1
|
Nam D, Tinoco A, Shen Z, Adukure RD, Sreenilayam G, Khare SD, Fasan R. Enantioselective Synthesis of α-Trifluoromethyl Amines via Biocatalytic N-H Bond Insertion with Acceptor-Acceptor Carbene Donors. J Am Chem Soc 2022; 144:2590-2602. [PMID: 35107997 PMCID: PMC8855427 DOI: 10.1021/jacs.1c10750] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The biocatalytic
toolbox has recently been expanded to include
enzyme-catalyzed carbene transfer reactions not occurring in Nature.
Herein, we report the development of a biocatalytic strategy for the
synthesis of enantioenriched α-trifluoromethyl amines through
an asymmetric N–H carbene insertion reaction catalyzed by engineered
variants of cytochrome c552 from Hydrogenobacter thermophilus. Using a combination of protein and substrate engineering, this
metalloprotein scaffold was redesigned to enable the synthesis of
chiral α-trifluoromethyl amino esters with up to >99% yield
and 95:5 er using benzyl 2-diazotrifluoropropanoate as the carbene
donor. When the diazo reagent was varied, the enantioselectivity of
the enzyme could be inverted to produce the opposite enantiomers of
these products with up to 99.5:0.5 er. This methodology is applicable
to a broad range of aryl amine substrates, and it can be leveraged
to obtain chemoenzymatic access to enantioenriched β-trifluoromethyl-β-amino
alcohols and halides. Computational analyses provide insights into
the interplay of protein- and reagent-mediated control on the enantioselectivity
of this reaction. This work introduces the first example of a biocatalytic
N–H carbenoid insertion with an acceptor–acceptor carbene
donor, and it offers a biocatalytic solution for the enantioselective
synthesis of α-trifluoromethylated amines as valuable synthons
for medicinal chemistry and the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Antonio Tinoco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhuofan Shen
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Ronald D Adukure
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Hirota S, Mashima T, Kobayashi N. Use of 3D domain swapping in constructing supramolecular metalloproteins. Chem Commun (Camb) 2021; 57:12074-12086. [PMID: 34714300 DOI: 10.1039/d1cc04608j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecules, which are formed by assembling multiple molecules by noncovalent intermolecular interactions instead of covalent bonds, often show additional properties that cannot be exhibited by a single molecule. Supramolecules have evolved into molecular machines in the field of chemistry, and various supramolecular proteins are responsible for life activities in the field of biology. The design and creation of supramolecular proteins will lead to development of new enzymes, functional biomaterials, drug delivery systems, etc.; thus, the number of studies on the regulation of supramolecular proteins is increasing year by year. Several methods, including disulfide bond, metal coordination, and surface-surface interaction, have been utilized to construct supramolecular proteins. In nature, proteins have been shown to form oligomers by 3D domain swapping (3D-DS), a phenomenon in which a structural region is exchanged between molecules of the same protein. We have been studying the mechanism of 3D-DS and utilizing 3D-DS to construct supramolecular metalloproteins. Cytochrome c forms cyclic oligomers and polymers by 3D-DS, whereas other metalloproteins, such as various c-type cytochromes and azurin form small oligomers and myoglobin forms a compact dimer. We have also utilized 3D-DS to construct heterodimers with different active sites, a protein nanocage encapsulating a Zn-SO4 cluster in the internal cavity, and a tetrahedron with a designed building block protein. Protein oligomer formation was controlled for the 3D-DS dimer of a dimer-monomer transition protein. This article reviews our research on supramolecular metalloproteins.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
3
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
4
|
Insight into the Folding and Dimerization Mechanisms of the N-Terminal Domain from Human TDP-43. Int J Mol Sci 2020; 21:ijms21176259. [PMID: 32872449 PMCID: PMC7504384 DOI: 10.3390/ijms21176259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.
Collapse
|
5
|
Visconti L, Malagrinò F, Gianni S, Toto A. Structural characterization of an on-pathway intermediate and transition state in the folding of the N-terminal SH2 domain from SHP2. FEBS J 2019; 286:4769-4777. [PMID: 31287606 DOI: 10.1111/febs.14990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022]
Abstract
Src Homology 2 (SH2) domains are a class of protein domains that present a conserved three-dimensional structure and possess a crucial role in mediating protein-protein interactions. Despite their importance and abundance in the proteome, knowledge about the folding properties of SH2 domain is limited. Here we present an extensive mutational analysis (Φ value analysis) of the folding pathway of the N-SH2 domain of the Src homology region 2 domain-containing phosphatase-2 (SHP2) protein, a 104 residues domain that presents the classical SH2 domain fold (two α-helices flanking a central β-sheet composed of 3-5 antiparallel β-strands), with a fundamental role in mediating the interaction of SHP2 with its substrates and triggering key metabolic pathways in the cell. By analysing folding kinetic data we demonstrated that the folding pathway of N-SH2 presents an obligatory on-pathway intermediate that accumulates during the folding reaction. The production of 24 conservative site-directed variants allowed us to perform a Φ value analysis, by which we could fully characterize the intermediate and the transition state native-like interactions, providing a detailed quantitative analysis of the folding pathway of N-SH2. Results highlight the presence of a hydrophobic nucleus that stabilizes the intermediate, leading to a higher degree of native-like interactions in the transition state. Data are discussed and compared with previous works on SH2 domains.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| |
Collapse
|
6
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
7
|
Influence of heme c attachment on heme conformation and potential. J Biol Inorg Chem 2018; 23:1073-1083. [PMID: 30143872 DOI: 10.1007/s00775-018-1603-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.
