1
|
Shin HS, Choi JI, Chung HW, Park HJ, Park H, Rim JH, Lim JB. Targeted inhibition of Ninjurin2 promotes chemosensitivity in chemoresistant gastric cancer by suppressing cancer-initiating cells. Biomark Res 2025; 13:84. [PMID: 40518514 DOI: 10.1186/s40364-025-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/23/2025] [Indexed: 06/18/2025] Open
Abstract
BACKGROUND The combination of epirubicin, cisplatin, and 5-fluorouracil (ECF) is widely used for gastric cancer treatment. However, cancer cells can acquire chemoresistance over multiple treatment cycles, leading to recurrence. This study aimed to investigate a novel biomarker for predicting ECF resistance and its biological roles in gastric cancer. METHODS ECF-resistant (ECF-R) gastric cancer cell lines were established through stepwise ECF treatment. Transcriptome analysis was performed to identify resistance-related genes, which were validated in tumor organoids and in vivo models. Additionally, gastric cancer patient tumor tissues were analyzed for clinical relevance. RESULTS Transcriptome analysis revealed that NINJURIN2 and CD44 were highly expressed in ECF-R cells but rarely expressed in normal gastric tissues. NINJURIN2 inhibition significantly increased chemosensitivity to ECF in vitro and in vivo. Liquid chromatography-tandem mass spectrometry identified periostin as a binding partner of NINJURIN2, mediating chemoresistance. Furthermore, VAV2 phosphorylation was markedly upregulated in ECF-R cells but was inhibited by NINJURIN2 knockdown. Clinical analysis showed that high NINJURIN2 expression correlated with poor survival outcomes in gastric cancer patients. CONCLUSION Our findings suggest that NINJURIN2 can be used as a novel biomarker for chemoresistant gastric cancer patients and that inhibiting NINJURIN2 along with standard chemotherapy could prevent chemoresistance-associated relapse in gastric cancer.
Collapse
Affiliation(s)
- Hyo Shik Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Il Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Won Chung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Jung Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Lan B, Zhang S, Chen K, Dai S, Fei J, Gao K, Sun X, Lin B, Liu X. Structural insight into the self-activation and G-protein coupling of P2Y2 receptor. Cell Discov 2025; 11:47. [PMID: 40360475 PMCID: PMC12075631 DOI: 10.1038/s41421-025-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Purinergic P2Y2 receptor (P2Y2R) represents a typically extracellular ATP and UTP sensor for mediating purinergic signaling. Despite its importance as a pharmacological target, the molecular mechanisms underlying ligand recognition and G-protein coupling have remained elusive due to lack of structural information. In this study, we determined the cryo-electron microscopy (cryo-EM) structures of the apo P2Y2R in complex with Gq, ATP-bound P2Y2R in complex with Gq or Go, and UTP-bound P2Y4R in complex with Gq. These structures reveal the similarities and distinctions of ligand recognition within the P2Y receptor family. Furthermore, a comprehensive analysis of G-protein coupling reveals that P2Y2R exhibits promiscuity in coupling with both Gq and Go proteins. Combining molecular dynamics simulations and signaling assays, we elucidate the molecular mechanisms by which P2Y2R differentiates pathway-specific Gq or Go coupling through distinct structural components on the intracellular side. Strikingly, we identify a helix-like segment within the N-terminus that occupies the orthosteric ligand-binding pocket of P2Y2R, accounting for its self-activation. Taken together, these findings provide a molecular framework for understanding the activation mechanism of P2Y2R, encompassing ligand recognition, G-protein coupling, and a novel N-terminus-mediated self-activation mechanism.
Collapse
Affiliation(s)
- Baoliang Lan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Shuhao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Kai Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Shengjie Dai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jiaqi Fei
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kaixuan Gao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Basic Medicine Sciences, Tsinghua University, Beijing, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China.
