1
|
Coleman T, Shin J, Silberg JJ, Shamoo Y, Atkinson JT. The Biochemical Impact of Extracting an Embedded Adenylate Kinase Domain Using Circular Permutation. Biochemistry 2024; 63:599-609. [PMID: 38357768 DOI: 10.1021/acs.biochem.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.
Collapse
Affiliation(s)
- Tom Coleman
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - John Shin
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Kumar Y, Singh RK, Hazra AB. Characterization of a novel mesophilic CTP-dependent riboflavin kinase and rational engineering to create its thermostable homologs. Chembiochem 2021; 22:3414-3424. [PMID: 34387404 DOI: 10.1002/cbic.202100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/20/2021] [Indexed: 11/05/2022]
Abstract
Flavins play a central role in metabolism as molecules that catalyze a wide range of redox reactions in living organisms. Several variations in flavin biosynthesis exist among the domains of life, and their analysis has revealed many new structural and mechanistic insights till date. The cytidine triphosphate (CTP)-dependent riboflavin kinase in archaea is one such example - unlike most kinases that use adenosine triphosphate, archaeal riboflavin kinases utilize CTP to phosphorylate riboflavin and produce flavin mononucleotide. In this study, we present the characterization of a new mesophilic archaeal CTP-utilizing riboflavin kinase homolog from Methanococcus maripaludis (MmpRibK), which is linked closely in sequence to the previously characterized thermophilic Methanocaldococcus jannaschii homolog. We reconstitute the activity of MmpRibK, determine its kinetic parameters and molecular factors that contribute to its unique properties, and finally establish the residues that improve its thermostability using computation and a series of experiments. Our work advances the molecular understanding of flavin biosynthesis in archaea by the characterization of the first mesophilic CTP-dependent riboflavin kinase. Finally, it validates the role of salt bridges and rigidifying amino acid residues in imparting thermostability to this unique structural fold that characterizes archaeal riboflavin kinase enzymes, with implications in enzyme engineering and biotechnological applications.
Collapse
Affiliation(s)
- Yashwant Kumar
- IISER Pune: Indian Institute of Science Education Research Pune, Chemistry, INDIA
| | | | | |
Collapse
|
3
|
Ahmed B, Khan S, Nouroz F, Farooq U, Khalid S. Exploring multi-target inhibitors using in silico approach targeting cell cycle dysregulator-CDK proteins. J Biomol Struct Dyn 2021; 40:8825-8839. [PMID: 33931002 DOI: 10.1080/07391102.2021.1918253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to a family of multifunctional enzymes that control cell cycle modifications, transcription, and cell proliferation. Their dysfunctions result in different diseases like cancer making them an important drug target in oncology and beyond. The present study aims at identifying the selective inhibitors for ATP binding site in CDK proteins (CDK1, CDK2, CDK4, and CDK5) following a multi-target drug designing approach. Significant challenges lie in identifying the selective inhibitor for the ATP binding site as this region is highly conserved in all protein kinases. Molecular docking coupled with molecular dynamics simulation and free energy of binding calculations (MMPBSA/MMGBSA) were used to identify the potent competitive ATP binding site inhibitors. All the four proteins were docked against the library of drug-like compounds and the outcomes of the docking study were further analyzed by Molecular dynamics (total of 6μs) and MMPB/GBSA techniques. Five different inhibitors for structurally distant protein kinases, i.e. CDK1, CDK2, CDK4, and CDK5 are identified with the binding energy (ΔGbind-PB) in the range -18.24 to -28.43Kcal/mol. Mechanistic complexities associated with the binding of the inhibitor are unraveled by carefully analyzing the MD trajectories. It is observed that certain residues (Lys33, Asp127, Asp145, Tyr15, Gly16, Asn144) and regions are critical for the retention of inhibitors in active pocket, and significant conformational changes take place in the active site region as well as its neighbor following the entry of the ligand inside active pocket as inferred by RMSD and RMSF. It is observed that LIG3 and LIG4 are the best possible inhibitors as reflected from their high binding energy, interaction pattern, and their retention inside the active pocket. This study will facilitate the process of multi-target drug designing against CDK proteins and can be used in the development of potential therapeutics against different diseases.
Collapse
Affiliation(s)
- Basharat Ahmed
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Sara Khan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan
| | - Saba Khalid
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
4
|
Zaman Z, Khan S, Nouroz F, Farooq U, Urooj A. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sci 2020; 264:118621. [PMID: 33164832 DOI: 10.1016/j.lfs.2020.118621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 01/27/2023]
Abstract
AIMS Protein tyrosine phosphatase (PTP-CPS4B) is a signaling enzyme that is essential for a wide range of cellular processes, like metabolism, proliferation, survival and motility. Studies suggest that PTPs are vital for the production of Wzy-dependent capsule in bacteria, making it a valuable target for the discovery of pneumonia associated anti-virulence antibacterial agents. Present study aims at identifying the potential drug candidates to be exploited in inhibiting the growth of Streptococcus pneumonia targeting PTP-CPS4B. MATERIALS AND METHODS The present study exploits the molecular docking potential coupled with molecular dynamic simulation as well as free energy calculations to identify potential inhibitors of PTP-CPS4B. Libraries of known and unknown compounds were docked into the active site of PTP-CPS4B using MOE. The compounds with best binding affinity and orientation were subjected to MD simulations and free energy calculations. FINDINGS Top three compounds based on their binding energy and well composed interaction pattern obtained from molecular docking study were subjected to MD simulations and were compared to reported antibiotic drugs. MD Simulation studies have shown that the presence of an inhibitor inside the active site reduces protein flexibility as evident from RMSD, RMSF and Principal component analyses. MD simulations identified a transition from extended to bended motional shift in loop α6 of the PTP-CPS4B in ligand bound state. This flexibility was reported in the RMSF analysis and verified by the visual investigation of the loop α6 at different time intervals during the simulation. Free energy of binding affinity (computed using MMPBSA &MMGBSA approach) and the interaction patterns obtained from MD trajectory indicate that compound ZN1 (-31.50 Kcal/mol), ZN2 (-33.14 Kcal/mol) and ZN3 (-26.60 Kcal/mol) are potential drug candidates against PTP-CPS4B. Residue wise decomposition study helped in identifying the role of individual amino acid towards the overall inhibition behavior of the compounds. PCA analysis has led to the conclusion that the behavior of PTP-CPS4B inhibitors causes conformational dynamics that can be used to describe the protein inhibition mechanism. SIGNIFICANCE The outcome reveals that this study provide enough evidences for the consideration of ZN1, ZN2, ZN3 as potential PTP-CPS4B inhibitors and further in vitro and in vivo studies may prove their therapeutic potential.
Collapse
Affiliation(s)
- Zainab Zaman
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Sara Khan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan.