Collapse
|
8
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
9
|
Zhang M, Nakanishi T, Yamanaka M, Nagao S, Yanagisawa S, Shomura Y, Shibata N, Ogura T, Higuchi Y, Hirota S. Rational Design of Domain-Swapping-Based c
-Type Cytochrome Heterodimers by Using Chimeric Proteins. Chembiochem 2017; 18:1712-1715. [DOI: 10.1002/cbic.201700219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Mohan Zhang
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsukasa Nakanishi
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Yasuhito Shomura
- Graduate School of Science and Engineering; Ibaraki University; 4-12-1 Nakanarusawa Hitachi Ibaraki 316-8511 Japan
| | - Naoki Shibata
- Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Takashi Ogura
- Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
10
|
Petrosino M, Bonetti D, Pasquo A, Lori L, Chiaraluce R, Consalvi V, Travaglini-Allocatelli C. Unveiling the folding mechanism of the Bromodomains. Biochem Biophys Rep 2017; 11:99-104. [PMID: 28955774 PMCID: PMC5614698 DOI: 10.1016/j.bbrep.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Bromodomains (BRDs) are small protein domains often present in large multidomain proteins involved in transcriptional regulation in eukaryotic cells. They currently represent valuable targets for the development of inhibitors of aberrant transcriptional processes in a variety of human diseases. Here we report urea-induced equilibrium unfolding experiments monitored by circular dichroism (CD) and fluorescence on two structurally similar BRDs: BRD2(2) and BRD4(1), showing that BRD4(1) is more stable than BRD2(2). Moreover, we report a description of their kinetic folding mechanism, as obtained by careful analysis of stopped-flow and temperature-jump data. The presence of a high energy intermediate for both proteins, suggested by the non-linear dependence of the folding rate on denaturant concentration in the millisec time regime, has been experimentally observed by temperature-jump experiments. Quantitative global analysis of all the rate constants obtained over a wide range of urea concentrations, allowed us to propose a common, three-state, folding mechanism for these two BRDs. Interestingly, the intermediate of BRD4(1) appears to be more stable and structurally native-like than that populated by BRD2(2). Our results underscore the role played by structural topology and sequence in determining and tuning the folding mechanism. A three-state mechanism for the folding of two representative Bromodomains is proposed. Global analyses of BRD2(2) and BRD4(1) folding kinetics highlights the presence of an on-pathway, folding intermediate. The folding intermediate of BRD4(1) is proposed to be more native-like than that of BRD2(2).
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Daniela Bonetti
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Laura Lori
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- Corresponding author.
| |
Collapse
|
11
|
Bren KL. Going with the Electron Flow: Heme Electronic Structure and Electron Transfer in Cytochrome
c. Isr J Chem 2016. [DOI: 10.1002/ijch.201600021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kara L. Bren
- Department of Chemistry University of Rochester Rochester NY 14627-0216 USA
| |
Collapse
|
12
|
Bonetti D, Camilloni C, Visconti L, Longhi S, Brunori M, Vendruscolo M, Gianni S. Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain. J Biol Chem 2016; 291:10886-92. [PMID: 27002146 DOI: 10.1074/jbc.m116.721126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution.
Collapse
Affiliation(s)
- Daniela Bonetti
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Lorenzo Visconti
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, UMR 7257, 13288 Marseille, France, and CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Maurizio Brunori
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Stefano Gianni
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom,
| |
Collapse
|
13
|
Kandemir B, Chakraborty S, Guo Y, Bren KL. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts. Inorg Chem 2015; 55:467-77. [DOI: 10.1021/acs.inorgchem.5b02054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Banu Kandemir
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Saikat Chakraborty
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Yixing Guo
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| |
Collapse
|
14
|
Tozawa K, Ferguson SJ, Redfield C, Smith LJ. Comparison of the backbone dynamics of wild-type Hydrogenobacter thermophilus cytochrome c(552) and its b-type variant. JOURNAL OF BIOMOLECULAR NMR 2015; 62:221-231. [PMID: 25953310 PMCID: PMC4451467 DOI: 10.1007/s10858-015-9938-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Cytochrome c552 from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156-5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, (15)N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high (15)N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18-21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.
Collapse
Affiliation(s)
- Kaeko Tozawa
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Stuart J. Ferguson
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Christina Redfield
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lorna J. Smith
- />Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR UK
| |
Collapse
|
15
|
Nagao S, Ueda M, Osuka H, Komori H, Kamikubo H, Kataoka M, Higuchi Y, Hirota S. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins. PLoS One 2015; 10:e0123653. [PMID: 25853415 PMCID: PMC4390240 DOI: 10.1371/journal.pone.0123653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
Cytochrome c (cyt c) family proteins, such as horse cyt c, Pseudomonas aeruginosa cytochrome c551 (PA cyt c551), and Hydrogenobacter thermophilus cytochrome c552 (HT cyt c552), have been used as model proteins to study the relationship between the protein structure and folding process. We have shown in the past that horse cyt c forms oligomers by domain swapping its C-terminal helix, perturbing the Met–heme coordination significantly compared to the monomer. HT cyt c552 forms dimers by domain swapping the region containing the N-terminal α-helix and heme, where the heme axial His and Met ligands belong to different protomers. Herein, we show that PA cyt c551 also forms domain-swapped dimers by swapping the region containing the N-terminal α-helix and heme. The secondary structures of the M61A mutant of PA cyt c551 were perturbed slightly and its oligomer formation ability decreased compared to that of the wild-type protein, showing that the stability of the protein secondary structures is important for domain swapping. The hinge loop of domain swapping for cyt c family proteins corresponded to the unstable region specified by hydrogen exchange NMR measurements for the monomer, although the swapping region differed among proteins. These results show that the unstable loop region has a tendency to become a hinge loop in domain-swapped proteins.