| |
Collapse
|
3
|
Knight R, Kilpatrick LE, Hill SJ, Stocks MJ. Design, Synthesis, and Evaluation of a New Chemotype Fluorescent Ligand for the P2Y 2 Receptor. ACS Med Chem Lett 2024; 15:1127-1135. [PMID: 39015271 PMCID: PMC11247638 DOI: 10.1021/acsmedchemlett.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
The P2Y2 receptor (P2Y2R) is a target for diseases including cancer, idiopathic pulmonary fibrosis, and atherosclerosis. However, there are insufficient P2Y2R antagonists available for validating P2Y2R function and future drug development. Evaluation of how (R)-5-(7-chloro-2-((2-ethoxyethyl)amino)-4H-benzo[5,6]cyclohepta[1,2-d]thiazol-4-yl)-1-methyl-4-thioxo-3,4-dihydropyrimidin-2(1H)-one, a previously published thiazole-based analogue of AR-C118925, binds in a P2Y2R homology model was used to design new P2Y2R antagonist scaffolds. One P2Y2R antagonist scaffold retained millimolar affinity for the P2Y2R and upon further functionalization with terminal carboxylic acid groups affinity was improved over 100-fold. This functionalized P2Y2R antagonist scaffold was employed to develop new chemotype P2Y2R fluorescent ligands, that were attainable in a convergent five-step synthesis. One of these fluorescent ligands demonstrated micromolar affinity (pK d = 6.02 ± 0.12, n = 5) for the P2Y2R in isolated cell membranes and distinct pharmacology from an existing P2Y2R fluorescent antagonist, suggesting it may occupy a different binding site on the P2Y2R.
Collapse
Affiliation(s)
- Rebecca Knight
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
| | - Laura E. Kilpatrick
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
| | - Stephen J. Hill
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
- Division
of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Michael J. Stocks
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
4
|
Kim D, Stacey G. Phosphorylation-mediated regulation of integrin-linked kinase 5 by purinoreceptor P2K2. PLANT SIGNALING & BEHAVIOR 2023; 18:2261743. [PMID: 37750411 PMCID: PMC10730134 DOI: 10.1080/15592324.2023.2261743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Extracellular ATP (eATP) in plants plays a crucial role as a ligand for purinoreceptors, mediating purinergic signaling and regulating diverse biological functions, including responses to abiotic and biotic stresses. DORN1/P2K1 (LecRK I.9) was the first identified plant purinoreceptor. P2K2 (LecRK I.5) was subsequently identified as an additional plant purinoreceptor and shown to directly interact with P2K1. Recently, we reported that P2K1 interacts with Integrin-linked kinase 5 (ILK5), a Raf-like MAPKKK protein, and phosphorylates ILK5 to regulate purinergic signaling in relation to plant innate immunity. Here, we report that P2K2 also interacts with the ILK5 protein in planta. Furthermore, we demonstrate that P2K2 phosphorylates ILK5 in the presence of [γ-32P] ATP, similar to P2K1. However, unlike P2K1, P2K2 exhibits strong phosphorylation even when the Serine 192 residue of ILK5 is mutated to Alanine (ILK5S192A), suggesting the possibility of phosphorylation of other residues to fully regulate ILK5 protein function.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Andersen LL, Huang Y, Urban C, Oubraham L, Winheim E, Stafford C, Nagl D, O'Duill F, Ebert T, Engleitner T, Paludan SR, Krug A, Rad R, Hornung V, Pichlmair A. Systematic P2Y receptor survey identifies P2Y11 as modulator of immune responses and virus replication in macrophages. EMBO J 2023; 42:e113279. [PMID: 37881155 PMCID: PMC10690470 DOI: 10.15252/embj.2022113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Yiqi Huang
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Christian Urban
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Lila Oubraham
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Elena Winheim
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Che Stafford
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Dennis Nagl
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Fionan O'Duill
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Ebert
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Søren Riis Paludan
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
| | - Anne Krug
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Veit Hornung
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Pichlmair
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
- German Center for Infection Research (DZIF), Munich Partner SiteMunichGermany
| |
Collapse
|
6
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Kim D, Chen D, Ahsan N, Jorge GL, Thelen JJ, Stacey G. The Raf-like MAPKKK INTEGRIN-LINKED KINASE 5 regulates purinergic receptor-mediated innate immunity in Arabidopsis. THE PLANT CELL 2023; 35:1572-1592. [PMID: 36762404 PMCID: PMC10118279 DOI: 10.1093/plcell/koad029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/31/2023] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 results in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Dongqin Chen
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Nagib Ahsan
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J Thelen
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Inami Y, Fukushima M, Kume T, Uta D. Histamine enhances ATP-induced itching and responsiveness to ATP in keratinocytes. J Pharmacol Sci 2022; 148:255-261. [PMID: 35063141 DOI: 10.1016/j.jphs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan.
| |
Collapse
|
10
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
11
|
Klaver D, Thurnher M. Control of Macrophage Inflammation by P2Y Purinergic Receptors. Cells 2021; 10:1098. [PMID: 34064383 PMCID: PMC8147772 DOI: 10.3390/cells10051098] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.