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Abbottabad 22060, Pakistan
| | - Akasha Urooj
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
5
|
Enhanced Thermostability and Enzymatic Activity of Cel6A Variants from Thermobifida fusca by Empirical Domain Engineering (Short Title: Domain Engineering of Cel6A). BIOLOGY 2020; 9:biology9080214. [PMID: 32784797 PMCID: PMC7464639 DOI: 10.3390/biology9080214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (Cel6A) of Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity and thermostability of the most efficient variant named as Cel6A.CBC was analyzed by molecular dynamics simulations. This variant demonstrated profound activity against soluble and insoluble cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose. The variant Cel6A.CBC showed the highest catalysis of carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature of 60 °C. Furthermore, a sound rationale was observed between experimental findings and molecular modeling of Cel6A.CBC which revealed thermostability of Cel6A.CBC at 26.85, 60.85, and 74.85 °C as well as structural flexibility at 126.85 °C. Therefore, a thermostable derivative of Cel6A engineered in the present work has enhanced biological performance and can be a useful construct for the mass production of bioethanol from plant biomass.
Collapse
|
6
|
Synergistic effects between the additions of a disulphide bridge and an N-terminal hydrophobic sidechain on the binding pocket tilting and enhanced Xyn11A activity. Arch Biochem Biophys 2019; 672:108068. [DOI: 10.1016/j.abb.2019.108068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/20/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
|
7
|
Moon S, Kim J, Koo J, Bae E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:024702. [PMID: 31111079 PMCID: PMC6498869 DOI: 10.1063/1.5089707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Protein thermal stability is an important field since thermally stable proteins are desirable in many academic and industrial settings. Information on protein thermal stabilization can be obtained by comparing homologous proteins from organisms living at distinct temperatures. Here, we report structural and mutational analyses of adenylate kinases (AKs) from psychrophilic Bacillus globisporus (AKp) and mesophilic Bacillus subtilis (AKm). Sequence and structural comparison showed suboptimal hydrophobic packing around Thr26 in the CORE domain of AKp, which was replaced with an Ile residue in AKm. Mutations that improved hydrophobicity of the Thr residue increased the thermal stability of the psychrophilic AKp, and the largest stabilization was observed for a Thr-to-Ile substitution. Furthermore, a reverse Ile-to-Thr mutation in the mesophilic AKm significantly decreased thermal stability. We determined the crystal structures of mutant AKs to confirm the impact of the residue substitutions on the overall stability. Taken together, our results provide a structural basis for the stability difference between psychrophilic and mesophilic AK homologues and highlight the role of hydrophobic interactions in protein thermal stability.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Euiyoung Bae
- Author to whom correspondence should be addressed:. Telephone: +82-2-880-4648. Fax: +82-2-873-3112
| |
Collapse
|
8
|
Abstract
The dynamic native, functional folded forms of proteins are unstable mainly because they readily unfold into flexible unstructured forms.
Collapse
Affiliation(s)
- Romas Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics
- University of Minnesota
- St Paul
- USA
| |
Collapse
|
9
|
Wang Y, Makowski L. Fine structure of conformational ensembles in adenylate kinase. Proteins 2017; 86:332-343. [DOI: 10.1002/prot.25443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Yujing Wang
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| | - Lee Makowski
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| |
Collapse
|
10
|
Sutthibutpong T, Rattanarojpong T, Khunrae P. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays. J Biomol Struct Dyn 2017; 36:3978-3992. [DOI: 10.1080/07391102.2017.1404934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| |
Collapse
|
11
|
Muneeswaran G, Kartheeswaran S, Muthukumar K, Karunakaran C. Temperature-dependent conformational dynamics of cytochrome c: Implications in apoptosis. J Mol Graph Model 2017; 79:140-148. [PMID: 29161635 DOI: 10.1016/j.jmgm.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022]
Abstract
Heat, electric shock, and burn injuries induce apoptosis by releasing cytochrome c (cyt-c) from mitochondria and by subsequently activating the death protease, caspases-3. During apoptosis, cyt-c undergoes changes in the secondary structure that have been suggested to increase its peroxidase activity. Information about these structural changes will provide better understanding of the apoptotic mechanism. Hence, temperature-dependent conformational dynamics of cyt-c has been investigated through molecular dynamics (MD) simulations to explain the structural changes and to correlate them with its apoptotic behavior. We observe that, at lower temperatures (223, 248, and 300K), the secondary structure of cyt-c, remains stable, while at higher temperatures (323, 373, 423, and 473K), the secondary structural regions change significantly. Further, our MD results indicate that these structural changes are mainly localized on α-helices, turns, β-sheets, and important loops that were involved in the stabilization of the heme conformation. This conformational transition between specific regions of secondary structure of cyt-c directly affects the electron tunneling properties of the proteins as observed experimentally. We quantify and compare these changes and explain that the temperature plays a vital role in assuring the structural stability of cyt-c and thus its functions. Our findings from this MD study reproduce experimental results at high temperatures and provide evidence for the alteration of the heme through the disruption of the H-bonding interactions between specific regions of cyt-c, thereby enhancing its peroxidase activity which plays a crucial role in the apoptotic process.
Collapse
Affiliation(s)
- Gurusamy Muneeswaran
- Biomedical Research Lab, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, 626 001, Tamilnadu, India; Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnanakoil, 626 126, Tamil Nadu, India
| | - Subramanian Kartheeswaran
- Department of Master of Computer Applications, School of Computing, Kalasalingam Academy of Research and Education, Krishnanakoil, 626 126, Tamil Nadu, India
| | | | - Chandran Karunakaran
- Biomedical Research Lab, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, 626 001, Tamilnadu, India.
| |
Collapse
|
12
|
Moon S, Kim J, Bae E. Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes. Sci Rep 2017; 7:16027. [PMID: 29167503 PMCID: PMC5700098 DOI: 10.1038/s41598-017-16266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Psychrophiles are extremophilic organisms capable of thriving in cold environments. Proteins from these cold-adapted organisms can remain physiologically functional at low temperatures, but are structurally unstable even at moderate temperatures. Here, we report the crystal structure of adenylate kinase (AK) from the Antarctic fish Notothenia coriiceps, and identify the structural basis of cold adaptation by comparison with homologues from tropical fishes including Danio rerio. The structure of N. coriiceps AK (AKNc) revealed suboptimal hydrophobic packing around three Val residues in its central CORE domain, which are replaced with Ile residues in D. rerio AK (AKDr). The Val-to-Ile mutations that improve hydrophobic CORE packing in AKNc increased stability at high temperatures but decreased activity at low temperatures, suggesting that the suboptimal hydrophobic CORE packing is important for cold adaptation. Such linkage between stability and activity was also observed in AKDr. Ile-to-Val mutations that destabilized the tropical AK resulted in increased activity at low temperatures. Our results provide the structural basis of cold adaptation of a psychrophilic enzyme from a multicellular, eukaryotic organism, and highlight the similarities and differences in the structural adjustment of vertebrate and bacterial psychrophilic AKs during cold adaptation.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- iNtRON Biotechnology, Inc., Seongnam, 13202, Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
13
|
Maiangwa J, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Normi YM, Mohd Shariff F, Leow TC. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents. PeerJ 2017; 5:e3341. [PMID: 28533982 PMCID: PMC5438581 DOI: 10.7717/peerj.3341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity.
