1
|
Bravo-Plaza I, Tagua VG, Arst HN, Alonso A, Pinar M, Monterroso B, Galindo A, Peñalva MA. The Uso1 globular head interacts with SNAREs to maintain viability even in the absence of the coiled-coil domain. eLife 2023; 12:e85079. [PMID: 37249218 PMCID: PMC10275640 DOI: 10.7554/elife.85079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering, and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 s half-life) colocalizing partially with the Golgi markers RAB1, Sed5, and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycle back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments, Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing a stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases the binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that, unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.
Collapse
Affiliation(s)
- Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Victor G Tagua
- Instituto de Tecnologías Biomédicas, Hospital Universitario Nuestra Señora de CandelariaSanta Cruz de TenerifeSpain
| | - Herbert N Arst
- Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Imperial CollegeLondonUnited Kingdom
| | - Ana Alonso
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Begoña Monterroso
- Department of Structural and Chemical Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| |
Collapse
|
2
|
Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat Cell Biol 2022; 24:1364-1377. [PMID: 36050470 PMCID: PMC9481466 DOI: 10.1038/s41556-022-00974-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD–ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges. Song et al. identify two protein-targeting pathways from the endoplasmic reticulum to (1) early lipid droplets (LDs) and (2) mature lipid droplets. They define key factors mediating the second, late pathway and its many cargoes.
Collapse
|
3
|
Malis Y, Hirschberg K, Kaether C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 2022; 44:e2200064. [DOI: 10.1002/bies.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Christoph Kaether
- Leibniz Institute for Age Research – Fritz Lipmann Institute Jena Germany
| |
Collapse
|
4
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Focus on the Small GTPase Rab1: A Key Player in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222112087. [PMID: 34769517 PMCID: PMC8584362 DOI: 10.3390/ijms222112087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of large aggregates in the survival neurons called Lewy bodies, which mainly contain α-synuclein (α-syn). The cause of cell death is not known but could be due to mitochondrial dysfunction, protein homeostasis failure, and alterations in the secretory/endolysosomal/autophagic pathways. Survival nigral neurons overexpress the small GTPase Rab1. This protein is considered a housekeeping Rab that is necessary to support the secretory pathway, the maintenance of the Golgi complex structure, and the regulation of macroautophagy from yeast to humans. It is also involved in signaling, carcinogenesis, and infection for some pathogens. It has been shown that it is directly linked to the pathogenesis of PD and other neurodegenerative diseases. It has a protective effect against α–σψν toxicity and has recently been shown to be a substrate of LRRK2, which is the most common cause of familial PD and the risk of sporadic disease. In this review, we analyze the key aspects of Rab1 function in dopamine neurons and its implications in PD neurodegeneration/restauration. The results of the current and former research support the notion that this GTPase is a good candidate for therapeutic strategies.
Collapse
|
7
|
Zhang Y, Seemann J. Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure. J Cell Biol 2021; 220:211583. [PMID: 33301566 PMCID: PMC7735681 DOI: 10.1083/jcb.202007052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
8
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Satoh A, Hayashi-Nishino M, Shakuno T, Masuda J, Koreishi M, Murakami R, Nakamura Y, Nakamura T, Abe-Kanoh N, Honjo Y, Malsam J, Yu S, Nishino K. The Golgin Protein Giantin Regulates Interconnections Between Golgi Stacks. Front Cell Dev Biol 2019; 7:160. [PMID: 31544102 PMCID: PMC6732663 DOI: 10.3389/fcell.2019.00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Golgins are a family of Golgi-localized long coiled-coil proteins. The major golgin function is thought to be the tethering of vesicles, membranes, and cytoskeletal elements to the Golgi. We previously showed that knockdown of one of the longest golgins, Giantin, altered the glycosylation patterns of cell surfaces and the kinetics of cargo transport, suggesting that Giantin maintains correct glycosylation through slowing down transport within the Golgi. Giantin knockdown also altered the sizes and numbers of mini Golgi stacks generated by microtubule de-polymerization, suggesting that it maintains the independence of individual Golgi stacks. Therefore, it is presumed that Golgi stacks lose their independence following Giantin knockdown, allowing easier and possibly increased transport among stacks and abnormal glycosylation. To gain structural insights into the independence of Golgi stacks, we herein performed electron tomography and 3D modeling of Golgi stacks in Giantin knockdown cells. Compared with control cells, Giantin-knockdown cells had fewer and smaller fenestrae within each cisterna. This was supported by data showing that the diffusion rate of Golgi membrane proteins is faster in Giantin-knockdown Golgi, indicating that Giantin knockdown structurally and functionally increases connectivity among Golgi cisternae and stacks. This increased connectivity suggests that contrary to the cis-golgin tether model, Giantin instead inhibits the tether and fusion of nearby Golgi cisternae and stacks, resulting in transport difficulties between stacks that may enable the correct glycosylation of proteins and lipids passing through the Golgi.