Collapse
Affiliation(s)
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
12
|
Spratt AN, Kannan SR, Woods LT, Weisman GA, Quinn TP, Lorson CL, Sönnerborg A, Byrareddy SN, Singh K. Factors Associated with Emerging and Re-emerging of SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.24.436850. [PMID: 33791700 PMCID: PMC8010727 DOI: 10.1101/2021.03.24.436850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Global spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has triggered unprecedented scientific efforts, as well as containment and treatment measures. Despite these efforts, SARS-CoV-2 infections remain unmanageable in some parts of the world. Due to inherent mutability of RNA viruses, it is not surprising that the SARS-CoV-2 genome has been continuously evolving since its emergence. Recently, four functionally distinct variants, B.1.1.7, B.1.351, P.1 and CAL.20C, have been identified, and they appear to more infectious and transmissible than the original (Wuhan-Hu-1) virus. Here we provide evidence based upon a combination of bioinformatics and structural approaches that can explain the higher infectivity of the new variants. Our results show that the greater infectivity of SARS-CoV-2 than SARS-CoV can be attributed to a combination of several factors, including alternate receptors. Additionally, we show that new SARS-CoV-2 variants emerged in the background of D614G in Spike protein and P323L in RNA polymerase. The correlation analyses showed that all mutations in specific variants did not evolve simultaneously. Instead, some mutations evolved most likely to compensate for the viral fitness.
Collapse
|
13
|
P2Y 2 receptor antagonism resolves sialadenitis and improves salivary flow in a Sjögren's syndrome mouse model. Arch Oral Biol 2021; 124:105067. [PMID: 33561807 DOI: 10.1016/j.archoralbio.2021.105067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is a chronic autoimmune exocrinopathy characterized by lymphocytic infiltration of the salivary and lacrimal glands and decreased saliva and tear production. Previous studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is upregulated in numerous models of salivary gland inflammation (i.e., sialadenitis), where it has been implicated as a key mediator of chronic inflammation. Here, we evaluate both systemic and localized P2Y2R antagonism as a means to resolve sialadenitis in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of SS. DESIGN Female 4.5 month old NOD.H-2h4 DKO mice received daily intraperitoneal injections for 10 days of the selective P2Y2R antagonist, AR-C118925, or vehicle-only control. Single-dose localized intraglandular antagonist delivery into the Wharton's duct was also evaluated. Carbachol-induced saliva was measured and then submandibular glands (SMGs) were isolated and either fixed and paraffin-embedded for H&E staining, homogenized for RNA isolation or dissociated for flow cytometry analysis. RESULTS Intraperitoneal injection, but not localized intraglandular administration, of AR-C118925 significantly enhanced carbachol-induced salivation and reduced lymphocytic foci and immune cell markers in SMGs of 5 month old NOD.H-2h4 DKO mice, compared to vehicle-injected control mice. We found that B cells represent the primary immune cell population in inflamed SMGs of NOD.H-2h4 DKO mice that express elevated levels of P2Y2R compared to C57BL/6 control mice. We further demonstrate a role for P2Y2Rs in mediating B cell migration and the release of IgM. CONCLUSION Our findings suggest that the P2Y2R represents a novel therapeutic target for the treatment of Sjögren's syndrome.