Collapse
Affiliation(s)
- Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Mariko Ueda
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Hisao Osuka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678–1297, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1–1 Saiwai-cho, Takamatsu, Kagawa 760–8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679–5148, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678–1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679–5148, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
- * E-mail:
| |
Collapse
|
16
|
Galinato MGI, Bowman SEJ, Kleingardner JG, Martin S, Zhao J, Sturhahn W, Alp EE, Bren KL, Lehnert N. Effects of protein structure on iron-polypeptide vibrational dynamic coupling in cytochrome c. Biochemistry 2015; 54:1064-76. [PMID: 25531247 PMCID: PMC4318584 DOI: 10.1021/bi501430z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c (Cyt c) has a heme covalently bound to the polypeptide via a Cys-X-X-Cys-His (CXXCH) linker that is located in the interface region for protein-protein interactions. To determine whether the polypeptide matrix influences iron vibrational dynamics, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on (57)Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c-552, and variants M13V, M13V/K22M, and A7F, which have structural modifications that alter the composition or environment of the CXXCH pentapeptide loop. Simulations of the NRVS data indicate that the 150-325 cm(-1) region is dominated by NHis-Fe-SMet axial ligand and polypeptide motions, while the 325-400 cm(-1) region shows dominant contributions from ν(Fe-NPyr) (Pyr = pyrrole) and other heme-based modes. Diagnostic spectral signatures that directly relate to structural features of the heme active site are identified using a quantum chemistry-centered normal coordinate analysis (QCC-NCA). In particular, spectral features that directly correlate with CXXCH loop stiffness, the strength of the Fe-His interaction, and the degree of heme distortion are identified. Cumulative results from our investigation suggest that compared to the wild type (wt), variants M13V and M13V/K22M have a more rigid CXXCH pentapeptide segment, a stronger Fe-NHis interaction, and a more ruffled heme. Conversely, the A7F variant has a more planar heme and a weaker Fe-NHis bond. These results are correlated to the observed changes in reduction potential between wt protein and the variants studied here. Implications of these results for Cyt c biogenesis and electron transfer are also discussed.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Protein Sci 2015; 24:366-75. [PMID: 25586341 DOI: 10.1002/pro.2627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/20/2023]
Abstract
Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555 ) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310 -α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310 -α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53-Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2-11.0. CN(-) and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN(-) and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2-11.0), respectively, in a wide range of temperature (25-85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | |
Collapse
|
18
|
Ren C, Nagao S, Yamanaka M, Komori H, Shomura Y, Higuchi Y, Hirota S. Oligomerization enhancement and two domain swapping mode detection for thermostable cytochrome c552via the elongation of the major hinge loop. MOLECULAR BIOSYSTEMS 2015; 11:3218-21. [DOI: 10.1039/c5mb00545k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-order oligomers increased whereas N-terminal domain swapping and C-terminal domain swapping were elucidated by the insertion of Gly residues at the major hinge loop of cytochrome c552.
Collapse
Affiliation(s)
- Chunguang Ren
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | - Satoshi Nagao
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | | | - Yasuhito Shomura
- Department of Life Science
- Graduate School of Life Science
- University of Hyogo
- Hyogo 678-1297
- Japan
| | - Yoshiki Higuchi
- Department of Life Science
- Graduate School of Life Science
- University of Hyogo
- Hyogo 678-1297
- Japan
| | - Shun Hirota
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|
19
|
Kleingardner JG, Bowman SEJ, Bren KL. The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR. Inorg Chem 2013; 52:12933-46. [PMID: 24187968 DOI: 10.1021/ic401250d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa , NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on the electronic structure. Through the use of mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S = ½) ferric proteins has confirmed and refined the developing understanding of how ruffling influences the spin distribution on heme. The chemical shifts of the core heme carbons were obtained through site-specific labeling of the heme via biosynthetic incorporation of (13)C-labeled 5-aminolevulinic acid derivatives. Analysis of the contact shifts of these core heme carbons allowed Fermi contact spin densities to be estimated and changes upon ruffling to be evaluated. The results allow a deconvolution of the contributions to heme hyperfine shifts and a test of the influence of heme ruffling on the electronic structure and hyperfine shifts. The data indicate that as heme ruffling increases, the spin densities on the β-pyrrole carbons decrease while the spin densities on the α-pyrrole carbons and meso carbons increase. Furthermore, increased ruffling is associated with stronger bonding to the heme axial His ligand.
Collapse
Affiliation(s)
- Jesse G Kleingardner
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | | | | |
Collapse
|
20
|
Liu Y, Guo S, Yu R, Zou K, Qiu G. A new cytoplasmic monoheme cytochrome c from Acidithiobacillus ferrooxidans involved in sulfur oxidation. Curr Microbiol 2013; 68:285-92. [PMID: 24129838 DOI: 10.1007/s00284-013-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/31/2013] [Indexed: 11/24/2022]
Abstract
Acidithiobacillus ferrooxidans can obtain energy from the oxidation of various reduced inorganic sulfur compounds (RISCs, e.g., sulfur) and ferrous iron in bioleaching so has multiple branched respiratory pathways with a diverse range of electron transporters, especially cytochrome c proteins. A cytochrome c family gene, afe1130, which has never been reported before, was found by screening the whole genome of A. ferrooxidans. Here we report the differential gene transcription, bioinformatics analysis, and molecular modeling of the protein encoded by the afe1130 gene (AFE1130). The differential transcription of the target afe1130 gene versus the reference rrs gene in the A. ferrooxidans, respectively, on the culture conditions of sulfur and ferrous energy sources was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR) with a SYBR green-based assay according to the standard curves method. The qRT-PCR results showed that the afe1130 gene in sulfur culture condition was obviously more transcribed than that in ferrous culture condition. Bioinformatics analysis indicated that the AFE1130 was affiliated to the subclass ID of class I of cytochrome c and located in cytoplasm. Molecular modeling results exhibited that the AFE1130 protein consisted of 5 alpha-helices harboring one heme c group covalently bonded by Cys13 and Cys16 and ligated by His17 and Met62 and owned a big raised hydrophobic surface responsible for attaching to inner cytomembrane. So the AFE1130 in A. ferrooxidans plays a role in the RISCs oxidation in bioleaching in cytoplasm bound to inner membrane.