Collapse
Affiliation(s)
- Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | | | - Takuto Shakuno
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junko Masuda
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mayuko Koreishi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Runa Murakami
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Graduate School Tokushima University, Tokushima, Japan
| | - Yasuko Honjo
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Joerg Malsam
- Center for Biochemistry (BZH), Heidelberg University, Heidelberg, Germany
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Ungermann C, Kümmel D. Structure of membrane tethers and their role in fusion. Traffic 2019; 20:479-490. [DOI: 10.1111/tra.12655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Ungermann
- Biochemistry Section, Department of Biology/ChemistryUniversity of Osnabrück Osnabrück Germany
- Center for Cellular Nanoanalytics (CellNanOs)University of Osnabrück Osnabrück Germany
| | - Daniel Kümmel
- Biochemistry & Structural Biology Section, Institute of BiochemistryUniversity of Münster Münster Germany
| |
Collapse
|
11
|
Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ, Hsia RC, Coppens I. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. J Cell Biol 2017; 216:4235-4254. [PMID: 29070609 PMCID: PMC5716271 DOI: 10.1083/jcb.201701108] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 02/01/2023] Open
Abstract
Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Sabrina J Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Corey Porter
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Eric J Hartman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ru-Ching Hsia
- Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
12
|
Martinez H, García IA, Sampieri L, Alvarez C. Spatial-Temporal Study of Rab1b Dynamics and Function at the ER-Golgi Interface. PLoS One 2016; 11:e0160838. [PMID: 27500526 PMCID: PMC4976911 DOI: 10.1371/journal.pone.0160838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 07/26/2016] [Indexed: 12/27/2022] Open
Abstract
The GTPase Rab1b is involved in ER to Golgi transport, with multiple Rab1b effectors (located at ERES, VTCs and the Golgi complex) being required for its function. In this study, we performed live-cell dual-expression studies to analyze the dynamics of Rab1b and some effectors located at the ERES-Golgi interface. Rab1b occupied widely distributed mobile punctate and tubular structures, displaying a transient overlaps with its effectors and showing that these overlaps occurred at the same time in spatially distinct steps of ER to Golgi transport. In addition, we assessed Rab1b dynamics during cargo sorting by analyzing the concentration at ERES of a Golgi protein (SialT2-CFP) during Brefeldin A washout (BFA WO). Rab1b was associated to most of the ERES structures, but at different times during BFA WO, and recurrently SialT2-CFP was sorted in the ERES-Rab1b positive structures. Furthermore, we reveal for first time that Rab1b localization time at ERES depended on GBF1, a Rab1b effector that acts as the guanine nucleotide exchange factor of Arf1, and that Rab1b membrane association/dissociation dynamics at ERES was dependent on the GBF1 membrane association and activity, which strongly suggests that GBF1 activity modulates Rab1b membrane cycling dynamic.
Collapse
Affiliation(s)
- Hernán Martinez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Iris A. García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- * E-mail:
| |
Collapse
|
13
|
Saraste J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front Cell Dev Biol 2016; 4:28. [PMID: 27148530 PMCID: PMC4834429 DOI: 10.3389/fcell.2016.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen Bergen, Norway
| |
Collapse
|
14
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
15
|
Abstract
The Rab family of small GTPases play fundamental roles in the regulation of trafficking pathways between intracellular membranes in eukaryotic cells. In this short commentary we highlight a recent high-content screening study that investigates the roles of Rab proteins in retrograde trafficking from the Golgi complex to the endoplasmic reticulum, and we discuss how the findings of this work and other literature might influence our thoughts on how the architecture of the Golgi complex is regulated.