Collapse
|
14
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22020624. [PMID: 33435130 PMCID: PMC7827192 DOI: 10.3390/ijms22020624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - José Luis Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| |
Collapse
|
16
|
Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA. P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications. Biochem Pharmacol 2021; 187:114406. [PMID: 33412103 DOI: 10.1016/j.bcp.2021.114406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Purinergic receptors for extracellular nucleotides and nucleosides contribute to a vast array of cellular and tissue functions, including cell proliferation, intracellular and transmembrane ion flux, immunomodulation and thrombosis. In mammals, the purinergic receptor system is composed of G protein-coupled P1 receptors A1, A2A, A2B and A3 for extracellular adenosine, P2X1-7 receptors that are ATP-gated ion channels and G protein-coupled P2Y1,2,4,6,11,12,13 and 14 receptors for extracellular ATP, ADP, UTP, UDP and/or UDP-glucose. Recent studies have implicated specific P2Y receptor subtypes in numerous oncogenic processes, including cancer tumorigenesis, metastasis and chemotherapeutic drug resistance, where G protein-mediated signaling cascades modulate intracellular ion concentrations and activate downstream protein kinases, Src family kinases as well as numerous mitogen-activated protein kinases. We are honored to contribute to this special issue dedicated to the founder of the field of purinergic signaling, Dr. Geoffrey Burnstock, by reviewing the diverse roles of P2Y receptors in the initiation, progression and metastasis of specific cancers with an emphasis on pharmacological and genetic strategies employed to delineate cell-specific and P2Y receptor subtype-specific responses that have been investigated using in vitro and in vivo cancer models. We further highlight bioinformatic and empirical evidence on P2Y receptor expression in human clinical specimens and cover clinical perspectives where P2Y receptor-targeting interventions may have therapeutic relevance to cancer treatment.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
17
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
18
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:109-128. [PMID: 32034711 DOI: 10.1007/978-3-030-30651-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
Affiliation(s)
- Wanda Kłopocka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.
| | - Jarosław Korczyński
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Wypych D, Barańska J. Cross-Talk in Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:35-65. [PMID: 32034708 DOI: 10.1007/978-3-030-30651-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y1, P2Y2, P2Y12, P2Y14 and the ionotropic P2X7 receptor in glioma C6 cells. P2Y1 and P2Y12 both respond to ADP, but while P2Y1 links to PLC and elevates cytosolic Ca2+ concentration, P2Y12 negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y1 receptor strongly decreases and P2Y12 becomes a major player responsible for ADP-evoked signal transduction. The P2Y12 receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y1 has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X7 receptor, often responsible for apoptotic fate, is not involved in Ca2+elevation in C6 cells. The shift in nucleotide receptor expression from P2Y1 to P2Y12 during serum withdrawal, the cross talk between both receptors and the lack of P2X7 activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
21
|
Coover RA, Healy TE, Guo L, Chaney KE, Hennigan RF, Thomson CS, Aschbacher-Smith LE, Jankowski MP, Ratner N. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun 2018; 6:127. [PMID: 30470263 PMCID: PMC6251093 DOI: 10.1186/s40478-018-0635-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Normal Schwann cells (SCs) are quiescent in adult nerves, when ATP is released from the nerve in an activity dependent manner. We find that suppressing nerve activity in adult nerves causes SC to enter the cell cycle. In vitro, ATP activates the SC G-protein coupled receptor (GPCR) P2Y2. Downstream of P2Y2, β-arrestin-mediated signaling results in PP2-mediated de-phosphorylation of AKT, and PP2 activity is required for SC growth suppression. NF1 deficient SC show reduced growth suppression by ATP, and are resistant to the effects of β-arrestin-mediated signaling, including PP2-mediated de-phosphorylation of AKT. In patients with the disorder Neurofibromatosis type 1, NF1 mutant SCs proliferate and form SC tumors called neurofibromas. Elevating ATP levels in vivo reduced neurofibroma cell proliferation. Thus, the low proliferation characteristic of differentiated adult peripheral nerve may require ongoing, nerve activity-dependent, ATP. Additionally, we identify a mechanism through which NF1 SCs may evade growth suppression in nerve tumors.