Collapse
Affiliation(s)
- Yuandong Liu
- Key Lab of Biometallurgy of the Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China,
| | | | | | | | | |
Collapse
|
21
|
Can M, Krucinska J, Zoppellaro G, Andersen NH, Wedekind JE, Hersleth HP, Andersson KK, Bren KL. Structural characterization of nitrosomonas europaea cytochrome c-552 variants with marked differences in electronic structure. Chembiochem 2013; 14:1828-38. [PMID: 23908017 DOI: 10.1002/cbic.201300118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 11/09/2022]
Abstract
Nitrosomonas europaea cytochrome c-552 (Ne c-552) variants with the same His/Met axial ligand set but with different EPR spectra have been characterized structurally, to aid understanding of how molecular structure determines heme electronic structure. Visible light absorption, Raman, and resonance Raman spectroscopy of the protein crystals was performed along with structure determination. The structures solved are those of Ne c-552, which displays a "HALS" (or highly anisotropic low-spin) EPR spectrum, and of the deletion mutant Ne N64Δ, which has a rhombic EPR spectrum. Two X-ray crystal structures of wild-type Ne c-552 are reported; one is of the protein isolated from N. europaea cells (Ne c-552n, 2.35 Å resolution), and the other is of recombinant protein expressed in Escherichia coli (Ne c-552r, 1.63 Å resolution). Ne N64Δ crystallized in two different space groups, and two structures are reported [monoclinic (2.1 Å resolution) and hexagonal (2.3 Å resolution)]. Comparison of the structures of the wild-type and mutant proteins reveals that heme ruffling is increased in the mutant; increased ruffling is predicted to yield a more rhombic EPR spectrum. The 2.35 Å Ne c-552n structure shows 18 molecules in the asymmetric unit; analysis of the structure is consistent with population of more than one axial Met configuration, as seen previously by NMR. Finally, the mutation was shown to yield a more hydrophobic heme pocket and to expel water molecules from near the axial Met. These structures reveal that heme pocket residue 64 plays multiple roles in regulating the axial ligand orientation and the interaction of water with the heme. These results support the hypothesis that more ruffled hemes lead to more rhombic EPR signals in cytochromes c with His/Met axial ligation.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry, University of Rochester, Rochester, NY 14627 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tai H, Tonegawa K, Shibata T, Hemmi H, Kobayashi N, Yamamoto Y. Inversion of the stereochemistry around the sulfur atom of the axial methionine side chain through alteration of amino acid side chain packing in Hydrogenobacter thermophilus cytochrome C552 and its functional consequences. Biochemistry 2013; 52:4800-9. [PMID: 23796250 DOI: 10.1021/bi4004028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cytochrome c, the coordination of the axial Met Sδ atom to the heme Fe atom occurs in one of two distinctly different stereochemical manners, i.e., R and S configurations, depending upon which of the two lone pairs of the Sδ atom is involved in the bond; hence, the Fe-coordinated Sδ atom becomes a chiral center. In this study, we demonstrated that an alteration of amino acid side chain packing induced by the mutation of a single amino acid residue, i.e., the A73V mutation, in Hydrogenobacter thermophilus cytochrome c552 (HT) forces the inversion of the stereochemistry around the Sδ atom from the R configuration [Travaglini-Allocatelli, C., et al. (2005) J. Biol. Chem. 280, 25729-25734] to the S configuration. Functional comparison between the wild-type HT and the A73V mutant possessing the R and S configurations as to the stereochemistry around the Sδ atom, respectively, demonstrated that the redox potential (Em) of the mutant at pH 6.00 and 25 °C exhibited a positive shift of ∼20 mV relative to that of the wild-type HT, i.e., 245 mV, in an entropic manner. Because these two proteins have similar enthalpically stabilizing interactions, the difference in the entropic contribution to the Em value between them is likely to be due to the effect of the conformational alteration of the axial Met side chain associated with the inversion of the stereochemistry around the Sδ atom due to the effect of mutation on the internal mobility of the loop bearing the axial Met. Thus, the present study demonstrated that the internal mobility of the loop bearing the axial Met, relevant to entropic control of the redox function of the protein, is affected quite sensitively by the contextual stereochemical packing of amino acid side chains in the proximity of the axial Met.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba , Tsukuba 305-8571, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Behera RK, Nakajima H, Rajbongshi J, Watanabe Y, Mazumdar S. Thermodynamic Effects of the Alteration of the Axial Ligand on the Unfolding of Thermostable Cytochrome c. Biochemistry 2013; 52:1373-84. [DOI: 10.1021/bi300982v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rabindra Kumar Behera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
| | - Hiroshi Nakajima
- Department of Chemistry, Graduate
School of Science, Nagoya University, Nagoya
464-8602, Japan
| | - Jitumani Rajbongshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
- Department
of Chemistry, Gauhati University, Guwahati
781014, India
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate
School of Science, Nagoya University, Nagoya
464-8602, Japan
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
| |
Collapse
|
24
|
Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S. Domain Swapping of the Heme and N-Terminal α-Helix in Hydrogenobacter thermophilus Cytochrome c552 Dimer. Biochemistry 2012; 51:8608-16. [DOI: 10.1021/bi3011303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yugo Hayashi
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hisao Osuka
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hirofumi Komori
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Higuchi
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
25
|
Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface. Proc Natl Acad Sci U S A 2012; 109:8896-900. [PMID: 22619327 DOI: 10.1073/pnas.1200345109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active site of cytochrome c (Cyt c) consists of a heme covalently linked to a pentapeptide segment (Cys-X-X-Cys-His), which provides a link between the heme and the protein surface, where the redox partners of Cyt c bind. To elucidate the vibrational properties of heme c, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on (57)Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c(552), including (13)C(8)-heme-, (13)C(5)(15)N-Met-, and (13)C(15)N-polypeptide (pp)-labeled samples, revealing heme-based vibrational modes in the 200- to 450-cm(-1) spectral region. Simulations of the NRVS spectra of H. thermophilus cytochrome c(552) allowed for a complete assignment of the Fe vibrational spectrum of the protein-bound heme, as well as the quantitative determination of the amount of mixing between local heme vibrations and pp modes from the Cys-X-X-Cys-His motif. These results provide the basis to propose that heme-pp vibrational dynamic couplings play a role in electron transfer (ET) by coupling vibrations of the heme directly to vibrations of the pp at the protein-protein interface. This could allow for the direct transduction of the thermal (vibrational) energy from the protein surface to the heme that is released on protein/protein complex formation, or it could modulate the heme vibrations in the protein/protein complex to minimize reorganization energy. Both mechanisms lower energy barriers for ET. Notably, the conformation of the distal Met side chain is fine-tuned in the protein to localize heme-pp mixed vibrations within the 250- to 400-cm(-1) spectral region. These findings point to a particular orientation of the distal Met that maximizes ET.