Collapse
Affiliation(s)
- George Galea
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| | - Jeremy C Simpson
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| |
Collapse
|
16
|
Sui J, Li X, Xing J, Cao F, Wang H, Gong H, Zhang W. Lentivirus-mediated silencing of USO1 inhibits cell proliferation and migration of human colon cancer cells. Med Oncol 2015; 32:218. [DOI: 10.1007/s12032-015-0658-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
|
17
|
Wang T, Grabski R, Sztul E, Hay JC. p115-SNARE interactions: a dynamic cycle of p115 binding monomeric SNARE motifs and releasing assembled bundles. Traffic 2015; 16:148-71. [PMID: 25406594 DOI: 10.1111/tra.12242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.
Collapse
Affiliation(s)
- Ting Wang
- Division of Biological Sciences and Center for Structural & Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | | | | | | |
Collapse
|
18
|
Sánchez-León E, Bowman B, Seidel C, Fischer R, Novick P, Riquelme M. The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkörper microvesicles inNeurospora crassa. Mol Microbiol 2014; 95:472-90. [DOI: 10.1111/mmi.12878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Eddy Sánchez-León
- Department of Microbiology; Center for Scientific Research and Higher Education of Ensenada (CICESE); Ensenada Baja California Mexico
| | - Barry Bowman
- Department of Molecular, Cell and Developmental Biology; University of California; Santa Cruz CA USA
| | - Constanze Seidel
- Department of Applied Microbiology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Reinhard Fischer
- Department of Applied Microbiology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Peter Novick
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Meritxell Riquelme
- Department of Microbiology; Center for Scientific Research and Higher Education of Ensenada (CICESE); Ensenada Baja California Mexico
| |
Collapse
|
19
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
20
|
Guo Y, Linstedt AD. Binding of the vesicle docking protein p115 to the GTPase Rab1b regulates membrane recruitment of the COPI vesicle coat. CELLULAR LOGISTICS 2014; 3:e27687. [PMID: 25332841 PMCID: PMC4187009 DOI: 10.4161/cl.27687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/16/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
Membrane recruitment of the COPI vesicle coat is fundamental to its function and contributes to compartment identity in the early secretory pathway. COPI recruitment is triggered by guanine nucleotide exchange activating the Arf1 GTPase, but the key exchange factor, GBF1, is a peripheral membrane component whose membrane association is dependent on another GTPase, Rab1. Inactive Rab GTPases are in a soluble complex with guanine nucleotide dissociation inhibitor (GDI) and activation of Rab GTPases by exchange factors can be enhanced by GDI dissociation factors (GDFs). In the present study, we investigated the vesicle docking protein p115 and it's binding to the Rab1 isoform Rab1b. Inhibition of p115 expression induced dissociation of Rab1b from Golgi membranes. Rab1b bound the cc2 domain of p115 and p115 lacking this domain failed to recruit Rab1b. Further, p115 inhibition blocked association of the COPI coat with Golgi membranes and this was suppressed by constitutive activation of Rab1b. These findings show p115 enhancement of Rab1b activation leading to COPI recruitment suggesting a connection between the vesicle docking machinery and the vesicle coat complex during the establishment of post-ER compartment identity.
Collapse
Affiliation(s)
- Yusong Guo
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh, PA USA
| | - Adam D Linstedt
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh, PA USA
| |
Collapse
|
21
|
Abstract
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER-Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.
Collapse
|
22
|
Koreishi M, Gniadek TJ, Yu S, Masuda J, Honjo Y, Satoh A. The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS One 2013; 8:e59821. [PMID: 23555793 PMCID: PMC3605407 DOI: 10.1371/journal.pone.0059821] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Golgins are coiled-coil proteins that play a key role in the regulation of Golgi architecture and function. Giantin, the largest golgin in mammals, forms a complex with p115, rab1, GM130, and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), thereby facilitating vesicle tethering and fusion processes around the Golgi apparatus. Treatment with the microtubule destabilizing drug nocodazole transforms the Golgi ribbon into individual Golgi stacks. Here we show that siRNA-mediated depletion of giantin resulted in more dispersed Golgi stacks after nocodazole treatment than by control treatment, without changing the average cisternal length. Furthermore, depletion of giantin caused an increase in cargo transport that was associated with altered cell surface protein glycosylation. Drosophila S2 cells are known to have dispersed Golgi stacks and no giantin homolog. The exogenous expression of mammalian giantin cDNA in S2 cells resulted in clustered Golgi stacks, similar to the Golgi ribbon in mammalian cells. These results suggest that the spatial organization of the Golgi ribbon is mediated by giantin, which also plays a role in cargo transport and sugar modifications.