Collapse
|
22
|
Erb L, Woods LT, Khalafalla MG, Weisman GA. Purinergic signaling in Alzheimer's disease. Brain Res Bull 2018; 151:25-37. [PMID: 30472151 DOI: 10.1016/j.brainresbull.2018.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by three major histopathological markers: amyloid-β (Aβ) plaques, neurofibrillary tangles and gliosis in the central nervous system (CNS). It is now accepted that neuroinflammatory events in the CNS play a crucial role in the development of AD. This review focuses on neuroinflammatory signaling mediated by purinergic receptors (P1 adenosine receptors, P2X ATP-gated ion channels and G protein-coupled P2Y nucleotide receptors) and how therapeutic modulation of purinergic signaling influences disease progression in AD patients and animal models of AD.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Mahmoud G Khalafalla
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
23
|
Gendron FP, Placet M, Arguin G. P2Y 2 Receptor Functions in Cancer: A Perspective in the Context of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:91-106. [PMID: 28815512 DOI: 10.1007/5584_2017_90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purinergic signaling has recently emerged as a network of signaling molecules, enzymes and receptors that coordinates the action and behavior of cancerous cells. Extracellular adenosine 5' triphosphate activates a plethora of P2 nucleotide receptors that can putatively modulate cancer cell proliferation, survival and dissemination. In this context, the G protein-coupled P2Y2 receptor was identified as one of the entities coordinating the cellular and molecular events that characterize cancerous cells. In this chapter, we will look at the contribution of the P2Y2 receptor in cancer outcomes and use this information to demonstrate that the P2Y2 receptor represents a drug target of interest in the setting of colorectal cancer, for which the role and function of this receptor is poorly defined. More particularly, we will review how the P2Y2 receptor modulates cancer cell proliferation and survival, while promoting cell dissemination and formation of metastases. Finally, we will investigate how the P2Y2 receptor can contribute to the detrimental development of drug resistance that is often observed in cancerous cells.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Morgane Placet
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
25
|
Woods LT, Camden JM, Khalafalla MG, Petris MJ, Erb L, Ambrus JL, Weisman GA. P2Y 2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis 2018; 24:761-771. [PMID: 29297959 DOI: 10.1111/odi.12823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Interleukin-14α-transgenic (IL-14αTG) mice develop an autoimmune exocrinopathy with characteristics similar to Sjögren's syndrome, including sialadenitis and hyposalivation. The P2Y2 receptor (P2Y2 R) for extracellular ATP and UTP is upregulated during salivary gland inflammation (i.e., sialadenitis) where it regulates numerous inflammatory responses. This study investigated the role of P2Y2 Rs in autoimmune sialadenitis in the IL-14αTG mouse model of Sjögren's syndrome. MATERIALS AND METHODS IL-14αTG mice were bred with P2Y2 R-/- mice to generate IL-14αTG × P2Y2 R-/- mice. P2Y2 R expression, lymphocytic focus scores, B- and T-cell accumulation, and lymphotoxin-α expression were evaluated in the submandibular glands (SMG) along with carbachol-stimulated saliva secretion in IL-14αTG, IL-14αTG × P2Y2 R-/- , and C57BL/6 control mice at 9 and 12 months of age. RESULTS Genetic ablation of P2Y2 Rs in IL-14αTG mice significantly reduced B and T lymphocyte infiltration of SMGs. However, reduced sialadenitis did not restore saliva secretion in IL-14αTG × P2Y2 R-/- mice. Decreased sialadenitis in IL-14αTG × P2Y2 R-/- mice correlated with decreased lymphotoxin-α levels, a critical proinflammatory cytokine associated with autoimmune pathology in IL-14αTG mice. CONCLUSIONS The results of this study suggest that P2Y2 Rs contribute to the development of salivary gland inflammation in IL-14αTG mice and may also contribute to autoimmune sialadenitis in humans.
Collapse
Affiliation(s)
- L T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - L Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J L Ambrus
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - G A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Rafehi M, Neumann A, Baqi Y, Malik EM, Wiese M, Namasivayam V, Müller CE. Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y 2 Receptor. J Med Chem 2017; 60:8425-8440. [PMID: 28938069 DOI: 10.1021/acs.jmedchem.7b00854] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A homology model of the nucleotide-activated P2Y2R was created based on the X-ray structures of the P2Y1 receptor. Docking studies were performed, and receptor mutants were created to probe the identified binding interactions. Mutation of residues predicted to interact with the ribose (Arg110) and the phosphates of the nucleotide agonists (Arg265, Arg292) or that contribute indirectly to binding (Tyr288) abolished activity. The Y114F, R194A, and F261A mutations led to inactivity of diadenosine tetraphosphate and to a reduced response of UTP. Significant reduction in agonist potency was observed for all other receptor mutants (Phe111, His184, Ser193, Phe261, Tyr268, Tyr269) predicted to be involved in agonist recognition. An ionic lock between Asp185 and Arg292 that is probably involved in receptor activation interacts with the phosphate groups. The antagonist AR-C118925 and anthraquinones likely bind to the orthosteric site. The updated homology models will be useful for virtual screening and drug design.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Michael Wiese
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany.,PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| |
Collapse
|
28
|
Khalafalla FG, Greene S, Khan H, Ilves K, Monsanto MM, Alvarez R, Chavarria M, Nguyen J, Norman B, Dembitsky WP, Sussman MA. P2Y 2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling. Circ Res 2017; 121:1224-1236. [PMID: 28923792 DOI: 10.1161/circresaha.117.310812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. OBJECTIVE To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y2 nucleotide receptor (P2Y2R) activated by extracellular ATP and UTP molecules released following injury/stress. METHODS AND RESULTS c-Kit+ hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y2R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y2R. Mechanistically, P2Y2R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. CONCLUSIONS Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y2R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y2R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF.