Collapse
|
26
|
Mason JM, Bendall DS, Howe CJ, Worrall JA. The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:311-8. [DOI: 10.1016/j.bbapap.2011.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/11/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
27
|
Can M, Zoppellaro G, Andersson KK, Bren KL. Modulation of ligand-field parameters by heme ruffling in cytochromes c revealed by EPR spectroscopy. Inorg Chem 2011; 50:12018-24. [PMID: 22044358 DOI: 10.1021/ic201479q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | | | |
Collapse
|
28
|
Levin BD, Can M, Bowman SEJ, Bren KL, Elliott SJ. Methionine ligand lability in bacterial monoheme cytochromes c: an electrochemical study. J Phys Chem B 2011; 115:11718-26. [PMID: 21870858 DOI: 10.1021/jp203292h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct electrochemical analysis of adsorbed redox active proteins has proven to be a powerful technique in biophysical chemistry, frequently making use of the electrode material pyrolytic "edge-plane" graphite. However, many heme-bearing proteins such as cytochromes c have been also examined systematically at alkanethiol-modified gold surfaces, and previously we reported the characterization of the redox properties of a series of bacterial cytochromes c in a side-by-side comparison of carbon and gold electrode materials. In our prior findings, we reported an unanticipated, low potential (E(m) ∼ -100 mV vs SHE) redox couple that could be analogously observed when a variety of monoheme cytochromes c are adsorbed onto carbon-based electrodes. Here we demonstrate that our prior phenomological data can be understood quantitatively in the loss of the methionine ligand of the heme iron, using the cytochrome c from Hydrogenbacter thermophilum as a model system. Through the comparison of wild-type protein with M61H and M61A mutants, in direct electrochemical analyses conducted as a function of temperature and exogenous ligand concentration, we are able to show that Met-ligated cytochromes c have a propensity to lose their Met ligand at graphite surfaces, and that energetics of this process (6.3 ± 0.2 kJ/mol) is similar to the energies associated with "foldons" of known protein folding pathways.
Collapse
Affiliation(s)
- Benjamin D Levin
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | | | | | | |
Collapse
|
29
|
Chung JK, Thielges MC, Bowman SEJ, Bren KL, Fayer MD. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments. J Am Chem Soc 2011; 133:6681-91. [PMID: 21469666 PMCID: PMC3088310 DOI: 10.1021/ja111009s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures.
Collapse
Affiliation(s)
- Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
30
|
Tai H, Irie K, Mikami SI, Yamamoto Y. Enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552) through introduction of an extra methylene group into its hydrophobic protein interior. Biochemistry 2011; 50:3161-9. [PMID: 21417336 DOI: 10.1021/bi200256d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Careful scrutiny of the protein interior of Hydrogenobacter thermophilus cytochrome c(552) (HT) on the basis of its X-ray structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V. K., Borgia, A., Di Matteo, A., Bonivento, D., Cutruzzola, F., Bren, K. L., and Brunori, M. (2005) J. Biol. Chem. 280, 25729-25734] indicated that a void space, which is large enough to accommodate a methyl group, exists in the hydrophobic protein interior near the heme. We tried to reduce the void space through the replacement of a Val by Ile or Leu (Val/Ile or Val/Leu mutation), and then the structural and functional consequences of these two mutations were characterized in order to elucidate the relationship between the nature of the packing of hydrophobic residues and the functional properties of the protein. The study demonstrated striking differences in the structural and functional consequences between the two mutations. The Val/Ile mutation was found to cause further enhancement of the thermostability of the oxidized HT, as reflected in the increase of the denaturation temperature (T(m)) value by ∼ 3 deg, whereas the thermostability of the reduced form was essentially unaffected. As a result, the redox potential (E(m)) of the Val/Ile mutant exhibited a negative shift of ∼ 50 mV relative to that of the wild-type protein in an enthalpic manner, this being consistent with our previous finding that a protein with higher stability in its oxidized form exhibits a lower E(m) value [Terui, N., Tachiiri, N., Matsuo, H., Hasegawa, J., Uchiyama, S., Kobayashi, Y., Igarashi, Y., Sambongi, Y., and Yamamoto, Y. (2003) J. Am. Chem. Soc. 125, 13650-13651]. In contrast, the Val/Leu mutation led to a decrease in thermostability of both the redox forms of the protein, as reflected in the decreases of the T(m) values of the oxidized and reduced proteins by ∼ 3 and ∼ 5 deg, respectively, and the E(m) value of the Val/Leu mutant happened to be similar to that of the Val/Ile one. The E(m) value of the Val/Leu mutant could be reasonably interpreted in terms of the different effects of the mutation on the stabilities of the two different redox forms of the protein. Thus, the present study demonstrated that the stability of the protein is affected quite sensitively by the contextual stereochemical packing of hydrophobic residues in the protein interior and that the structural properties of the hydrophobic core in the protein interior are crucial for control of the redox function of the protein. These findings provide novel insights as to functional control of a protein, which could be utilized for tuning of the T(m) and E(m) values of the protein by means of protein engineering.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
31
|
Rajapandian V, Subramanian V. Calculations on the Structure and Spectral Properties of Cytochrome c551 Using DFT and ONIOM Methods. J Phys Chem A 2011; 115:2866-76. [DOI: 10.1021/jp110983v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Rajapandian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| |
Collapse
|
32
|
Yamanaka M, Masanari M, Sambongi Y. Conferment of Folding Ability to a Naturally Unfolded Apocytochrome c through Introduction of Hydrophobic Amino Acid Residues. Biochemistry 2011; 50:2313-20. [DOI: 10.1021/bi101646m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Misa Masanari
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
33
|
Morrone A, McCully ME, Bryan PN, Brunori M, Daggett V, Gianni S, Travaglini-Allocatelli C. The denatured state dictates the topology of two proteins with almost identical sequence but different native structure and function. J Biol Chem 2011; 286:3863-72. [PMID: 21118804 PMCID: PMC3030387 DOI: 10.1074/jbc.m110.155911] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/19/2010] [Indexed: 11/06/2022] Open
Abstract
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins G(A)88 and G(B)88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both G(A)88 and G(B)88. We show that, contrary to expectation, G(B)88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than G(A)88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.
