 14 site-directed mutations affecting 9 residues of Escherichia coli G5K, chosen on the basis of the structure of the bisubstrate complex of the homologous enzyme acetylglutamate kinase (NAGK). The results support the predicted roles of K10, K217 and T169 in catalysis and ATP binding and of D150 in orienting the catalytic lysines. They support the implication of D148 and D150 in glutamate binding and of D148 and N149 in proline binding. Proline increases the S(0.5) for glutamate and appears to bind at a site overlapping with the site for glutamate. We conclude that G5K and NAGK closely resemble each other concerning substrate binding and catalysis, but that they have different mechanisms of feed-back control.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, Valencia 46013, Spain
| | | | | |
Collapse
|
38
|
Dhaliwal B, Ren J, Lockyer M, Charles I, Hawkins AR, Stammers DK. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:710-5. [PMID: 16880539 PMCID: PMC2242935 DOI: 10.1107/s174430910602447x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/26/2006] [Indexed: 12/02/2022]
Abstract
The crystal structure of Staphylococcus aureus cytidine monophosphate kinase (CMK) in complex with cytidine 5'-monophosphate (CMP) has been determined at 2.3 angstroms resolution. The active site reveals novel features when compared with two orthologues of known structure. Compared with the Streptococcus pneumoniae CMK solution structure of the enzyme alone, S. aureus CMK adopts a more closed conformation, with the NMP-binding domain rotating by approximately 16 degrees towards the central pocket of the molecule, thereby assembling the active site. Comparing Escherichia coli and S. aureus CMK-CMP complex structures reveals differences within the active site, including a previously unreported indirect interaction of CMP with Asp33, the replacement of a serine residue involved in the binding of CDP by Ala12 in S. aureus CMK and an additional sulfate ion in the E. coli CMK active site. The detailed understanding of the stereochemistry of CMP binding to CMK will assist in the design of novel inhibitors of the enzyme. Inhibitors are required to treat the widespread hospital infection methicillin-resistant S. aureus (MRSA), currently a major public health concern.
Collapse
Affiliation(s)
- Balvinder Dhaliwal
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Michael Lockyer
- Arrow Therapeutics, Britannia House, 7 Trinity Street, London SE1 1DA, England
| | - Ian Charles
- Arrow Therapeutics, Britannia House, 7 Trinity Street, London SE1 1DA, England
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, England
| | - David K. Stammers
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
39
|
Devroede N, Huysveld N, Charlier D. Mutational analysis of intervening sequences connecting the binding sites for integration host factor, PepA, PurR, and RNA polymerase in the control region of the Escherichia coli carAB operon, encoding carbamoylphosphate synthase. J Bacteriol 2006; 188:3236-45. [PMID: 16621816 PMCID: PMC1447446 DOI: 10.1128/jb.188.9.3236-3245.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 02/20/2006] [Indexed: 11/20/2022] Open
Abstract
Transcription of the carAB operon encoding the unique carbamoylphosphate synthase of Escherichia coli reflects the dual function of carbamoylphosphate in the biosynthesis of arginine and pyrimidine nucleotides. The tandem pair of promoters is regulated by various mechanisms depending on the needs of both pathways and the maintenance of a pyrimidine/purine nucleotide balance. Here we focus on the linker regions that impose the distribution of target sites for DNA-binding proteins involved in pyrimidine- and purine-specific repression of the upstream promoter P1. We introduced deletions and insertions, and combinations thereof, in four linkers connecting the binding sites for integration host factor (IHF), PepA, PurR, and RNA polymerase and studied the importance of phasing and spacing of the targets and the importance of the nucleotide sequence of the linkers. The two PepA binding sites must be properly aligned and separated with respect to each other and to the promoter for both pyrimidine- and purine-mediated repression. Similarly, the phasing and spacing of the IHF and PEPA2 sites are strictly constrained but only for pyrimidine-specific repression. The IHF target is even dispensable for purine-mediated regulation. Thus, a correct localization of PepA within the higher-order nucleoprotein complex is a prerequisite for the establishment of pyrimidine-mediated repression and for the coupling between purine- and pyrimidine-dependent regulation. Our data also suggest the existence of a novel cis-acting pyrimidine-specific regulatory target located around position -60. Finally, the analysis of a P1 derivative devoid of its control region has led to a reappraisal of the effect of excess adenine on P1 and has revealed that P1 has no need for a UP element.