Collapse
Affiliation(s)
- Farid G Khalafalla
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Steven Greene
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Hashim Khan
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kelli Ilves
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Megan M Monsanto
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Roberto Alvarez
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Monica Chavarria
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Jonathan Nguyen
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Benjamin Norman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Walter P Dembitsky
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Mark A Sussman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.).
| |
Collapse
|
29
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
30
|
Sunggip C, Nishimura A, Shimoda K, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y 6 receptors: A new therapeutic target of age-dependent hypertension. Pharmacol Res 2017; 120:51-59. [PMID: 28336370 DOI: 10.1016/j.phrs.2017.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/04/2023]
Abstract
Aging has a remarkable effect on cardiovascular homeostasis and it is known as the major non-modifiable risk factor in the development of hypertension. Medications targeting sympathetic nerve system and/or renin-angiotensin-aldosterone system are widely accepted as a powerful therapeutic strategy to improve hypertension, although the control rates remain unsatisfactory especially in the elder patients with hypertension. Purinergic receptors, activated by adenine, uridine nucleotides and nucleotide sugars, play pivotal roles in many biological processes, including platelet aggregation, neurotransmission and hormone release, and regulation of cardiovascular contractility. Since clopidogrel, a selective inhibitor of G protein-coupled purinergic P2Y12 receptor (P2Y12R), achieved clinical success as an anti-platelet drug, P2YRs has been attracted more attention as new therapeutic targets of cardiovascular diseases. We have revealed that UDP-responsive P2Y6R promoted angiotensin type 1 receptor (AT1R)-stimulated vascular remodeling in mice, in an age-dependent manner. Moreover, the age-related formation of heterodimer between AT1R and P2Y6R was disrupted by MRS2578, a P2Y6R-selective inhibitor. These findings suggest that P2Y6R is a therapeutic target to prevent age-related hypertension.
Collapse
Affiliation(s)
- Caroline Sunggip
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biomedical Science & Therapeutic, Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400 Kota Kinabalu Sabah, Malaysia
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
31
|
Ferrari D, Malavasi F, Antonioli L. A Purinergic Trail for Metastases. Trends Pharmacol Sci 2016; 38:277-290. [PMID: 27989503 DOI: 10.1016/j.tips.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
Nucleotides and nucleosides have emerged as important modulators of tumor biology. Recently acquired evidence shows that, when these molecules are released by cancer cells or surrounding tissues, they act as potent prometastatic factors, favoring tumor cell migration and tissue colonization. Therefore, nucleotides and nucleosides should be considered as a new class of prometastatic factors. In this review, we focus on the prometastatic roles of nucleotides and discuss future applications of purinergic signaling modulation in view of antimetastatic therapies.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Rafehi M, Burbiel JC, Attah IY, Abdelrahman A, Müller CE. Synthesis, characterization, and in vitro evaluation of the selective P2Y 2 receptor antagonist AR-C118925. Purinergic Signal 2016; 13:89-103. [PMID: 27766552 DOI: 10.1007/s11302-016-9542-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
The Gq protein-coupled, ATP- and UTP-activated P2Y2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Joachim C Burbiel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany. .,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
33
|
P2Y 2 receptor modulates shear stress-induced cell alignment and actin stress fibers in human umbilical vein endothelial cells. Cell Mol Life Sci 2016; 74:731-746. [PMID: 27652381 PMCID: PMC5272905 DOI: 10.1007/s00018-016-2365-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/28/2016] [Accepted: 09/12/2016] [Indexed: 10/25/2022]
Abstract