Collapse
Affiliation(s)
- Jonathan Maiangwa
- Department of Cell and Molecular Biology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Serlangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Department of Biochemistry/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Department of Biochemistry/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Department of Microbiology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Serlangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Department of Cell and Molecular Biology/Enzyme and Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science/Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Bharatiy S, Hazra M, Paul M, Mohapatra S, Samantaray D, Dubey R, Sanyal S, Datta S, Hazra S. In Silico Designing of an Industrially Sustainable Carbonic Anhydrase Using Molecular Dynamics Simulation. ACS OMEGA 2016; 1:1081-1103. [PMID: 30023502 PMCID: PMC6044688 DOI: 10.1021/acsomega.6b00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/15/2016] [Indexed: 06/08/2023]
Abstract
Carbonic anhydrase (CA) is a family of metalloenzymes that has the potential to sequestrate carbon dioxide (CO2) from the environment and reduce pollution. The goal of this study is to apply protein engineering to develop a modified CA enzyme that has both higher stability and activity and hence could be used for industrial purposes. In the current study, we have developed an in silico method to understand the molecular basis behind the stability of CA. We have performed comparative molecular dynamics simulation of two homologous α-CA, one of thermophilic origin (Sulfurihydrogenibium sp.) and its mesophilic counterpart (Neisseria gonorrhoeae), for 100 ns each at 300, 350, 400, and 500 K. Comparing the trajectories of two proteins using different stability-determining factors, we have designed a highly thermostable version of mesophilic α-CA by introducing three mutations (S44R, S139E, and K168R). The designed mutant α-CA maintains conformational stability at high temperatures. This study shows the potential to develop industrially stable variants of enzymes while maintaining high activity.
Collapse
Affiliation(s)
- Sachin
Kumar Bharatiy
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mousumi Hazra
- Department
of Botany and Microbiology, Gurukula Kangri
University, Haridwar 249404, Uttarakhand, India
| | - Manish Paul
- Department
of Microbiology, Orissa University of Agriculture
and Technology, Bhubaneswar 751003, Odisha, India
| | - Swati Mohapatra
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deviprasad Samantaray
- Department
of Microbiology, Orissa University of Agriculture
and Technology, Bhubaneswar 751003, Odisha, India
| | - Ramesh
Chandra Dubey
- Department
of Botany and Microbiology, Gurukula Kangri
University, Haridwar 249404, Uttarakhand, India
| | - Shourjya Sanyal
- Complex
and Adaptive System Laboratory, School of Physics, University College Dublin, Dublin 4, Ireland
| | - Saurav Datta
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
15
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
16
|
Rhayem Y, Le Stunff C, Abdel Khalek W, Auzan C, Bertherat J, Linglart A, Couvineau A, Silve C, Clauser E. Functional Characterization of PRKAR1A Mutations Reveals a Unique Molecular Mechanism Causing Acrodysostosis but Multiple Mechanisms Causing Carney Complex. J Biol Chem 2015; 290:27816-28. [PMID: 26405036 PMCID: PMC4646027 DOI: 10.1074/jbc.m115.656553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 02/05/2023] Open
Abstract
The main target of cAMP is PKA, the main regulatory subunit of which (PRKAR1A) presents mutations in two genetic disorders: acrodysostosis and Carney complex. In addition to the initial recurrent mutation (R368X) of the PRKAR1A gene, several missense and nonsense mutations have been observed recently in acrodysostosis with hormonal resistance. These mutations are located in one of the two cAMP-binding domains of the protein, and their functional characterization is presented here. Expression of each of the PRKAR1A mutants results in a reduction of forskolin-induced PKA activation (measured by a reporter assay) and an impaired ability of cAMP to dissociate PRKAR1A from the catalytic PKA subunits by BRET assay. Modeling studies and sensitivity to cAMP analogs specific for domain A (8-piperidinoadenosine 3',5'-cyclic monophosphate) or domain B (8-(6-aminohexyl)aminoadenosine-3',5'-cyclic monophosphate) indicate that the mutations impair cAMP binding locally in the domain containing the mutation. Interestingly, two of these mutations affect amino acids for which alternative amino acid substitutions have been reported to cause the Carney complex phenotype. To decipher the molecular mechanism through which homologous substitutions can produce such strikingly different clinical phenotypes, we studied these mutations using the same approaches. Interestingly, the Carney mutants also demonstrated resistance to cAMP, but they expressed additional functional defects, including accelerated PRKAR1A protein degradation. These data demonstrate that a cAMP binding defect is the common molecular mechanism for resistance of PKA activation in acrodysosotosis and that several distinct mechanisms lead to constitutive PKA activation in Carney complex.
Collapse
Affiliation(s)
- Yara Rhayem
- From the INSERM U970, Université Paris Descartes, Paris Centre de Recherche Cardiovasculaire, 56 Rue Leblanc, 75015 Paris, France, the Service de Biochimie et Génétique Moléculaire and
| | - Catherine Le Stunff
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Waed Abdel Khalek
- From the INSERM U970, Université Paris Descartes, Paris Centre de Recherche Cardiovasculaire, 56 Rue Leblanc, 75015 Paris, France
| | - Colette Auzan
- From the INSERM U970, Université Paris Descartes, Paris Centre de Recherche Cardiovasculaire, 56 Rue Leblanc, 75015 Paris, France
| | - Jerome Bertherat
- Service d'Endocrinologie, Hôpital Cochin, Assistance Publique, Hôpitaux de Paris, 75014 Paris, France, the Institut Cochin, INSERM U1060, Université Paris Descartes, 75014 Paris, France
| | - Agnès Linglart
- the Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre, Assistance Publique, Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France, and
| | - Alain Couvineau
- UMR 1149 INSERM, Université Paris Diderot, ERL CNRS 8252, Faculté de Médecine Site Bichat, 75018 Paris, France
| | - Caroline Silve
- the Service de Biochimie et Génétique Moléculaire and INSERM U1169, Université Paris Sud, Hôpital Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Eric Clauser
- From the INSERM U970, Université Paris Descartes, Paris Centre de Recherche Cardiovasculaire, 56 Rue Leblanc, 75015 Paris, France, the Service de Biochimie et Génétique Moléculaire and
| |
Collapse
|
17
|
Kumar K, Patel K, Agrawal DC, Khire JM. Insights into the unfolding pathway and identification of thermally sensitive regions of phytase from Aspergillus niger by molecular dynamics simulations. J Mol Model 2015; 21:163. [PMID: 26037148 DOI: 10.1007/s00894-015-2696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
Thermal stability is of great importance in the application of commercial phytases. Phytase A (PhyA) is a monomeric protein comprising twelve α-helices and ten β-sheets. Comparative molecular dynamics (MD) simulations (at 310, 350, 400, and 500 K) revealed that the thermal stability of PhyA from Aspergillus niger (A. niger) is associated with its conformational rigidity. The most thermally sensitive regions were identified as loops 8 (residues 83-106), 10 (161-174), 14 (224-230), 17 (306-331), and 24 (442-444), which are present on the surface of the protein. It was observed that solvent-exposed loops denature before or show higher flexibility than buried residues. We observed that PhyA begins to unfold at loops 8 and 14, which further extends to loop 24 at the C-terminus. The intense movement of loop 8 causes the helix H2 and beta-sheet B3 to fluctuate at high temperature. The high flexibility of the H2, H10, and H12 helices at high temperature resulted in complete denaturation. The high mobility of loop 14 easily transfers to the adjacent helices H7, H8, and H9, which fluctuate and partially unfold at high temperature (500 K). It was also observed that the salt bridges Asp110-Lys149, Asp205-Lys277, Asp335-Arg136, Asp416-Arg420, and Glu387-Arg400 are important influences on the structural stability but not the thermostability, as the lengths of these salt bridges did not increase with rising temperature. The salt bridges Glu125-Arg163, Asp299-Arg136, Asp266-Arg219, Asp339-Lys278, Asp335-Arg136, and Asp424-Arg428 are all important for thermostability, as the lengths of these bridges increased dramatically with increasing temperature. Here, for the first time, we have computationally identified the thermolabile regions of PhyA, and this information could be used to engineer novel thermostable phytases. Numerous homologous phytases of fungal as well as bacterial origin are known, and these homologs show high sequence similarity. Our findings could prove useful in attempts to increase the thermostability of homologous phytases via protein engineering.