Collapse
Affiliation(s)
- Angela Morrone
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Michelle E. McCully
- the Biomolecular Structure and Design Program and Department of Bioengineering, University of Washington, Seattle, Washington 98195, and
| | - Philip N. Bryan
- the Institute for Bioscience and Biotechnology Research/Department of Bioengineering, University of Maryland, Rockville, Maryland 20850
| | - Maurizio Brunori
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Valerie Daggett
- the Biomolecular Structure and Design Program and Department of Bioengineering, University of Washington, Seattle, Washington 98195, and
| | - Stefano Gianni
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Carlo Travaglini-Allocatelli
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| |
Collapse
|
34
|
Tai H, Munegumi T, Yamamoto Y. Control of the Stability of Hydrogenobacter Thermophilus Cytochrome c552 through Alteration of the Basicity of the N-Terminal Amino Group of the Polypeptide Chain. Inorg Chem 2010; 49:10840-6. [DOI: 10.1021/ic1005924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Toratane Munegumi
- Department of Materials Chemistry and Bioengineering, Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
35
|
Liptak MD, Wen X, Bren KL. NMR and DFT investigation of heme ruffling: functional implications for cytochrome c. J Am Chem Soc 2010; 132:9753-63. [PMID: 20572664 DOI: 10.1021/ja102098p] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Out-of-plane (OOP) deformations of the heme cofactor are found in numerous heme-containing proteins and the type of deformation tends to be conserved within functionally related classes of heme proteins. We demonstrate correlations between the heme ruffling OOP deformation and the (13)C and (1)H nuclear magnetic resonance (NMR) hyperfine shifts of heme aided by density functional theory (DFT) calculations. The degree of ruffling in the heme cofactor of Hydrogenobacter thermophilus cytochrome c(552) has been modified by a single amino acid mutation in the second coordination sphere of the cofactor. The (13)C and (1)H resonances of the cofactor have been assigned using one- and two-dimensional NMR spectroscopy aided by selective (13)C-enrichment of the heme. DFT has been used to predict the NMR hyperfine shifts and electron paramagnetic resonance (EPR) g-tensor at several points along the ruffling deformation coordinate. The DFT-predicted NMR and EPR parameters agree with the experimental observations, confirming that an accurate theoretical model of the electronic structure and its response to ruffling has been established. As the degree of ruffling increases, the heme methyl (1)H resonances move upfield while the heme methyl and meso (13)C resonances move downfield. These changes are a consequence of altered overlap of the Fe 3d and porphyrin pi orbitals, which destabilizes all three occupied Fe 3d-based molecular orbitals and decreases the positive and negative spin density on the beta-pyrrole and meso carbons, respectively. Consequently, the heme ruffling deformation decreases the electronic coupling of the cofactor with external redox partners and lowers the reduction potential of heme.
Collapse
Affiliation(s)
- Matthew D Liptak
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
36
|
Bowman SEJ, Bren KL. Variation and analysis of second-sphere interactions and axial histidinate character in c-type cytochromes. Inorg Chem 2010; 49:7890-7. [PMID: 20666367 PMCID: PMC2933145 DOI: 10.1021/ic100899k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electron-donating properties of the axial His ligand to heme iron in cytochromes c (cyts c) are found to be correlated with the midpoint reduction potential (E(m)) in variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) in which mutations have been made in and near the Cys-X-X-Cys-His (CXXCH) heme-binding motif. To probe the strength of the His-Fe(III) interaction, we have measured (13)C nuclear magnetic resonance (NMR) chemical shifts for (13)CN(-) bound to heme iron trans to the axial His in Ht Fe(III) cyt c(552) variants. We observe a linear relationship between these (13)C chemical shifts and E(m), indicating that the His-Fe(III) bond strength correlates with E(m). To probe a conserved hydrogen bonding interaction between the axial His Hdelta1 and the backbone carbonyl of a Pro residue, we measured the pK(a) of the axial His Hdelta1 proton (pK(a(2))), which we propose to relate to the His-Fe(III) interaction, reduction potential, and local electrostatic effects. The observed linear relationship between the axial His (13)Cbeta chemical shift and E(m) is proposed to reflect histidinate (anionic) character of the ligand. A linear relationship also is seen between the average heme methyl (1)H chemical shift and E(m) which may reflect variation in axial His electron-donating properties or in the ruffling distortion of the heme plane. In summary, chemical shifts of the axial His and exogenous CN(-) bound trans to His are shown to be sensitive probes of the His-Fe(III) interaction in variants of Ht cyt c(552) and display trends that correlate with E(m).
Collapse
Affiliation(s)
- Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| |
Collapse
|
37
|
What lessons can be learned from studying the folding of homologous proteins? Methods 2010; 52:38-50. [PMID: 20570731 PMCID: PMC2965948 DOI: 10.1016/j.ymeth.2010.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 01/30/2023] Open
Abstract
The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.
Collapse
|
38
|
Tai H, Mikami SI, Irie K, Watanabe N, Shinohara N, Yamamoto Y. Role of a Highly Conserved Electrostatic Interaction on the Surface of Cytochrome c in Control of the Redox Function. Biochemistry 2009; 49:42-8. [DOI: 10.1021/bi901484b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shin-ichi Mikami
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Kiyofumi Irie
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Naoki Watanabe
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Naoya Shinohara
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
39
|
Zoppellaro G, Bren KL, Ensign AA, Harbitz E, Kaur R, Hersleth HP, Ryde U, Hederstedt L, Andersson KK. Review: studies of ferric heme proteins with highly anisotropic/highly axial low spin (S = 1/2) electron paramagnetic resonance signals with bis-histidine and histidine-methionine axial iron coordination. Biopolymers 2009; 91:1064-82. [PMID: 19536822 PMCID: PMC2852197 DOI: 10.1002/bip.21267] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Six-coordinated heme groups are involved in a large variety of electron transfer reactions because of their ability to exist in both the ferrous (Fe(2+)) and ferric (Fe(3+)) state without any large differences in structure. Our studies on hemes coordinated by two histidines (bis-His) and hemes coordinated by histidine and methionine (His-Met) will be reviewed. In both of these coordination environments, the heme core can exhibit ferric low spin (electron paramagnetic resonance EPR) signals with large g(max) values (also called Type I, highly anisotropic low spin, or highly axial low spin, HALS species) as well as rhombic EPR (Type II) signals. In bis-His coordinated hemes rhombic and HALS envelopes are related to the orientation of the His groups with respect to each other such that (i) parallel His planes results in a rhombic signal and (ii) perpendicular His planes results in a HALS signal. Correlation between the structure of the heme and its ligands for heme with His-Met axial ligation and ligand-field parameters, as derived from a large series of cytochrome c variants, show, however, that for such a combination of axial ligands there is no clear-cut difference between the large g(max) and the "small g-anisotropy" cases as a result of the relative Met-His arrangements. Nonetheless, a new linear correlation links the average shift delta of the heme methyl groups with the g(max) values.