Endothelial cells release ATP in response to fluid shear stress, which activates purinergic (P2) receptor-mediated signaling molecules including endothelial nitric oxide (eNOS), a regulator of vascular tone. While P2 receptor-mediated signaling in the vasculature is well studied, the role of P2Y2 receptors in shear stress-associated endothelial cell alignment, cytoskeletal alterations, and wound repair remains ill defined. To address these aspects, human umbilical vein endothelial cell (HUVEC) monolayers were cultured on gelatin-coated dishes and subjected to a shear stress of 1 Pa. HUVECs exposed to either P2Y2 receptor antagonists or siRNA showed impaired fluid shear stress-induced cell alignment, and actin stress fiber formation as early as 6 h. Similarly, when compared to cells expressing the P2Y2 Arg-Gly-Asp (RGD) wild-type receptors, HUVECs transiently expressing the P2Y2 Arg-Gly-Glu (RGE) mutant receptors showed reduced cell alignment and actin stress fiber formation in response to shear stress as well as to P2Y2 receptor agonists in static cultures. Additionally, we observed reduced shear stress-induced phosphorylation of focal adhesion kinase (Y397), and cofilin-1 (S3) with receptor knockdown as well as in cells expressing the P2Y2 RGE mutant receptors. Consistent with the role of P2Y2 receptors in vasodilation, receptor knockdown and overexpression of P2Y2 RGE mutant receptors reduced shear stress-induced phosphorylation of AKT (S473), and eNOS (S1177). Furthermore, in a scratched wound assay, shear stress-induced cell migration was reduced by both pharmacological inhibition and receptor knockdown. Together, our results suggest a novel role for P2Y2 receptor in shear stress-induced cytoskeletal alterations in HUVECs.
Collapse
|
34
|
Riding A, Pullar CE. ATP Release and P2 Y Receptor Signaling are Essential for Keratinocyte Galvanotaxis. J Cell Physiol 2016; 231:181-91. [PMID: 26058714 DOI: 10.1002/jcp.25070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/05/2015] [Indexed: 01/06/2023]
Abstract
Repair to damaged tissue requires directional cell migration to heal the wound. Immediately upon wounding an electrical guidance cue is created with the cathode of the electric field (EF) located at the center of the wound. Previous research has demonstrated directional migration of keratinocytes toward the cathode when an EF of physiological strength (100-150 mV/mm) is applied in vitro, but the "sensor" by which keratinocytes sense the EF remains elusive. Here we use a customized chamber design to facilitate the application of a direct current (DC) EF of physiological strength (100 mV/mm) to keratinocytes whilst pharmacologically modulating the activation of both connexin hemichannels and purinergic receptors to determine their role in EF-mediated directional keratinocyte migration, galvanotaxis. In addition, keratinocytes were exposed to DiSCAC2 (3) dye to visualize membrane potential changes within the cell upon exposure to the applied DC EF. Here we unveil ATP-medicated mechanisms that underpin the initiation of keratinocyte galvanotaxis. The application of a DC EF of 100 mV/mm releases ATP via hemichannels activating a subset of purinergic P2 Y receptors, locally, to initiate the directional migration of keratinocytes toward the cathode in vitro, the center of the wound in vivo. The delineation of the mechanisms underpinning galvanotaxis extends our understanding of this endogenous cue and will facilitate the optimization and wider use of EF devices for chronic wound treatment. J. Cell. Physiol. 230: 181-191, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aimie Riding
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | - Christine E Pullar
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| |
Collapse
|
35
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
36
|
Byun YS, Yoo YS, Kwon JY, Joo JS, Lim SA, Whang WJ, Mok JW, Choi JS, Joo CK. Diquafosol promotes corneal epithelial healing via intracellular calcium-mediated ERK activation. Exp Eye Res 2015; 143:89-97. [PMID: 26505315 DOI: 10.1016/j.exer.2015.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
Abstract