Collapse
Affiliation(s)
- Kapil Kumar
- NCIM, Biochemical Sciences Division, Dr. Homi Bhabha Road, Pune, 411 008, India
| | | | | | | |
Collapse
|
18
|
Singh B, Bulusu G, Mitra A. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. J Phys Chem B 2015; 119:392-409. [PMID: 25495458 DOI: 10.1021/jp5079554] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.
Collapse
Affiliation(s)
- Bipin Singh
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology Hyderabad (IIIT-H) , Gachibowli, Hyderabad, 500032, India
| | | | | |
Collapse
|
19
|
Bojovschi A, Liu MS, Sadus RJ. Mg²⁺ coordinating dynamics in Mg:ATP fueled motor proteins. J Chem Phys 2014; 140:115102. [PMID: 24655204 DOI: 10.1063/1.4867898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The coordination of Mg(2+) with the triphosphate group of adenosine triphosphate (ATP) in motor proteins is investigated using data mining and molecular dynamics. The possible coordination structures available from crystal data for actin, myosin, RNA polymerase, DNA polymerase, DNA helicase, and F1-ATPase are verified and investigated further by molecular dynamics. Coordination states are evaluated using structural analysis and quantified by radial distribution functions, coordination numbers, and pair interaction energy calculations. The results reveal a diverse range of both transitory and stable coordination arrangements between Mg(2+) and ATP. The two most stable coordinating states occur when Mg(2+) coordinates two or three oxygens from the triphosphate group of ATP. Evidence for five-site coordination is also reported involving water in addition to the triphosphate group. The stable states correspond to a pair interaction energy of either ∼-2750 kJ/mol or -3500 kJ/mol. The role of water molecules in the hydration shell surrounding Mg(2+) is also reported.
Collapse
Affiliation(s)
- A Bojovschi
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Richard J Sadus
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
20
|
Shao H, Xu L, Yan Y. Biochemical characterization of a carboxylesterase from the archaeon Pyrobaculum sp. 1860 and a rational explanation of its substrate specificity and thermostability. Int J Mol Sci 2014; 15:16885-910. [PMID: 25250909 PMCID: PMC4200780 DOI: 10.3390/ijms150916885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022] Open
Abstract
In this work, genome mining was used to identify esterase/lipase genes in the archaeon Pyrobaculum sp. 1860. A gene was cloned and functionally expressed in Escherichia coli as His-tagged protein. The recombinant enzyme (rP186_1588) was verified by western blotting and peptide mass fingerprinting. Biochemical characterization revealed that rP186_1588 exhibited optimum activity at pH 9.0 and 80 °C towards p-nitrophenyl acetate (K(m): 0.35 mM, k(cat): 11.65 s⁻¹). Interestingly, the purified rP186_1588 exhibited high thermostability retaining 70% relative activity after incubation at 90 °C for 6 h. Circular dichroism results indicated that rP186_1588 showed slight structure alteration from 60 to 90 °C. Structural modeling showed P186_1588 possessed a typical α/β hydrolase's fold with the catalytic triad consisting of Ser97, Asp147 and His172, and was further confirmed by site-directed mutagenesis. Comparative molecular simulations at different temperatures (300, 353, 373 and 473 K) revealed that its thermostability was associated with its conformational rigidity. The binding free energy analysis by MM-PBSA method revealed that the van der Waals interaction played a major role in p-NP ester binding for P186_1588. Our data provide insights into the molecular structures of this archaeal esterase, and may help to its further protein engineering for industrial applications.
Collapse
Affiliation(s)
- Hua Shao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Moon S, Bannen RM, Rutkoski TJ, Phillips GN, Bae E. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases. Proteins 2014; 82:2631-42. [PMID: 24931334 DOI: 10.1002/prot.24627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | |
Collapse
|
22
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Moon S, Jung DK, Phillips GN, Bae E. An integrated approach for thermal stabilization of a mesophilic adenylate kinase. Proteins 2014; 82:1947-59. [PMID: 24615904 DOI: 10.1002/prot.24549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Abstract
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure-guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | |
Collapse
|
24
|
Bhuiya MW, Suryadi J, Zhou Z, Brown BA. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:979-88. [PMID: 23989144 PMCID: PMC3758144 DOI: 10.1107/s1744309113021799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.
Collapse
Affiliation(s)
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Zholi Zhou
- Bristol-Myers Squibb, Syracuse, NY 13221, USA
| | - Bernard Andrew Brown
- Womble Carlyle Sandridge and Rice LLP, One West Fourth Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
25
|
Ping J, Hao P, Li YX, Wang JF. Molecular dynamics studies on the conformational transitions of adenylate kinase: a computational evidence for the conformational selection mechanism. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628536. [PMID: 23936827 PMCID: PMC3712241 DOI: 10.1155/2013/628536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
Escherichia coli adenylate kinase (ADK) is a monomeric phosphotransferase enzyme that catalyzes reversible transfer of phosphoryl group from ATP to AMP with a large-scale domain motion. The detailed mechanism for this conformational transition remains unknown. In the current study, we performed long time-scale molecular dynamics simulations on both open and closed states of ADK. Based on the structural analyses of the simulation trajectories, we detected over 20 times conformational transitions between the open and closed states of ADK and identified two novel conformations as intermediate states in the catalytic processes. With these findings, we proposed a possible mechanism for the large-scale domain motion of Escherichia coli ADK and its catalytic process: (1) the substrate free ADK adopted an open conformation; (2) ATP bound with LID domain closure; (3) AMP bound with NMP domain closure; (4) phosphoryl transfer occurred with ATP, and AMP converted into two ADPs, and no conformational transition was detected in the enzyme; (5) LID domain opened with one ADP released; (6) another ADP released with NMP domain open. As both open and closed states sampled a wide range of conformation transitions, our simulation strongly supported the conformational selection mechanism for Escherichia coli ADK.