Collapse
Affiliation(s)
- Mayuko Koreishi
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Thomas J. Gniadek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sidney Yu
- School of Biomedical Sciences and Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Junko Masuda
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yasuko Honjo
- The Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
23
|
Donohoe BS, Kang BH, Gerl MJ, Gergely ZR, McMichael CM, Bednarek SY, Staehelin LA. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 2013; 14:551-67. [PMID: 23369235 DOI: 10.1111/tra.12052] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (i) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3-5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2-Cn cis cisternae grow through COPII vesicle fusion. (v) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (vii) In plants, ∼90% of native α-mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells.
Collapse
Affiliation(s)
- Bryon S Donohoe
- Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80306, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
25
|
Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D. Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 2012; 288:4229-40. [PMID: 23239882 DOI: 10.1074/jbc.m112.426767] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein sorting between eukaryotic compartments requires vesicular transport, wherein tethering provides the first contact between vesicle and target membranes. Here we map and start to functionally analyze the interaction network of the conserved oligomeric Golgi (COG) complex that mediates retrograde tethering at the Golgi. The interactions of COG subunits with members of transport factor families assign the individual subunits as specific interaction hubs. Functional analysis of selected interactions suggests a mechanistic tethering model. We find that the COG complex interacts with two different Rabs in addition to each end of the golgin "TATA element modulatory factor" (TMF). This allows COG to potentially bridge the distance between the distal end of the golgin and the target membrane thereby promoting tighter docking. Concurrently we show that the central portion of TMF can bind to Golgi membranes that are liberated of their COPI cover. This latter interaction could serve to bring vesicle and target membranes into close apposition prior to fusion. A target selection mechanism, in which a hetero-oligomeric tethering factor organizes Rabs and coiled transport factors to enable protein sorting specificity, could be applicable to vesicle targeting throughout eukaryotic cells.
Collapse
Affiliation(s)
- Victoria J Miller
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grabski R, Hay J, Sztul E. Tethering factor P115: a new model for tether-SNARE interactions. BIOARCHITECTURE 2012; 2:175-80. [PMID: 22992751 PMCID: PMC3696062 DOI: 10.4161/bioa.21702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The membrane tethering factor p115 has been shown to have important functions in ER to Golgi traffic and Golgi biogenesis. The multidomain structure of p115 allows for interactions with a diverse array of proteins that govern cargo movement at the ER-Golgi interface. Within its C-terminal region p115 contains four coiled-coil domains (CC1-CC4). Of the four coiled-coils, only CC1 has been shown to be required for p115 function, presumably by its ability to bind numerous SNARE proteins as well as the small GTPase Rab1. Recently, we showed that CC4 also interacts with SNARE proteins and that CC4 is required for p115 function in Golgi homeostasis and the trafficking of transmembrane but not soluble cargo. Here, we propose a novel model wherein p115 facilitates membrane tethering and fusion by simultaneously engaging its CC1 and CC4 domains with distinct SNARE proteins to promote formation of SNARE complexes.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, Developmental and Integrative; University of Alabama at Birmingham; Birmingham, AL USA
| | - Jesse Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience; University of Montana; Missoula, MT USA
| | - Elizabeth Sztul
- Department of Cell Biology, Developmental and Integrative; University of Alabama at Birmingham; Birmingham, AL USA
| |
Collapse
|
27
|
van Zuylen WJ, Doyon P, Clément JF, Khan KA, D'Ambrosio LM, Dô F, St-Amant-Verret M, Wissanji T, Emery G, Gingras AC, Meloche S, Servant MJ. Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS Pathog 2012; 8:e1002747. [PMID: 22792062 PMCID: PMC3390413 DOI: 10.1371/journal.ppat.1002747] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 04/30/2012] [Indexed: 01/08/2023] Open
Abstract
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses. In response to pathogens, such as viruses and bacteria, infected cells defend themselves by generating a set of cytokines called type I interferon (IFN). Since Type I IFN (namely IFN alpha and beta) are potent antiviral agents, understanding the cellular mechanisms by which infected cells produce type I IFN is required to identify novel cellular targets for future antiviral therapies. Notably, a protein called Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) was demonstrated to be an essential mediator of this antiviral response. However, how TRAF3 reacts in response to a viral infection is still not totally understood. We now demonstrate that, through its capacity to interact with other proteins (namely Sec16A and p115) that normally control protein secretion, TRAF3 resides close to the nucleus in uninfected cells, in a region called the ER-to-Golgi Intermediate Compartment (ERGIC). Following viral infection, the ERGIC reorganizes into small punctate structures allowing TRAF3 to associate with Mitochondrial AntiViral Signaling (MAVS), an essential adaptor of the anti-viral type I IFN response. Thus, our study reveals an unpredicted role of the protein secretion system for the proper localization of TRAF3 and the antiviral response.
