1
|
Bertazzon M, Hurtado-Pico A, Plaza-Sirvent C, Schuster M, Preußner M, Kuropka B, Liu F, Kirsten AZA, Schmitt XJ, König B, Álvaro-Benito M, Abualrous ET, Albert GI, Kliche S, Heyd F, Schmitz I, Freund C. The nuclear GYF protein CD2BP2/U5-52K is required for T cell homeostasis. Front Immunol 2024; 15:1415839. [PMID: 39308865 PMCID: PMC11412891 DOI: 10.3389/fimmu.2024.1415839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.
Collapse
Affiliation(s)
- Miriam Bertazzon
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Almudena Hurtado-Pico
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Marc Schuster
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco Preußner
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fan Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Xiao Jakob Schmitt
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benjamin König
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain
| | - Esam T. Abualrous
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gesa I. Albert
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation GCI3, Otto-von-Guericke-University, Magdeburg, Germany
| | - Florian Heyd
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Freund
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Mansour H, Cabezas-Cruz A, Peucelle V, Farce A, Salomé-Desnoulez S, Metatla I, Guerrera IC, Hollin T, Khalife J. Characterization of GEXP15 as a Potential Regulator of Protein Phosphatase 1 in Plasmodium falciparum. Int J Mol Sci 2023; 24:12647. [PMID: 37628837 PMCID: PMC10454571 DOI: 10.3390/ijms241612647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.
Collapse
Affiliation(s)
- Hala Mansour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France;
| | - Véronique Peucelle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U1286–Infinite–Institute for Translational Research in Inflammation, 59000 Lille, France;
| | - Sophie Salomé-Desnoulez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41–UAR 2014–PLBS, 59000 Lille, France;
| | - Ines Metatla
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Thomas Hollin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| |
Collapse
|
3
|
Zhang D, Yang H, Jiang L, Zhao C, Wang M, Hu B, Yu C, Wei Z, Tse YC. Interaction between DLC-1 and SAO-1 facilitates CED-4 translocation during apoptosis in the Caenorhabditis elegans germline. Cell Death Dis 2022; 8:441. [PMID: 36323675 PMCID: PMC9630320 DOI: 10.1038/s41420-022-01233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Apoptosis is one of the major forms of programmed cell death, and it serves vital biological functions in multicellular animal and plant cells. The core mechanism of apoptosis is highly conserved in metazoans, where the translocation of CED-4/Apaf-1 from mitochondria to the nuclear membrane is required to initiate and execute apoptosis. However, the underlying molecular mechanisms of this translocation are poorly understood. In this study, we showed that SAO-1 binds DLC-1 and prevents its degradation to promote apoptosis in C. elegans germ cells. We demonstrated that SAO-1 and DLC-1 regulate CED-4/Apaf-1 nuclear membrane accumulation during apoptosis. Isothermal titration calorimetry-based assay and high-resolution crystal structure analysis further revealed that SAO-1 interacted with DLC-1 to form a 2:4 complex: each of the two β-sheets in the SAO-1 peptide interacted with two DLC-1 dimers. Point mutations at the SAO-1-DLC-1 binding interface significantly inhibited apoptotic corpse formation and CED-4 nuclear membrane accumulation within C. elegans germ cells. In conclusion, our study provides a new perspective on the regulation of CED-4-mediated apoptosis.
Collapse
Affiliation(s)
- Dandan Zhang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001 China ,grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Haibin Yang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ling Jiang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.194645.b0000000121742757School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chan Zhao
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Mengjun Wang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Boyi Hu
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.221309.b0000 0004 1764 5980Department of Biology, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Cong Yu
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhiyi Wei
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yu Chung Tse
- grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
4
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
5
|
Martinez JC, Castillo F, Ruiz-Sanz J, Murciano-Calles J, Camara-Artigas A, Luque I. Understanding binding affinity and specificity of modular protein domains: A focus in ligand design for the polyproline-binding families. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:161-188. [PMID: 35534107 DOI: 10.1016/bs.apcsb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.