Collapse
Affiliation(s)
- Jie Ping
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
| | - Pei Hao
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Fang Wang
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Ding Y, Cai Y. Conformational dynamics of xylanase a fromStreptomyces lividans: Implications for TIM-barrel enzyme thermostability. Biopolymers 2013; 99:594-604. [DOI: 10.1002/bip.22220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 11/11/2022]
|
27
|
Stability mechanisms of a thermophilic laccase probed by molecular dynamics. PLoS One 2013; 8:e61985. [PMID: 23658618 PMCID: PMC3639223 DOI: 10.1371/journal.pone.0061985] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å) and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation. Approaching Topt (∼350 K) from 300 K, this change correlated with a beginning “unzipping” of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive) at 400 K, suggesting a general salt stabilization effect. In contrast, F− (but not Cl−) specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F− intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes.
Collapse
|
28
|
Basu S, Sen S. Do Homologous Thermophilic–Mesophilic Proteins Exhibit Similar Structures and Dynamics at Optimal Growth Temperatures? A Molecular Dynamics Simulation Study. J Chem Inf Model 2013; 53:423-34. [DOI: 10.1021/ci300474h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sohini Basu
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| | - Srikanta Sen
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| |
Collapse
|
29
|
Bojovschi A, Liu MS, Sadus RJ. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation. J Chem Phys 2013; 137:075101. [PMID: 22920142 DOI: 10.1063/1.4739308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F(1)-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg(2+) leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.
Collapse
Affiliation(s)
- A Bojovschi
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia.
| | | | | |
Collapse
|
30
|
|
31
|
Papaleo E, Renzetti G, Tiberti M. Mechanisms of intramolecular communication in a hyperthermophilic acylaminoacyl peptidase: a molecular dynamics investigation. PLoS One 2012; 7:e35686. [PMID: 22558199 PMCID: PMC3338720 DOI: 10.1371/journal.pone.0035686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/21/2012] [Indexed: 11/25/2022] Open
Abstract
Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | |
Collapse
|
32
|
Lee KJ. Molecular Dynamics Simulations of a Hyperthermophilic and a Mesophilic Protein L30e. J Chem Inf Model 2011; 52:7-15. [DOI: 10.1021/ci200184y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuei-Jen Lee
- Department of Bioinformatics,
Asia University, Taichung,
Taiwan 413, Republic of China
| |
Collapse
|
33
|
Matsutani M, Hirakawa H, Nishikura M, Soemphol W, Ali IAI, Yakushi T, Matsushita K. Increased number of Arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem Biophys Res Commun 2011; 409:120-4. [PMID: 21554859 DOI: 10.1016/j.bbrc.2011.04.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 11/30/2022]
Abstract
Thermotolerant acetic acid bacteria (AAB), Acetobacter tropicalis SKU1100, can grow above 40°C. To investigate the basis of its thermotolerance, we compared the genome of A. tropicalis SKU1100 with that of mesophilic AAB strain Acetobacter pasteurianus IFO3283-01. The comparative genomic study showed that amino acid substitutions from large to small residue and Lys to Arg occur in many orthologous genes. Furthermore, comparative modeling study was carried out with the orthologous proteins between SKU1100 and IFO3283-01 strains, indicating that the number of Arg-based salt bridges increased in protein models. Since it has been reported that Arg-based salt bridges are important factor for thermo-stability of protein structure, our results strongly suggest that the increased number of Arg-based salt bridges may contributes to the thermotolerance of A. tropicalis SKU1100 (the thermo-stability of proteins in A. tropicalis SKU1100).
Collapse
Affiliation(s)
- Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Joo JC, Pack SP, Kim YH, Yoo YJ. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 2010; 151:56-65. [PMID: 20959126 DOI: 10.1016/j.jbiotec.2010.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Low thermostability often hampers the applications of xylanases in industrial processes operated at high temperature, such as degradation of biomass or pulp bleaching. Thermostability of enzymes can be improved by the optimization of unstable residues via protein engineering. In this study, computational modeling instead of random mutagenesis was used to optimize unstable residues of Bacillus circulans xylanase (Bcx). The thermal fluctuations of unstable residues known as important to the thermal unfolding of Bcx were investigated by the molecular dynamics (MD) simulations at 300 K and 330 K to identify promising residues. The N52 site in unstable regions showed the highest thermal fluctuations. Subsequently, computational design was conducted to predict the optimal sequences of unstable residues. Five optimal single mutants were predicted by the computational design, and the N52Y mutation showed the thermostabilization effect. The N52 residue is conserved in Bacillus species xylanases and the structure analysis revealed that the N52Y mutation introduced more hydrophobic clusters for thermostability, as well as a more favorable aromatic stacking environment for substrate binding. We confirm that flexible residues at high temperature in unstable regions can be promising targets to improve thermostability of enzymes.
Collapse
Affiliation(s)
- Jeong Chan Joo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Meharenna YT, Poulos TL. Using molecular dynamics to probe the structural basis for enhanced stability in thermal stable cytochromes P450. Biochemistry 2010; 49:6680-6. [PMID: 20593793 DOI: 10.1021/bi100929x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-temperature molecular dynamics (MD) has been used to assess if MD can be employed as a useful tool for probing the structural basis for enhanced stability in thermal stable cytochromes P450. CYP119, the most thermal stable P450 known, unfolds more slowly during 500 K MD simulations than P450s that melt at lower temperatures, P450cam and P450cin. A comparison of the 500 K MD trajectories shows that the Cys ligand loop, a critically important structural feature just under the heme, in both P450cin and P450cam completely unfolds while this region is quite stable in CYP119. In CYP119, this region is stabilized by tight nonpolar interactions involving Tyr26 and Leu308. The corresponding residues in P450cam are Gly and Thr, respectively. The in silico generated Y26A/L308A CYP119 double mutant is substantially less stable than wild-type CYP119, and the Cys ligand loop unfolds in a manner similar to that of P450cam. The MD thus has identified a potential "hot spot" important for stability. As an experimental test of the MD results, the Y26A/L308A double mutant was prepared, and thermal melting curves show that the double mutant exhibits a melting temperature (T(m)) 16 degrees C lower than that of wild-type CYP119. Control mutations that were predicted by MD not to destabilize the protein were also generated, and the experimental melting temperature was not significantly different from that of the wild-type enzyme. Therefore, high-temperature MD is a useful tool in predicting the structural underpinnings of thermal stability in P450s.
Collapse
Affiliation(s)
- Yergalem T Meharenna
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
36
|
Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem 2010; 16:51-61. [PMID: 20821240 DOI: 10.1007/s00775-010-0700-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/02/2010] [Indexed: 12/13/2022]
Abstract
Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.