Collapse
Affiliation(s)
| | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Lisa M. D'Ambrosio
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Tasheen Wissanji
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Gregory Emery
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Meloche
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Departments of Pharmacology and Molecular Biology, Université de Montréal, Montréal, Québec Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
- * E-mail:
| |
Collapse
|
28
|
The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells. Biochem J 2012; 443:387-96. [PMID: 22250954 DOI: 10.1042/bj20110554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.
Collapse
|
29
|
Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L. Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. PLoS Pathog 2012; 8:e1002528. [PMID: 22416225 PMCID: PMC3295573 DOI: 10.1371/journal.ppat.1002528] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/26/2011] [Indexed: 01/07/2023] Open
Abstract
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Kun Yin
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
- Shandong Institute of Parasitical Diseases, Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Defen Lu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Bingqing Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Deyu Zhu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Yuzhen Chen
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Hao Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Sujuan Xu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (LG); (JC)
| | - Lichuan Gu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
- * E-mail: (LG); (JC)
| |
Collapse
|
30
|
Grabski R, Balklava Z, Wyrozumska P, Szul T, Brandon E, Alvarez C, Holloway ZG, Sztul E. Identification of a functional domain within the p115 tethering factor that is required for Golgi ribbon assembly and membrane trafficking. J Cell Sci 2012; 125:1896-909. [PMID: 22328511 DOI: 10.1242/jcs.090571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The tethering factor p115 (known as Uso1p in yeast) has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that depletion of p115 by using RNA interference (RNAi) in C. elegans causes accumulation of the 170 kD soluble yolk protein (YP170) in the body cavity and retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes. Structure-function analyses of p115 have identified two homology regions (H1 and H2) within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a new C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants that lack the fourth CC domain (CC4) act in a dominant-negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi of p115 and the subsequent transfection with p115 deletion mutants, we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115. p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function, and suggest that both the CC1 and the CC4 SNARE-binding motifs participate in p115-mediated membrane tethering.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 2012; 194:1389-400. [PMID: 22228731 DOI: 10.1128/jb.06306-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of a severe pneumonia known as Legionnaires' disease, intercepts material from host cell membrane transport pathways to create a specialized vacuolar compartment that supports bacterial replication. Delivery of bacterial effector proteins into the host cell requires the Dot/Icm type IV secretion system. Several effectors, including SidM, SidD, and LepB, were shown to target the early secretory pathway by manipulating the activity of the host GTPase Rab1. While the function of these effectors has been well characterized, the role of another Rab1-interacting protein from L. pneumophila, the effector protein LidA, is poorly understood. Here, we show that LidA binding to Rab1 stabilized the Rab1-guanosine nucleotide complex, protecting it from inactivation by GTPase-activating proteins (GAPs) and from nucleotide extraction. The protective effect of LidA on the Rab1-guanine nucleotide complex was concentration dependent, consistent with a 1:1 stoichiometry of the LidA-Rab1 complex. The central coiled-coil region of LidA was sufficient for Rab1 binding and to prevent GAP-mediated inactivation or nucleotide extraction from Rab1. In addition, the central region mediated binding to phosphatidylinositol 3-phosphate and other phosphoinositides. When bound to Rab1, LidA interfered with the covalent modification of Rab1 by phosphocholination or AMPylation, and it also blocked de-AMPylation of Rab1 by SidD and dephosphocholination by Lem3. Based on these findings, we propose a role for LidA in bridging the membrane of the Legionella-containing vacuole (LCV) with that of secretory transport vesicles surrounding the LCV.
Collapse
|
32
|
Kümmel D, Reinisch KM. Structure of Golgi transport proteins. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a007609. [PMID: 21813399 DOI: 10.1101/cshperspect.a007609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of the Golgi has long been recognized to critically depend on vesicular transport from, to, and within its cisternae, involving constant membrane fission and fusion. These processes are mediated by Arf GTPases and coat proteins, and Rabs, tethers and SNARE proteins, respectively. In this article, we describe structural studies of Golgi coats and tethers and their interactions with SNAREs and GTPases as well as insights regarding membrane traffic processes that these have provided.