Collapse
Affiliation(s)
- Jose C Martinez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier Ruiz-Sanz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Murciano-Calles
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Camara-Artigas
- Departamento de Química Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario ceiA3 y CIAMBITAL, Almeria, Spain
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
7
|
Wang C, Gupta P, Fressigne L, Bossé GD, Wang X, Simard MJ, Hansen D. TEG-1 CD2BP2 controls miRNA levels by regulating miRISC stability in C. elegans and human cells. Nucleic Acids Res 2017; 45:1488-1500. [PMID: 28180320 PMCID: PMC5388422 DOI: 10.1093/nar/gkw836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
MiRNAs post-transcriptionally regulate gene expression by recruiting the miRNA-induced silencing complex (miRISC) to target mRNAs. However, the mechanisms by which miRISC components are maintained at appropriate levels for proper function are largely unknown. Here, we demonstrate that Caenorhabditis elegans TEG-1 regulates the stability of two miRISC effectors, VIG-1 and ALG-1, which in turn affects the abundance of miRNAs in various families. We demonstrate that TEG-1 physically interacts with VIG-1, and complexes with mature let-7 miRNA. Also, loss of teg-1 in vivo phenocopies heterochronic defects observed in let-7 mutants, suggesting the association of TEG-1 with miRISC is necessary for let-7 to function properly during development. Loss of TEG-1 function also affects the abundance and function of other microRNAs, suggesting that TEG-1's role is not specific to let-7. We further demonstrate that the human orthologs of TEG-1, VIG-1 and ALG-1 (CD2BP2, SERBP1/PAI-RBP1 and AGO2) are found in a complex in HeLa cells, and knockdown of CD2BP2 results in reduced miRNA levels; therefore, TEG-1's role in affecting miRNA levels and function is likely conserved. Together, these data demonstrate that TEG-1 CD2BP2 stabilizes miRISC and mature miRNAs, maintaining them at levels necessary to properly regulate target gene expression.
Collapse
Affiliation(s)
- Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Pratyush Gupta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lucile Fressigne
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Gabriel D Bossé
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Mizuguchi M, Obita T, Kajiyama A, Kozakai Y, Nakai T, Nabeshima Y, Okazawa H. Allosteric modulation of the binding affinity between PQBP1 and the spliceosomal protein U5-15kD. FEBS Lett 2016; 590:2221-31. [PMID: 27314904 DOI: 10.1002/1873-3468.12256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
Abstract
Polyglutamine tract-binding protein 1 (PQBP1) is an intrinsically disordered protein composed of a small folded WW domain and a long disordered region. PQBP1 binds to spliceosomal proteins WBP11 and U5-15kD through its N-terminal WW domain and C-terminal region, respectively. Here, we reveal that the binding between PQBP1 and WBP11 reduces the binding affinity between PQBP1 and U5-15kD. Our results suggest that the interaction between PQBP1 and WBP11 negatively modulates the U5-15kD binding of PQBP1 by an allosteric mechanism.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Asagi Kajiyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yuki Kozakai
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Tsuyoshi Nakai
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
9
|
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23:8. [PMID: 26786672 PMCID: PMC4717660 DOI: 10.1186/s12929-016-0223-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Collapse
Affiliation(s)
- Chien-Hsun Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
10
|
Gan Z, Wang B, Lu Y, Cai S, Cai J, Jian J, Wu Z. Molecular characterization and expression of CD2BP2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus. Gene 2014; 548:126-33. [DOI: 10.1016/j.gene.2014.07.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/27/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
11
|
Piotukh K, Freund C. A novel hSH3 domain scaffold engineered to bind folded domains in CD2BP2 and HIV capsid protein. Protein Eng Des Sel 2012; 25:649-56. [DOI: 10.1093/protein/gzs062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Hole-in-one mutant phenotypes link EGFR/ERK signaling to epithelial tissue repair in Drosophila. PLoS One 2011; 6:e28349. [PMID: 22140578 PMCID: PMC3226689 DOI: 10.1371/journal.pone.0028349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background Epithelia act as physical barriers protecting living organisms and their organs from the surrounding environment. Simple epithelial tissues have the capacity to efficiently repair wounds through a resealing mechanism. The known molecular mechanisms underlying this process appear to be conserved in both vertebrates and invertebrates, namely the involvement of the transcription factors Grainy head (Grh) and Fos. In Drosophila, Grh and Fos lead to the activation of wound response genes required for epithelial repair. ERK is upstream of this pathway and known to be one of the first kinases to be activated upon wounding. However, it is still unclear how ERK activation contributes to a proper wound response and which molecular mechanisms regulate its activation. Methodology/Principal Findings In a previous screen, we isolated mutants with defects in wound healing. Here, we describe the role of one of these genes, hole-in-one (holn1), in the wound healing process. Holn1 is a GYF domain containing protein that we found to be required for the activation of several Grh and Fos regulated wound response genes at the wound site. We also provide evidence suggesting that Holn1 may be involved in the Ras/ERK signaling pathway, by acting downstream of ERK. Finally, we show that wound healing requires the function of EGFR and ERK signaling. Conclusions/Significance Based on these data, we conclude that holn1 is a novel gene required for a proper wound healing response. We further propose and discuss a model whereby Holn1 acts downstream of EGFR and ERK signaling in the Grh/Fos mediated wound closure pathway.