Collapse
Affiliation(s)
- Giorgio Zoppellaro
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, Oslo NO–0316, Norway
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 146270216, USA
| | - Amy A. Ensign
- Department of Chemistry, University of Rochester, Rochester, New York 146270216, USA
| | - Espen Harbitz
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, Oslo NO–0316, Norway
| | - Ravinder Kaur
- Department of Chemistry, University of Rochester, Rochester, New York 146270216, USA
| | - Hans-Petter Hersleth
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, Oslo NO–0316, Norway
| | - Ulf Ryde
- Department Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE–221 00 Lund, Sweden
| | - Lars Hederstedt
- Department of Cell & Organism Biology, Lund University, Sölvegatan 35, SE–22362 Lund, Sweden
| | - K. Kristoffer Andersson
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, Oslo NO–0316, Norway
| |
Collapse
|
40
|
Mikami SI, Tai H, Yamamoto Y. Effect of the Redox-Dependent Ionization State of the Heme Propionic Acid Side Chain on the Entropic Contribution to the Redox Potential of Pseudomonas aeruginosa Cytochrome c551. Biochemistry 2009; 48:8062-9. [DOI: 10.1021/bi9008962] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shin-ichi Mikami
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
41
|
Biophysical Characterization and Folding Studies of Plant Protease, Wrightin: Identification of Folding Intermediate Under Different Conditions. Protein J 2009; 28:213-23. [DOI: 10.1007/s10930-009-9186-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Goldbeck RA, Chen E, Kliger DS. Early events, kinetic intermediates and the mechanism of protein folding in cytochrome C. Int J Mol Sci 2009; 10:1476-1499. [PMID: 19468320 PMCID: PMC2680628 DOI: 10.3390/ijms10041476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/16/2022] Open
Abstract
Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t ≤ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-μs conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 μs timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.
Collapse
Affiliation(s)
- Robert A. Goldbeck
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-831-459-4007; Fax: +1-831-459-2935
| | | | | |
Collapse
|
43
|
Electron transfer from cytochrome c to cupredoxins. J Biol Inorg Chem 2009; 14:821-8. [DOI: 10.1007/s00775-009-0494-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
|
44
|
Tai H, Munegumi T, Yamamoto Y. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c. Inorg Chem 2009; 48:331-8. [PMID: 19053349 DOI: 10.1021/ic801202d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the denatured states of Hydrogenobacter thermophilus cytochrome c(552) (HT) and Pseudomonas aeruginosa cytochrome c(551) (PA), and their mutants, the N-terminal amino group of the polypeptide chain is coordinated to heme Fe in place of the axial Met, the His-N(term) form being formed. The coordination of the N-terminal amino group to heme Fe leads to loop formation by the N-terminal stretch preceding the first Cys residue bound to the heme, and the N-terminal stretches of HT and PA are different from each other in terms of both the sequence and the number of constituent amino acid residues. The His-N(term) form was shown to be rather stable, and hence it can influence the stability of the denatured state. We have investigated the heme Fe coordination structures and stabilities of the His-N(term) forms emerging upon guanidine hydrochloric acid-induced unfolding of the oxidized forms of the proteins. The Fe-N(term) coordination bond in the His-N(term) form with a 9-residue N-terminal stretch of HT proteins was found to be tilted to some extent away from the heme normal, as reflected by the great heme methyl proton shift spread. On the other hand, the small heme methyl proton shift spread of the His-N(term) form with an 11-residue stretch of PA proteins indicated that its Fe-N(term) bond is nearly parallel with the heme normal. The stability of the His-N(term) form was found to be affected by the structural properties of the N-terminal stretch, such as its length and the N-terminal residue. With a given N-terminal residue, the stability of the His-N(term) form is higher for a 9-residue N-terminal stretch than an 11-residue one. In addition, with a given length of the N-terminal stretch, the His-N(term) form with an N-terminal Glu is stabilized by a few kJ mol(-1) relative to that with an N-terminal Asn. These results provide a novel insight into the stabilizing interactions in the denatured cyts c that will facilitate elucidation of the folding/unfolding mechanisms of the proteins.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | |
Collapse
|
45
|
Sonoyama T, Hasegawa J, Uchiyama S, Nakamura S, Kobayashi Y, Sambongi Y. Stability enhancement of cytochrome c through heme deprotonation and mutations. Biophys Chem 2009; 139:37-41. [DOI: 10.1016/j.bpc.2008.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
|
46
|
Akazaki H, Kawai F, Chida H, Matsumoto Y, Hirayama M, Hoshikawa K, Unzai S, Hakamata W, Nishio T, Park SY, Oku T. Cloning, expression and purification of cytochrome c(6) from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:674-80. [PMID: 18678931 PMCID: PMC2494970 DOI: 10.1107/s1744309108017752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Accepted: 06/11/2008] [Indexed: 11/10/2022]
Abstract
The primary sequence of cytochrome c(6) from the brown alga Hizikia fusiformis has been determined by cDNA cloning and the crystal structure has been solved at 1.6 A resolution. The crystal belonged to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 84.58, c = 232.91 A and six molecules per asymmetric unit. The genome code, amino-acid sequence and crystal structure of H. fusiformis cytochrome c(6) were most similar to those of red algal cytochrome c(6). These results support the hypothesis that brown algae acquired their chloroplasts via secondary endosymbiosis involving a red algal endosymbiont and a eukaryote host.