Collapse
|
37
|
Merkley ED, Parson WW, Daggett V. Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Eng Des Sel 2010; 23:327-36. [PMID: 20083491 PMCID: PMC2851445 DOI: 10.1093/protein/gzp090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/13/2022] Open
Abstract
A widely held hypothesis regarding the thermostability of thermophilic proteins states asserts that, at any given temperature, thermophilic proteins are more rigid than their mesophilic counterparts. Many experimental and computational studies have addressed this question with conflicting results. Here, we compare two homologous enzymes, one mesophilic (Escherichia coli FMN-dependent nitroreductase; NTR) and one thermophilic (Thermus thermophilus NADH oxidase; NOX), by multiple molecular dynamics simulations at temperatures from 5 to 100 degrees C. We find that the global rigidity/flexibility of the two proteins, assessed by a variety of metrics, is similar on the time scale of our simulations. However, the thermophilic enzyme retains its native conformation to a much greater degree at high temperature than does the mesophilic enzyme, both globally and within the active site. The simulations identify the helix F-helix G 'arm' as the region with the greatest difference in loss of native contacts between the two proteins with increasing temperature. In particular, a network of electrostatic interactions holds helix F to the body of the protein in the thermophilic protein, and this network is absent in the mesophilic counterpart.
Collapse
Affiliation(s)
- Eric D. Merkley
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - William W. Parson
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - Valerie Daggett
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA
| |
Collapse
|
38
|
Kundu S, Roy D. Structural study of carboxylesterase from hyperthermophilic bacteria Geobacillus stearothermophilus by molecular dynamics simulation. J Mol Graph Model 2010; 28:820-7. [PMID: 20347362 DOI: 10.1016/j.jmgm.2010.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 11/27/2022]
Abstract
Carboxylesterases are ubiquitous enzymes with important physiological, industrial and medical applications such as synthesis and hydrolysis of stereo specific compounds, including the metabolic processing of drugs, and antimicrobial agents. Here, we have performed molecular dynamics simulations of carboxylesterase from hyperthermophilic bacterium Geobacillus stearothermophilus (GsEst) for 10ns each at five different temperatures namely at 300K, 343K, 373K, 473K and 500K. Profiles of root mean square fluctuation (RMSF) identify thermostable and thermosensitive regions of GsEst. Unfolding of GsEst initiates at the thermosensitive alpha-helices and proceeds to the thermostable beta-sheets. Five ion-pairs have been identified as critical ion-pairs for thermostability and are maintained stably throughout the higher temperature simulations. A detailed investigation of the active site residues of this enzyme suggests that the geometry of this site is well preserved up to 373K. Furthermore, the hydrogen bonds between Asp188 and His218 of the active site are stably maintained at higher temperatures imparting stability of this site. Radial distribution functions (RDFs) show similar pattern of solvent ordering and water penetration around active site residues up to 373K. Principal component analysis suggests that the motion of the entire protein as well as the active site is similar at 300K, 343K and 373K. Our study may help to identify the factors responsible for thermostability of GsEst that may endeavor to design enzymes with enhanced thermostability.
Collapse
|
39
|
Contributions of the C-terminal helix to the structural stability of a hyperthermophilic Fe-superoxide dismutase (TcSOD). Int J Mol Sci 2009; 10:5498-5512. [PMID: 20054483 PMCID: PMC2802007 DOI: 10.3390/ijms10125498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/17/2022] Open
Abstract
Hyperthermophilic superoxide dismutases (SODs) are of particular interest due to their potential industrial importance and scientific merit in studying the molecular mechanisms of protein folding and stability. Compared to the mesophilic SODs, the hyperthermostable Fe-SODs (TcSOD and ApSOD) have an extended C-terminal helix, which forms an additional ion-pairing network. In this research, the role of the extended C-terminus in the structural stability of TcSOD was studied by investigating the properties of two deletion mutants. The results indicated that the ion-pairing network at the C-terminus had limited contributions to the stability of TcSOD against heat- and GdnHCl-induced inactivation. The intactness of the C-terminal helix had dissimilar impact on the two stages of TcSOD unfolding induced by guanidinium chloride. The mutations slightly decreased the Gibbs free energy of the dissociation of the tetrameric enzymes, while greatly affected the stability of the molten globule-like intermediate. These results suggested that the additional ion-pairing network mainly enhanced the structural stability of TcSOD by stabilizing the monomers.
Collapse
|
40
|
Rohman MS, Tadokoro T, Angkawidjaja C, Abe Y, Matsumura H, Koga Y, Takano K, Kanaya S. Destabilization of psychrotrophic RNase HI in a localized fashion as revealed by mutational and X-ray crystallographic analyses. FEBS J 2008; 276:603-13. [PMID: 19120449 DOI: 10.1111/j.1742-4658.2008.06811.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Arg97 --> Gly and Asp136 --> His mutations stabilized So-RNase HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 by 5.4 and 9.7 degrees C, respectively, in T(m), and 3.5 and 6.1 kJ x mol(-1), respectively, in DeltaG(H2O). These mutations also stabilized the So-RNase HI derivative (4x-RNase HI) with quadruple thermostabilizing mutations in an additive manner. As a result, the resultant sextuple mutant protein (6x-RNase HI) was more stable than the wild-type protein by 28.8 degrees C in T(m) and 27.0 kJ x mol(-1) in DeltaG(H2O). To analyse the effects of the mutations on the protein structure, the crystal structure of the 6x-RNase HI protein was determined at 2.5 A resolution. The main chain fold and interactions of the side-chains of the 6x-RNase HI protein were basically identical to those of the wild-type protein, except for the mutation sites. These results indicate that all six mutations independently affect the protein structure, and are consistent with the fact that the thermostabilizing effects of the mutations are roughly additive. The introduction of favourable interactions and the elimination of unfavourable interactions by the mutations contribute to the stabilization of the 6x-RNase HI protein. We propose that So-RNase HI is destabilized when compared with its mesophilic and thermophilic counterparts in a localized fashion by increasing the number of amino acid residues unfavourable for protein stability.
Collapse
Affiliation(s)
- Muhammad S Rohman
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sigurdardóttir AG, Arnórsdóttir J, Thorbjarnardóttir SH, Eggertsson G, Suhre K, Kristjánsson MM. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:512-8. [PMID: 19100869 DOI: 10.1016/j.bbapap.2008.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/31/2008] [Accepted: 11/19/2008] [Indexed: 12/01/2022]
Abstract
Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure. We report here on mutants, which were designed to incorporate an ion pair into the structure of VPR. The residues Asp17 and Arg259 are assumed to form an ion pair in aqualysin I. The cold adapted VPR contains Asn (Asn15) and Lys (Lys257) at corresponding sites in its structure. In VPR, Asn 15 is located on a surface loop with its side group pointing towards the side chain of Lys257. By substituting Asn15 by Asp (N15D) it was considered feasible that a salt bridge would form between the oppositely charged groups. To mimic further the putative salt bridge from the thermophile enzyme the corresponding double mutant (N15D/K257R) was also produced. The N15D mutation increased the thermal stability of VPR by approximately 3 degrees C, both in T(50%) and T(m). Addition of the K257R mutation did not however, increase the stability of the double mutant any further. Despite this stabilization of the VPR mutants the catalytic activity (k(cat)) against the substrate Suc-AAPF-NH-Np was increased in the mutants. Molecular dynamics simulations on wild type and the two mutant proteins suggested that indeed a salt bridge was formed in both cases. Furthermore, a truncated form of the N15D mutant (N15DDeltaC) was produced, lacking a 15 residue long C-terminal extended sequence not present in the thermophilic enzyme. In wild type VPR this supposedly moveable, negatively charged arm on the protein molecule might interfere with the new salt bridge introduced as a result of the N15D mutation. Removal of the C-terminal arm improved the thermal stability (T(m) approximately +1.5 degrees C) of the truncated enzyme (VPRDeltaC) as compared to the wild type VPR. Introduction of the N15D substitution into VPRDeltaC improved the thermal stability further by about 3 degrees C, or to about the same extent as in the wild type. However, contrary to what was observed for the wild type, the introduction of the putative salt bridge did not affect the catalytic properties (k(cat)) of the C-terminal truncated enzyme.