Collapse
Affiliation(s)
- Daniel Kümmel
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
33
|
Abstract
The Golgi is an essential membrane-bound organelle in the secretary pathway of eukaryotic cells. In mammalian cells, the Golgi stacks are integrated into a continuous perinuclear ribbon, which poses a challenge for the daughter cells to inherit this membrane organelle during cell division. To facilitate proper partitioning, the mammalian Golgi ribbon is disassembled into vesicles in early mitosis. Following segregation into the daughter cells, a functional Golgi is reformed. Here we summarize our current understanding of the molecular mechanisms that control the mitotic Golgi disassembly and postmitotic reassembly cycle in mammalian cells.
Collapse
Affiliation(s)
- Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
34
|
Lorente-Rodríguez A, Barlowe C. Entry and exit mechanisms at the cis-face of the Golgi complex. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005207. [PMID: 21482742 DOI: 10.1101/cshperspect.a005207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vesicular transport of protein and lipid cargo from the endoplasmic reticulum (ER) to cis-Golgi compartments depends on coat protein complexes, Rab GTPases, tethering factors, and membrane fusion catalysts. ER-derived vesicles deliver cargo to an ER-Golgi intermediate compartment (ERGIC) that then fuses with and/or matures into cis-Golgi compartments. The forward transport pathway to cis-Golgi compartments is balanced by a retrograde directed pathway that recycles transport machinery back to the ER. How trafficking through the ERGIC and cis-Golgi is coordinated to maintain organelle structure and function is poorly understood and highlights central questions regarding trafficking routes and organization of the early secretory pathway.
Collapse
|
35
|
Radulescu AE, Mukherjee S, Shields D. The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J Biol Chem 2011; 286:21915-26. [PMID: 21536679 DOI: 10.1074/jbc.m110.209460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus is a network of polarized cisternae localized to the perinuclear region in mammalian cells. It undergoes extensive vesiculation at the onset of mitosis and its reassembly requires factors that are in part segregated via the mitotic spindle. Here we show that unlike typical Golgi markers, the Golgi-protein p115 partitioned with the spindle poles throughout mitosis. An armadillo-fold in its N terminus mediated a novel interaction between p115 and γ-tubulin and functioned in its centrosomal targeting. Both the N- and C-terminal regions of p115 were required to maintain Golgi structure. Strikingly, p115 was essential for mitotic spindle function and the resolution of the cytokinetic bridge because its depletion resulted in spindle collapse, chromosome missegregation, and failed cytokinesis. We demonstrate that p115 plays a critical role in mitosis progression, implicating it as the only known golgin to regulate both mitosis and apoptosis.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
36
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
37
|
How PC, Shields D. Tethering function of the caspase cleavage fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. J Biol Chem 2010; 286:8565-8576. [PMID: 21147777 DOI: 10.1074/jbc.m110.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus undergoes extensive fragmentation during apoptosis due in part to caspase-mediated cleavage of its structural proteins. Significantly, the Golgi-vesicle-tethering protein p115 is cleaved at Asp(757) early during apoptosis and the nuclear translocation of its 205 amino acid C-terminal fragment (CTF) precedes observable Golgi fragmentation. Nuclear localization of the p115 CTF induces apoptosis. The regulation of CTF nuclear translocation and the mechanism of its apoptotic activity however, remain unknown. Here, we demonstrate that nuclear translocation of the CTF is regulated by SUMOylation. CTF-induced apoptosis is transcription dependent and mediated by the tumor suppressor, p53. Expression of the CTF led to the phosphorylation and stabilization of p53 and results in the expression of PUMA, a pro-apoptotic target of p53. CTF-induced stabilization of p53 is sensitive to the MEK/ERK inhibitor U0126. Co-immunoprecipitation studies indicate that the p115 CTF can bind to both p53 and ERK1. The CTF is also able to form dimers and its dimerization is dependent on residues 859-884, previously determined to be required for apoptosis. Indeed, CTF expression promotes p53-ERK interaction, which is diminished upon deletion of residues 859-884. Together, our results indicate a conserved tethering function of the Golgi protein p115 CTF which promotes p53-ERK interaction for the amplification of the apoptotic signal.