Collapse
|
13
|
Ash MR, Faelber K, Kosslick D, Albert GI, Roske Y, Kofler M, Schuemann M, Krause E, Freund C. Conserved β-Hairpin Recognition by the GYF Domains of Smy2 and GIGYF2 in mRNA Surveillance and Vesicular Transport Complexes. Structure 2010; 18:944-54. [PMID: 20696395 DOI: 10.1016/j.str.2010.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/09/2010] [Accepted: 04/28/2010] [Indexed: 01/07/2023]
Affiliation(s)
- Miriam-Rose Ash
- Protein Engineering, Leibniz-Institut fuer Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kofler M, Schuemann M, Merz C, Kosslick D, Schlundt A, Tannert A, Schaefer M, Lührmann R, Krause E, Freund C. Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol Cell Proteomics 2009; 8:2461-73. [PMID: 19483244 DOI: 10.1074/mcp.m900191-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein interaction modules during eukaryotic evolution. They are especially abundant in proteins associated with pre-mRNA splicing and likely assist in the formation of the spliceosome by binding to GYF and WW domains. Here we profile PRS-mediated interactions of the CD2BP2/52K GYF domain by a site-specific peptide inhibitor and stable isotope labeling/mass spectrometry analysis. Several PRS hubs with multiple proline-rich motifs exist that can recruit GYF and/or WW domains. Saturating the PRS sites by an isolated GYF domain inhibited splicing at the level of A complex formation. The interactions mediated by PRS are therefore important to the early phases of spliceosomal assembly.
Collapse
Affiliation(s)
- Michael Kofler
- Protein Engineering Group, Leibniz Institute for Molecular Pharmacology and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Uryga-Polowy V, Kosslick D, Freund C, Rademann J. Resin-bound aminofluorescein for C-terminal labeling of peptides: high-affinity polarization probes binding to polyproline-specific GYF domains. Chembiochem 2008; 9:2452-62. [PMID: 18803191 DOI: 10.1002/cbic.200800329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A polymer support for the solid-phase synthesis of C-terminally labeled carboxylic acids has been developed. Fluorophore-labeled peptides were constructed directly on the amino group of resin-bound aminofluorescein. Fmoc-protected aminofluorescein was coupled onto tritylpolystyrene, and the free phenolic hydroxyl positions of the fluorescein were blocked with suitable protecting groups. The mode of attachment was analyzed and found to be selective for the phenoxy ether linkage. The conditions for peptide synthesis on the labeling resin were investigated, and a small library of C-terminally labeled peptides was prepared. The fluorescence quantum yields of C-terminally labeled peptides were determined and indicated the suitability of the compounds for imaging and binding experiments. The obtained peptides were therefore investigated as fluorescence polarization probes. Two different proline-rich binding domains of the GYF family-CD2BP2 and PERQ2-were targeted by peptides labeled either C- or N-terminally. Reversible binding constants were determined by fluorescence polarization measurements and were verified by competition experiments with the corresponding unlabeled peptide. As a second control, the binding constants were measured by NMR titration experiments, recording the HSQC NMR spectra of (15)N-labeled proteins in the presence of the peptide polarization probes. Ligands with higher affinities than all others known previously were identified for both GYF domains. The competition assay with the developed fluorescent probe has a high statistical reliability and can thus be used for screening of GYF domain inhibitors.
Collapse
Affiliation(s)
- Viviane Uryga-Polowy
- Department of Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology FMP, Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane EK, McDonald NQ. Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J Biol Chem 2008; 283:22325-35. [PMID: 18495667 DOI: 10.1074/jbc.m709900200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F-box proteins are the substrate-recognition components of the Skp1-Cul1-F box protein (SCF) E3 ubiquitin ligases. Here we report a structural relationship between Fbxo7, a component of the SCF(Fbxo7) E3 ligase, and the proteasome inhibitor PI31. SCF(Fbxo7) is known to catalyze the ubiquitination of hepatoma-up-regulated protein (HURP) and the inhibitor of apoptosis (IAP) protein but also functions as an activator of cyclin D-Cdk6 complexes. We identify PI31 as an Fbxo7.Skp1 binding partner and show that this interaction requires an N-terminal domain present in both proteins that we term the FP (Fbxo7/PI31) domain. The crystal structure of the PI31 FP domain reveals a novel alpha/beta-fold. Biophysical and mutational analyses are used to map regions of the PI31 FP domain mediating homodimerization and required for heterodimerization with Fbxo7.Skp1. Equivalent mutations in Fbxo7 ablate interaction with PI31 and also block Fbxo7 homodimerization. Knockdown of Fbxo7 does not affect PI31 levels arguing against PI31 being a substrate for SCF(Fbxo7). We present a model for FP domain-mediated dimerization of SCF(Fbxo7) and PI31.