Collapse
Affiliation(s)
- Anna Gudný Sigurdardóttir
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
| | | | | | | | | | | |
Collapse
|
42
|
Williamson AK. Structural and functional aspects of the MSP (PsbO) and study of its differences in thermophilic versus mesophilic organisms. PHOTOSYNTHESIS RESEARCH 2008; 98:365-89. [PMID: 18780158 DOI: 10.1007/s11120-008-9353-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/06/2008] [Indexed: 05/16/2023]
Abstract
The Manganese Stabilizing Protein (MSP) of Photosystem II (PSII) is a so-called extrinsic subunit, which reversibly associates with the other membrane-bound PSII subunits. The MSP is essential for maximum rates of O(2) production under physiological conditions as stabilizes the catalytic [Mn(4)Ca] cluster, which is the site of water oxidation. The function of the MSP subunit in the PSII complex has been extensively studied in higher plants, and the structure of non-PSII associated MSP has been studied by low-resolution biophysical techniques. Recently, crystal structures of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus have resolved the MSP subunit in its PSII-associated state. However, neither any crystal structure is available yet for MSP from mesophilic organisms, higher plants or algae nor has the non-PSII associated form of MSP been crystallized. This article reviews the current understanding of the structure, dynamics, and function of MSP, with a particular focus on properties of the MSP from T. elongatus that may be attributable to the thermophilic ecology of this organism rather than being general features of MSP.
Collapse
Affiliation(s)
- Adele K Williamson
- Research School of Biological Sciences, the Australian National University, Canberra 0200, Australia.
| |
Collapse
|
43
|
Liu J, Yu H, Shen Z. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. J Mol Graph Model 2008; 27:529-35. [PMID: 18948044 DOI: 10.1016/j.jmgm.2008.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
Thermal stability is of great importance for industrial enzymes. Here we explored the thermal-stable mechanism of thermophilic nitrile hydratases (NHases) utilizing a molecular dynamic simulation. At a nanosecond timescale, profiles of root mean square fluctuation (RMSF) of two thermophilic NHases, 1UGQ and 1V29, under enhancing thermal stress were carried out at 300 K, 320 K, 350 K and 370 K, respectively. Results showed that the region A1 (211-231 aa) and A2 (305-316 aa) in 1UGQ, region B1 (186-192 aa) in 1V29, and most of terminal ends in both enzymes are hyper-sensitive. Salt-bridge analyses revealed that in one hand, salt-bridges contributed to maintaining the rigid structure and stable performance of the thermophilic 1UGQ and 1V29; in the other hand, salt-bridges involved in thermal sensitive regions are relatively weak and prone to be broken at elevated temperature, thereby cannot hold the stable conformation of the spatial neighborhood. In 1V29, region A1 was stabilized by a well-organized hook-hook like cluster with multiple salt-bridge interactions, region A2 was stabilized by two strong salt-bridge interactions of GLU52-ARG332 and GLU334-ARG332. In 1UGQ, the absence of a charged residue decreased its thermal sensitivity of region B1, and the formation of a small beta-sheet containing a stable salt-bridge in C-beta-terminal significantly enhanced its thermal stability. By radius of gyration calculation containing or eliminating the thermal sensitive regions, we quantified the contribution of thermal sensitive regions for thermal sensitivity of 1UGQ and 1V29. Consequently, we presented strategies to improve thermal stability of the industrialized mesophilic NHase by introducing stable salt-bridge interactions into its thermal sensitive regions.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
44
|
Bioinformatic method for protein thermal stabilization by structural entropy optimization. Proc Natl Acad Sci U S A 2008; 105:9594-7. [PMID: 18621726 DOI: 10.1073/pnas.0800938105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engineering proteins for higher thermal stability is an important and difficult challenge. We describe a bioinformatic method incorporating sequence alignments to redesign proteins to be more stable through optimization of local structural entropy. Using this method, improved configurational entropy (ICE), we were able to design more stable variants of a mesophilic adenylate kinase with only the sequence information of one psychrophilic homologue. The redesigned proteins display considerable increases in their thermal stabilities while still retaining catalytic activity. ICE does not require a three-dimensional structure or a large number of homologous sequences, indicating a broad applicability of this method. Our results also highlight the importance of entropy in the stability of protein structures.
Collapse
|
45
|
Kinns H, Howorka S. The surface location of individual residues in a bacterial S-layer protein. J Mol Biol 2008; 377:589-604. [PMID: 18262545 DOI: 10.1016/j.jmb.2008.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/22/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Bacterial surface layer (S-layer) proteins self-assemble into large two-dimensional crystalline lattices that form the outermost cell-wall component of all archaea and many eubacteria. Despite being a large class of self-assembling proteins, little is known about their molecular architecture. We investigated the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 to identify residues located at the subunit-subunit interface and to determine the S-layer's topology. Twenty-three single cysteine mutants, which were previously mapped to the surface of the SbsB monomer, were subjected to a cross-linking screen using the photoactivatable, sulfhydryl-reactive reagent N-[4-(p-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide. Gel electrophoretic analysis on the formation of cross-linked dimers indicated that 8 out of the 23 residues were located at the interface. In combination with surface accessibility data for the assembled protein, 10 residues were assigned to positions at the inner, cell-wall-facing lattice surface, while 5 residues were mapped to the outer, ambient-exposed lattice surface. In addition, the cross-linking screen identified six positions of intramolecular cross-linking within the assembled protein but not in the monomeric S-layer protein. Most likely, these intramolecular cross-links result from conformational changes upon self-assembly. The results are an important step toward the further structural elucidation of the S-layer protein via, for example, X-ray crystallography and cryo-electron microscopy. Our approach of identifying the surface location of residues is relevant to other planar supramolecular protein assemblies.