Collapse
Affiliation(s)
- Poh Choo How
- From the Departments of Developmental and Molecular Biology and.
| | - Dennis Shields
- From the Departments of Developmental and Molecular Biology and; Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
38
|
Yu IM, Hughson FM. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annu Rev Cell Dev Biol 2010; 26:137-56. [DOI: 10.1146/annurev.cellbio.042308.113327] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I-Mei Yu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
39
|
Li SQ, Chen Q. Advances in understanding the relationship between GP73 and hepatic diseases. Shijie Huaren Xiaohua Zazhi 2010; 18:2117-2120. [DOI: 10.11569/wcjd.v18.i20.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Golgi protein-73 (GP73), a recently discovered Golgi glycoprotein localized on the membrane of the Golgi complex, is expressed in many types of human epithelial cells. In normal human liver, GP73 is highly expressed in biliary epithelial cells, but barely detectable in hepatocytes. However, GP73 expression has been found to be strongly up-regulated in hepatocytes and elevated in the serum in patients with liver diseases, especially those with hepatocellular carcinoma (HCC). Thus, GP73 is a candidate serum marker for the early detection of HCC.
Collapse
|
40
|
Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res 2010; 20:1023-33. [PMID: 20421892 DOI: 10.1038/cr.2010.56] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintenance of the Golgi apparatus (GA) structure and function depends on Golgi matrix proteins. The posttranslational modification of Golgi proteins such as phosphorylation of members of the golgin and GRASP families is important for determining Golgi architecture. Some Golgi proteins including golgin-84 are also known to be methylated, but the function of golgin methylation remains unclear. Here, we show that the protein arginine methyltransferase 5 (PRMT5) localizes to the GA and forms complexes with several components involved in GA ribbon formation and vesicle tethering. PRMT5 interacts with the golgin GM130, and depletion of PRMT5 causes defects in Golgi ribbon formation. Furthermore, PRMT5 methylates N-terminal arginines in GM130, and such arginine methylation appears critical for GA ribbon formation. Our findings reveal a molecular mechanism by which PRMT5-dependent arginine methylation of GM130 controls the maintenance of GA architecture.
Collapse
Affiliation(s)
- Zhongwei Zhou
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system. Nat Protoc 2010; 5:758-72. [PMID: 20360770 DOI: 10.1038/nprot.2010.38] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Golgi apparatus undergoes extensive disassembly during mitosis and reassembly in post-mitotic daughter cells. This process has been mimicked in vitro by treating Golgi membranes with mitotic and interphase cytosol. To determine the minimal machinery that controls the morphological change, we have developed a defined Golgi disassembly and reassembly assay that reconstitutes this process using purified proteins instead of cytosol. Treatment of Golgi membranes with mitotic kinases and COPI coat proteins efficiently disassembles the membranes into mitotic Golgi fragments, whereas further incubation with p97 or N-ethylmaleimide-sensitive factor (two AAA ATPases involved in membrane fusion) and their cofactors, in combination with protein phosphatase PP2A, leads to reassembly of the membranes into new Golgi stacks. The whole process takes 3-4 d and is applicable for identification and determination of novel cytosolic and membrane proteins that regulate Golgi membrane dynamics in the cell cycle.
Collapse
|
42
|
Striegl H, Andrade-Navarro MA, Heinemann U. Armadillo motifs involved in vesicular transport. PLoS One 2010; 5:e8991. [PMID: 20126549 PMCID: PMC2813876 DOI: 10.1371/journal.pone.0008991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/12/2010] [Indexed: 12/23/2022] Open
Abstract
Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.
Collapse
Affiliation(s)
- Harald Striegl
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
44
|
Wei JH, Seemann J. Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 2009; 20:810-6. [PMID: 19508856 DOI: 10.1016/j.semcdb.2009.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
Successful cell reproduction requires faithful duplication and proper segregation of cellular contents, including not only the genome but also intracellular organelles. Since the Golgi apparatus is an essential organelle of the secretory pathway, its accurate inheritance is therefore of importance to sustain cellular function. Regulation of Golgi division and its coordination with cell cycle progression involves a series of sequential events that are subjected to a precise spatiotemporal control. Here, we summarize the current knowledge about the underlying mechanisms, the molecular players and the biological relevance of this process, particularly in mammalian cells, and discuss the unsolved problems and future perspectives opened by the recent studies.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
45
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
46
|
Pinheiro H, Samalova M, Geldner N, Chory J, Martinez A, Moore I. Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. J Cell Sci 2009; 122:3749-58. [PMID: 19789181 DOI: 10.1242/jcs.050625] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Collapse
Affiliation(s)
- Hazel Pinheiro
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | |
Collapse
|
47
|
Yamasaki A, Menon S, Yu S, Barrowman J, Meerloo T, Oorschot V, Klumperman J, Satoh A, Ferro-Novick S. mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles. Mol Biol Cell 2009; 20:4205-15. [PMID: 19656848 DOI: 10.1091/mbc.e09-05-0387] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to gamma1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.