Collapse
Affiliation(s)
- Hideharu Akazaki
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Fumihiro Kawai
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hirotaka Chida
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Yuichirou Matsumoto
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Mao Hirayama
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Ken Hoshikawa
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Satoru Unzai
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Wataru Hakamata
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Toshiyuki Nishio
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Sam-Yong Park
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Tadatake Oku
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| |
Collapse
|
47
|
Michel LV, Ye T, Bowman SEJ, Levin BD, Hahn MA, Russell BS, Elliott SJ, Bren KL. Heme attachment motif mobility tunes cytochrome c redox potential. Biochemistry 2007; 46:11753-60. [PMID: 17900177 PMCID: PMC2606054 DOI: 10.1021/bi701177j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen exchange (HX) rates and midpoint potentials (Em) of variants of cytochrome c from Pseudomonas aeruginosa (Pa cyt c551) and Hydrogenobacter thermophilus (Ht cyt c552) have been characterized in an effort to develop an understanding of the impact of properties of the Cys-X-X-Cys-His pentapeptide c-heme attachment (CXXCH) motif on heme redox potential. Despite structural conservation of the CXXCH motif, Ht cyt c552 exhibits a low level of protection from HX for amide protons within this motif relative to Pa cyt c551. Site-directed mutants have been prepared to determine the structural basis for and functional implications of these variations on HX behavior. The double mutant Ht-M13V/K22M displays suppressed HX within the CXXCH motif as well as a decreased Em (by 81 mV), whereas the corresponding double mutant of Pa cyt c551 (V13M/M22K) exhibits enhanced HX within the CXXCH pentapeptide and a modest increase in Em (by 30 mV). The changes in Em correlate with changes in axial His chemical shifts in the ferric proteins reflecting the extent of histidinate character. Thus, the mobility of the CXXCH pentapeptide is found to impact the His-Fe(III) interaction and therefore the heme redox potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kara L. Bren
- To whom correspondence should be addressed: Department of Chemistry, University of Rochester, Rochester, NY 14627-0216. Telephone: (585) 275-4335. Fax: (585) 276-0205. e-mail:
| |
Collapse
|
48
|
Tai H, Kawano S, Yamamoto Y. Characterization of N-terminal amino group–heme ligation emerging upon guanidine hydrochloric acid induced unfolding of Hydrogenobacter thermophilus ferricytochrome c 552. J Biol Inorg Chem 2007; 13:25-34. [PMID: 17899223 DOI: 10.1007/s00775-007-0298-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Nonnative heme coordination structures emerging upon guanidine hydrochloric acid (GdnHCl) induced unfolding of Hydrogenobacter thermophilus ferricytochrome c552 were characterized by means of paramagnetic NMR. The heme coordination structure possessing the N-terminal amino group of the peptide chain in place of axial Met (His-Nterm form) was determined in the presence of GdnHCl concentrations in excess of 1.5 M at neutral pH. The stability of the His-Nterm form at pH 7.0 was found to be comparable with that of the bis-His form which has been recognized as a major nonnative heme coordination structure in cytochrome c folding/unfolding. Consequently, in addition to the bis-His form, the His-Nterm form is a substantial intermediate which affects the pathway and kinetics of the folding/unfolding of cytochromes c, of which the N-terminal amino groups are not acetylated.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan
| | | | | |
Collapse
|
49
|
Takayama SIJ, Takahashi YT, Mikami SI, Irie K, Kawano S, Yamamoto Y, Hemmi H, Kitahara R, Yokoyama S, Akasaka K. Local Conformational Transition of Hydrogenobacter thermophilus Cytochrome c552 Relevant to Its Redox Potential,. Biochemistry 2007; 46:9215-24. [PMID: 17658890 DOI: 10.1021/bi7000714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to elucidate the molecular mechanisms responsible for the apparent nonlinear behavior of the temperature dependence of the redox potential of Hydrogenobacter thermophilus cytochrome c552 [Takahashi, Y., Sasaki, H., Takayama, S. J., Mikami, S., Kawano, S., Mita, H., Sambongi, Y., and Yamamoto, Y. (2006) Biochemistry 45, 11005-11011], its heme active site structure has been characterized using variable-temperature and -pressure NMR techniques. The study revealed a temperature-dependent conformational transition between protein structures, which slightly differ in the conformation of the loop bearing the Fe-bound axial Met residue. The heme environment in the protein structure which arises at lower temperature was found to be more polar, as a result of the altered orientation of the loop with respect to the heme due to its conformational change, than that arising at higher temperature. The present study demonstrated the importance of the structural and dynamic properties of the polypeptide chain in close proximity to the heme for redox regulation of the protein.
Collapse
|
50
|
Gianni S, Brunori M, Travaglini-Allocatelli C. Plasticity of the protein folding landscape: switching between on- and off-pathway intermediates. Arch Biochem Biophys 2007; 466:172-6. [PMID: 17658452 DOI: 10.1016/j.abb.2007.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/17/2022]
Abstract
Proteins may fold via parallel routes partitioned by the relative effect of solvent conditions on the relevant transition states. Thus, intermediates may or may not necessarily be obligatory species accumulated during the folding process, but rather kinetic traps due to the ruggedness of the folding landscape. Implicit in this view is the notion of plasticity of the folding pathway: proteins can be rerouted through the energy landscape by mutational, topological or solvent perturbations. Our work was specifically aimed to the experimental identification of a switch in the folding mechanism of a c-type cytochrome from the thermophilic bacterium Hydrogenobacter thermophilus (HT cyt c(552)) induced by acidic conditions. We present evidence that, by destabilizing the relevant transition state, the native state of HT cyt c(552) can be reached along alternative folding routes, which may involve an off-pathway intermediate.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P le A.Moro 5, 00185, Roma, Italy
| | | | | |
Collapse
|