Collapse
Affiliation(s)
- Helen Kinns
- Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London WC1H 0AJ, England, UK
| | | |
Collapse
|
46
|
Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. BMC STRUCTURAL BIOLOGY 2007; 7:18. [PMID: 17394655 PMCID: PMC1851960 DOI: 10.1186/1472-6807-7-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 03/29/2007] [Indexed: 01/26/2023]
Abstract
Background The database of protein structures contains representatives from organisms with a range of growth temperatures. Various properties have been studied in a search for the molecular basis of protein adaptation to higher growth temperature. Charged groups have emerged as key distinguishing factors for proteins from thermophiles and mesophiles. Results A dataset of 291 thermophile-derived protein structures is compared with mesophile proteins. Calculations of electrostatic interactions support the importance of charges, but indicate that increases in charge contribution to folded state stabilisation do not generally correlate with the numbers of charged groups. Relative propensities of charged groups vary, such as the substitution of glutamic for aspartic acid sidechains. Calculations suggest an energetic basis, with less dehydration for longer sidechains. Most other properties studied show weak or insignificant separation of proteins from moderate thermophiles or hyperthermophiles and mesophiles, including an estimate of the difference in sidechain rotameric entropy upon protein folding. An exception is increased burial of alanine and proline residues and decreased burial of phenylalanine, methionine, tyrosine and tryptophan in hyperthermophile proteins compared to those from mesophiles. Conclusion Since an increase in the number of charged groups for hyperthermophile proteins is separable from charged group contribution to folded state stability, we hypothesise that charged group propensity is important in the context of protein solubility and the prevention of aggregation. Accordingly we find some separation between mesophile and hyperthermophile proteins when looking at the largest surface patch that does not contain a charged sidechain. With regard to our observation that aromatic sidechains are less buried in hyperthermophile proteins, further analysis indicates that the placement of some of these groups may facilitate the reduction of folding fluctuations in proteins of the higher growth temperature organisms.
Collapse
|
47
|
Gribenko AV, Makhatadze GI. Role of the Charge–Charge Interactions in Defining Stability and Halophilicity of the CspB Proteins. J Mol Biol 2007; 366:842-56. [PMID: 17188709 DOI: 10.1016/j.jmb.2006.11.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/20/2006] [Accepted: 11/17/2006] [Indexed: 11/28/2022]
Abstract
Charge-charge interactions on the surface of native proteins are important for protein stability and can be computationally redesigned in a rational way to modulate protein stability. Such computational effort led to an engineered protein, CspB-TB that has the same core as the mesophilic cold shock protein CspB-Bs from Bacillus subtilis, but optimized distribution of charge-charge interactions on the surface. The CspB-TB protein shows an increase in the transition temperature by 20 degrees C relative to the unfolding temperature of CspB-Bs. The CspB-TB and CspB-Bs protein pair offers a unique opportunity to further explore the energetics of charge-charge interactions as the substitutions at the same sequence positions are done in largely similar structural but different electrostatic environments. In particular we addressed two questions. What is the contribution of charge-charge interactions in the unfolded state to the protein stability and how amino acid substitutions modulate the effect of increase in ionic strength on protein stability (i.e. protein halophilicity). To this end, we experimentally measured the stabilities of over 100 variants of CspB-TB and CspB-Bs proteins with substitutions at charged residues. We also performed computational modeling of these protein variants. Analysis of the experimental and computational data allowed us to conclude that the charge-charge interactions in the unfolded state of two model proteins CspB-Bs and CspB-TB are not very significant and computational models that are based only on the native state structure can adequately, i.e. qualitatively (stabilizing versus destabilizing) and semi-quantitatively (relative rank order), predict the effects of surface charge neutralization or reversal on protein stability. We also show that the effect of ionic strength on protein stability (protein halophilicity) appears to be mainly due to the screening of the long-range charge-charge interactions.
Collapse
Affiliation(s)
- Alexey V Gribenko
- Department of Biochemistry and Molecular Biology, Penn State University, College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
48
|
Papaleo E, Olufsen M, De Gioia L, Brandsdal BO. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. J Mol Graph Model 2006; 26:93-103. [PMID: 17084098 DOI: 10.1016/j.jmgm.2006.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
Adaptation to both high and low temperatures requires proteins with special properties. While organisms living at or close to the boiling point of water need to have proteins with increased stability, other properties are required at temperatures close to the freezing point of water. Indeed, it has been shown that enzymes adapted to cold environments are less resistant to heat with a concomitant increased activity as compared to their warm-active counter-parts. Several recent studies have pointed in the direction that electrostatic interactions play a central role in temperature adaptation, and in this study we investigate the role such interactions have in adaptation of elastase from Atlantic salmon and pig. Molecular dynamics (MD) simulations have been used to generate structural ensembles at 283 and 310 K of the psychrophilic and mesophilic elastase, and a total of eight 12 ns simulations have been carried out. Even though the two homologues have a highly similar three-dimensional structure, the location and number of charged amino acids are very different. Based on the simulated structures we find that very few salt-bridges are stable throughout the simulations, and provide little stabilization/destabilization of the proteins as judged by continuum electrostatic calculations. However, the mesophilic elastase is characterized by a greater number of salt-bridges as well as a putative salt-bridge network close to the catalytic site, indicating a higher rigidity of the components involved in the catalytic cycle. In addition, subtle differences are also found in the electrostatic potentials in the vicinity of the catalytic residues, which may explain the increased catalytic efficiency of the cold-adapted elastase.
Collapse
Affiliation(s)
- Elena Papaleo
- The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, N9037 Tromsø, Norway
| | | | | | | |
Collapse
|
49
|
Couñago R, Chen S, Shamoo Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol Cell 2006; 22:441-9. [PMID: 16713575 DOI: 10.1016/j.molcel.2006.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/28/2006] [Accepted: 04/11/2006] [Indexed: 11/22/2022]
Abstract
In nature, evolution occurs through the continuous adaptation of a population to its environment. At the molecular level, adaptive changes in protein sequence and expression impact organismal fitness and, consequently, dictate population dynamics. Here, we have used a "weak link" method to favor variations in one gene, allowing adaptation to thermostability to be studied in molecular detail as bacteria were grown continuously for approximately 1500 generations. Surprisingly, only six mutant alleles, representing less than 1% of the possible missense mutations, were observed, suggesting a highly constrained molecular landscape during protein evolution. The changes in organismal fitness were linked directly to incremental increases in enzyme stability and activity maxima and corresponded to the narrow temperature ranges where each mutant enjoyed success within the overall population. Thus, continuous evolution of a single gene permits a quantitative approach that extends from the phenotypes of the microbial populations to their underlying biophysical basis.
Collapse
Affiliation(s)
- Rafael Couñago
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
50
|
Bae E, Phillips GN. Roles of static and dynamic domains in stability and catalysis of adenylate kinase. Proc Natl Acad Sci U S A 2006; 103:2132-7. [PMID: 16452168 PMCID: PMC1413696 DOI: 10.1073/pnas.0507527103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein dynamics, including conformational switching, are recognized to be crucial for the function of many systems. These motions are more challenging to study than simple static structures. Here, we present evidence suggesting that in the enzyme adenylate kinase large "hinge bending" motions closely related to catalysis are regulated by intrinsic properties of the moving domains and not by their hinges, by anchoring domains, or by remote allosteric-like regions. From a pair of highly homologous mesophilic and thermophilic adenylate kinases, we generated a series of chimeric enzymes using a previously undescribed method with synthetic genes. Subsequent analysis of the chimeras has revealed unexpected spatial separation of stability and activity control. Our results highlight specific contributions of dynamics to catalysis in adenylate kinase. Furthermore, the overall strategy and the specific mutagenesis method used in this study can be generally applied.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
- *To whom correspondence should be addressed at:
University of Wisconsin, 433 Babcock Drive, Madison, WI 53706. E-mail:
| |
Collapse
|