Collapse
Affiliation(s)
- Akinori Yamasaki
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol 2009; 83:9709-19. [PMID: 19587041 DOI: 10.1128/jvi.00600-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Despite the prevalence of these viruses within the community, the study of human norovirus has largely been hindered due to the inability to cultivate the viruses ex vivo and the lack of a small-animal model. In 2003, the discovery of a novel murine norovirus (MNV-1) and the identification of the tropism of MNV-1 for cells of a mononuclear origin led to the establishment of the first norovirus tissue culture system. Like other positive-sense RNA viruses, MNV-1 replication is associated with host membranes, which undergo significant rearrangement during infection. We characterize here the subcellular localization of the MNV-1 open reading frame 1 proteins and viral double-stranded RNA (dsRNA). Over the course of infection, dsRNA and the MNV-1 RNA-dependent RNA polymerase (NS7) were observed to proliferate from punctate foci located in the perinuclear region. All of the MNV-1 open reading frame 1 proteins were observed to colocalize with dsRNA during the course of infection. The MNV-1 replication complex was immunolocalized to virus-induced vesicle clusters formed in the cytoplasm of infected cells. Both dsRNA and MNV-1 NS7 were observed to localize to the limiting membrane of the individual clusters by cryo-immunoelectron microscopy. We show that the MNV-1 replication complex initially associates with membranes derived from the endoplasmic reticulum, trans-Golgi apparatus, and endosomes. In addition, we show that MNV-1 replication is insensitive to the fungal metabolite brefeldin A and consistently does not appear to recruit coatomer protein complex I (COPI) or COPII component proteins during replication. These data provide preliminary insights into key aspects of replication of MNV-1, which will potentially further our understanding of the pathogenesis of noroviruses and aid in the identification of potential targets for drug development.
Collapse
|
49
|
An Y, Chen CY, Moyer B, Rotkiewicz P, Elsliger MA, Godzik A, Wilson IA, Balch WE. Structural and functional analysis of the globular head domain of p115 provides insight into membrane tethering. J Mol Biol 2009; 391:26-41. [PMID: 19414022 DOI: 10.1016/j.jmb.2009.04.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/10/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Molecular tethers have a central role in the organization of the complex membrane architecture of eukaryotic cells. p115 is a ubiquitous, essential tether involved in vesicle transport and the structural organization of the exocytic pathway. We describe two crystal structures of the N-terminal domain of p115 at 2.0 A resolution. The p115 structures show a novel alpha-solenoid architecture constructed of 12 armadillo-like, tether-repeat, alpha-helical tripod motifs. We find that the H1 TR binds the Rab1 GTPase involved in endoplasmic reticulum to Golgi transport. Mutation of the H1 motif results in the dominant negative inhibition of endoplasmic reticulum to Golgi trafficking. We propose that the H1 helical tripod contributes to the assembly of Rab-dependent complexes responsible for the tether and SNARE-dependent fusion of membranes.
Collapse
Affiliation(s)
- Yu An
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Striegl H, Roske Y, Kümmel D, Heinemann U. Unusual armadillo fold in the human general vesicular transport factor p115. PLoS One 2009; 4:e4656. [PMID: 19247479 PMCID: PMC2645507 DOI: 10.1371/journal.pone.0004656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/07/2009] [Indexed: 01/21/2023] Open
Abstract
The golgin family gives identity and structure to the Golgi apparatus and is part of a complex protein network at the Golgi membrane. The golgin p115 is targeted by the GTPase Rab1a, contains a large globular head region and a long region of coiled-coil which forms an extended rod-like structure. p115 serves as vesicle tethering factor and plays an important role at different steps of vesicular transport. Here we present the 2.2 Å-resolution X-ray structure of the globular head region of p115. The structure exhibits an armadillo fold that is decorated by elongated loops and carries a C-terminal non-canonical repeat. This terminal repeat folds into the armadillo superhelical groove and allows homodimeric association with important implications for p115 mediated multiple protein interactions and tethering.
Collapse
Affiliation(s)
- Harald Striegl
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Yvette Roske
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Daniel Kümmel
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|