Collapse
Affiliation(s)
- Neel Devroede
- Erfelijkheidsleer en Microbiologie (MICR), Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
40
|
Hible G, Christova P, Renault L, Seclaman E, Thompson A, Girard E, Munier-Lehmann H, Cherfils J. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Proteins 2006; 62:489-500. [PMID: 16288457 DOI: 10.1002/prot.20662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bacterial nucleoside monophosphate (NMP) kinases, which convert NMPs to nucleoside diphosphates (NDP), are investigated as potential antibacterial targets against pathogenic bacteria. Herein, we report the biochemical and structural characterization of GMP kinase from Mycobacterium tuberculosis (GMPKMt). GMPKMt is a monomer with an unusual specificity for ATP as a phosphate donor, a lower catalytic efficiency compared with eukaryotic GMPKs, and it carries two redox-sensitive cysteines in the central CORE domain. These properties were analyzed in the light of the high-resolution crystal structures of unbound, GMP-bound, and GDP-bound GMPKMt. The latter structure was obtained in both an oxidized form, in which the cysteines form a disulfide bridge, and a reduced form which is expected to correspond to the physiological enzyme. GMPKMt has a modular domain structure as most NMP kinases. However, it departs from eukaryotic GMPKs by the unusual conformation of its CORE domain, and by its partially open LID and GMP-binding domains which are the same in the apo-, GMP-bound, and GDP-bound forms. GMPKMt also features a unique GMP binding site which is less close-packed than that of mammalian GMPKs, and in which the replacement of a critical tyrosine by a serine removes a catalytic interaction. In contrast, the specificity of GMPKMt for ATP may be a general feature of GMPKs because of an invariant structural motif that recognizes the adenine base. Altogether, differences in domain dynamics and GMP binding between GMPKMt and mammalian GMPKs should reveal clues for the design of GMPKMt-specific inhibitors.
Collapse
Affiliation(s)
- Guillaume Hible
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 2005; 356:695-713. [PMID: 16376937 DOI: 10.1016/j.jmb.2005.11.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 11/23/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022]
Abstract
N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings on NAGK shed light on the structure, function and arginine inhibition of this synthase, for which a hexameric model is constructed.
Collapse
|
42
|
Hible G, Renault L, Schaeffer F, Christova P, Zoe Radulescu A, Evrin C, Gilles AM, Cherfils J. Calorimetric and crystallographic analysis of the oligomeric structure of Escherichia coli GMP kinase. J Mol Biol 2005; 352:1044-59. [PMID: 16140325 DOI: 10.1016/j.jmb.2005.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/11/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Guanosine monophosphate kinases (GMPKs), which catalyze the phosphorylation of GMP and dGMP to their diphosphate form, have been characterized as monomeric enzymes in eukaryotes and prokaryotes. Here, we report that GMPK from Escherichia coli (ecGMPK) assembles in solution and in the crystal as several different oligomers. Thermodynamic analysis of ecGMPK using differential scanning calorimetry shows that the enzyme is in equilibrium between a dimer and higher order oligomers, whose relative amounts depend on protein concentration, ionic strength, and the presence of ATP. Crystallographic structures of ecGMPK in the apo, GMP and GDP-bound forms were solved at 3.2A, 2.9A and 2.4A resolution, respectively. ecGMPK forms a hexamer with D3 symmetry in all crystal forms, in which the two nucleotide-binding domains are able to undergo closure comparable to that of monomeric GMPKs. The 2-fold and 3-fold interfaces involve a 20-residue C-terminal extension and a sequence signature, respectively, that are missing from monomeric eukaryotic GMPKs, explaining why ecGMPK forms oligomers. These signatures are found in GMPKs from proteobacteria, some of which are human pathogens. GMPKs from these bacteria are thus likely to form the same quaternary structures. The shift of the thermodynamic equilibrium towards the dimer at low ecGMPK concentration together with the observation that inter-subunit interactions partially occlude the ATP-binding site in the hexameric structure suggest that the dimer may be the active species at physiological enzyme concentration.
Collapse
Affiliation(s)
- Guillaume Hible
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Marco-Marín C, Gil-Ortiz F, Rubio V. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 2005; 352:438-54. [PMID: 16095620 DOI: 10.1016/j.jmb.2005.07.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 11/21/2022]
Abstract
UMP kinase (UMPK), the enzyme responsible for microbial UMP phosphorylation, plays a key role in pyrimidine nucleotide biosynthesis, regulating this process via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). We present crystal structures of Pyrococcus furiosus UMPK, free or complexed with AMPPNP or AMPPNP and UMP, at 2.4 A, 3 A and 2.55 A resolution, respectively, providing a true snapshot of the catalytically competent bisubstrate complex. The structure proves that UMPK does not resemble other nucleoside monophosphate kinases, including the UMP/CMP kinase found in animals, and thus UMPK may be a potential antimicrobial target. This enzyme has a homohexameric architecture centred around a hollow nucleus, and is organized as a trimer of dimers. The UMPK polypeptide exhibits the amino acid kinase family (AAKF) fold that has been reported in carbamate kinase and acetylglutamate kinase. Comparison with acetylglutamate kinase reveals that the substrates bind within each subunit at equivalent, adequately adapted sites. The UMPK structure contains two bound Mg ions, of which one helps stabilize the transition state, thus having the same catalytic role as one lysine residue found in acetylglutamate kinase, which is missing from P.furiosus UMPK. Relative to carbamate kinase and acetylglutamate kinase, UMPK presents a radically different dimer architecture, lacking the characteristic 16-stranded beta-sheet backbone that was considered a signature of AAKF enzymes. Its hexameric architecture, also a novel trait, results from equatorial contacts between the A and B subunits of adjacent dimers combined with polar contacts between A or B subunits, and may be required for the UMPK regulatory functions, such as gene regulation, proposed here to be mediated by hexamer-hexamer interactions with the DNA-binding protein PepA.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11,Valencia 46010, Spain
| | | | | |
Collapse
|