Collapse
Affiliation(s)
- Rebecca Kirk
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Woo JS, Suh HY, Park SY, Oh BH. Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 2007; 24:967-76. [PMID: 17189197 DOI: 10.1016/j.molcel.2006.11.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/01/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
B30.2/SPRY domains are found in numerous proteins that cover a wide spectrum of biological functions, including regulation of cytokine signaling and innate retroviral restriction. Herein, we report the crystal structure of the B30.2/SPRY domain of a SPRY domain-containing SOCS box (SSB) protein, GUSTAVUS, complexed with a 20 amino acid peptide derived from the RNA helicase VASA, revealing how these domains recognize target proteins. The peptide-binding site is conformationally rigid and has a preformed pocket. The interaction between the pocket and the Asp-Ile-Asn-Asn-Asn-Asn sequence within the peptide accounts for the high-affinity binding between GUSTAVUS and VASA. This observation led to a facile identification of the Glu-Leu-Asn-Asn-Asn-Leu sequence as the recognition motif in a proapoptotic protein Par-4 for its interaction with a GUSTAVUS homolog, SSB-1. Ensuing analyses indicated that many B30.2/SPRY domains have a similar preformed pocket, which would allow them to bind multiple targets.
Collapse
Affiliation(s)
- Jae-Sung Woo
- Center for Biomolecular Recognition, Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | |
Collapse
|
18
|
Abstract
GYF domains are small, versatile adaptor domains that recognize proline-rich sequences (PRS). They are present in most eukaryotic species sequenced so far, but in contrast to other PRS-recognition domains (PRD), GYF domains have not experienced the same amplification in metazoa during evolution. Mutational and structural analysis has shown the conserved signature W-X-Y-X(6-11)-GPF-X(4)-M-X(2)-W-X(3)-GYF to be the site of interaction with proline-rich peptides. In contrast, composition and length of the C-terminal half of GYF domains are not conserved. Similar to other PRD, GYF domains bind to many different PRS that converge on a minimal consensus sequence. All GYF domains analyzed so far selected for the core motif PPG, whereas amino-acid preferences adjacent to this motif vary. As a result of this analysis, two subfamilies have been identified: CD2BP2-type and SMY2-type GYF domains. The latter subfamily comprises most GYF domains and is characterized by a shorter beta(1)-beta(2) loop and an aspartate instead of the tryptophan found at position 8 in CD2BP2-type GYF domains. Recent analysis of binding specificities for GYF domains allowed identification of novel interaction partners. Thereby proteomics has contributed to a functional understanding of GYF domain-containing proteins and sets the stage for a more systematic investigation of their functions in vivo.
Collapse
Affiliation(s)
- Michael M Kofler
- Protein Engineering Group, Free University and FMP Berlin, Germany.
| | | |
Collapse
|
19
|
Kofler M, Motzny K, Freund C. GYF domain proteomics reveals interaction sites in known and novel target proteins. Mol Cell Proteomics 2005; 4:1797-811. [PMID: 16120600 DOI: 10.1074/mcp.m500129-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GYF domains are conserved eukaryotic adaptor domains that recognize proline-rich sequences. Although the structure and function of the prototypic GYF domain from the human CD2BP2 protein have been characterized in detail, very little is known about GYF domains from other proteins and species. Here we describe the binding properties of four GYF domains of various origins. Phage display in combination with SPOT analysis revealed the PPG(F/I/L/M/V) motif as a general recognition signature. Based on these results, the proteomes of human, yeast, and Arabidopsis thaliana were searched for potential interaction sites. Binding of several candidate proteins was confirmed by pull-down experiments or yeast two-hybrid analysis. The binding epitope of the GYF domain from the yeast SMY2 protein was mapped by NMR spectroscopy and led to a structural model that accounts for the different binding properties of SMY2-type GYF domains and the CD2BP2-GYF domain.
Collapse
Affiliation(s)
- Michael Kofler
- Protein Engineering Group, Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | |
Collapse
|