Diquafosol is known as a purinergic P2Y2 receptor (P2Y2R) agonist that stimulates water and mucin secretion from conjunctival epithelial cells and goblet cells, leading to tear film stability in dry eye. However, its effect on corneal epithelial healing has not yet been elucidated. The aim of the present study was to evaluate the effect of diquafosol on corneal epithelial healing in vivo and on P2Y2R-related downstream signaling pathways in vitro. We administered 3% diquafosol ophthalmic solution on 3 mm-diameter epithelial defects made in rat corneas and assessed the wound closure over time. Corneal epithelial healing was significantly accelerated in diquafosol-treated eyes compared to control eyes at 12 and 24 h. During wound healing, P2Y2R staining appeared stronger in the re-epithelized margin near the wound defect. To evaluate whether diquafosol stimulates epidermal growth factor receptor/extracellular-signal-regulated kinase (EGFR/ERK)-related cell proliferation and migration, simian virus 40-transfected human corneal epithelial (THCE) cells were used for in vitro experiments. Cell proliferation was accelerated by diquafosol at concentrations from 20 to 200 μM during 48 h, but inhibited at concentrations over 2000 μM. The intracellular calcium ([Ca(2+)]i) elevation was measured in diquafosol (100 μM)-stimulated cells using Fluo-4/AM ([Ca(2+)]i indicator). [Ca(2+)]i elevation was observed in diquafosol-stimulated cells regardless of the presence of calcium in media, and suramin pretreatment inhibited the calcium response. The effect of diquafosol on phosphorylation of EGFR, ERK and Akt, and cell migration was determined by western blotting and in vitro cell migration assay. Diquafosol induced phosphorylation of EGFR at 2 min post-stimulation, and phosphorylation of ERK at 5 min post-stimulation. Phosphorylation of ERK was attenuated in cells pretreated with suramin or BAPTA/AM ([Ca(2+)]i chelator), and partially with AG1478 (EGFR inhibitor). Likewise, diquafosol-treated cells showed acceleration of gap closure in cell migration assay, which was inhibited by suramin, BAPTA/AM, AG1478, and U0126 (MEK inhibitor). These studies demonstrate that diquafosol is effective in promoting corneal epithelial wound healing and that this effect may result from ERK-stimulated cell proliferation and migration via P2Y2R-mediated [Ca(2+)]i elevation.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Sik Yoo
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Young Kwon
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Soo Joo
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-A Lim
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong-Joo Whang
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jee-Won Mok
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Sub Choi
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Li WH, Qiu Y, Zhang HQ, Tian XX, Fang WG. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS One 2015; 10:e0133165. [PMID: 26182292 PMCID: PMC4504672 DOI: 10.1371/journal.pone.0133165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.
Collapse
Affiliation(s)
- Wei-Hua Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Qiu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Hong-Quan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (W-GF); (X-XT)
| | - Wei-Gang Fang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (W-GF); (X-XT)
| |
Collapse
|
38
|
Eun SY, Ko YS, Park SW, Chang KC, Kim HJ. IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release. Vascul Pharmacol 2015; 72:108-17. [PMID: 25956731 DOI: 10.1016/j.vph.2015.04.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 01/11/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessel walls, and their proliferation and migration play important roles in the development of atherosclerosis. Recently, it has been reported that IL-1β mediates the inflammatory response through the upregulation of the P2Y2 receptor (P2Y2R). Thus, we examined the role of P2Y2R in IL-1β-mediated proliferation and migration of VSMCs and the underlying molecular mechanisms. VSMCs were pretreated with IL-1β for 24h to upregulate P2Y2R expression. The cells were then stimulated with UTP or ATP for the indicated times, and cell proliferation and migration and the related signaling pathways were examined. The equipotent P2Y2R agonists ATP and UTP enhanced proliferation, RAGE expression and HMGB1 secretion in IL-1β-pretreated VSMCs. Additionally, pretreatment with IL-1β enhanced UTP-mediated VSMC migration and MMP-2 release, but these effects were not observed in the P2Y2R-siRNA- or RAGE-siRNA-transfected VSMCs. Next, the signaling molecules involved in P2Y2R-mediated cell proliferation and migration were determined. The ERK, AKT, PKC, Rac-1 and ROCK2 pathways were involved in UTP-induced cell proliferation and migration, MMP-2 and HMGB1 secretion and RAGE expression in the IL-1β-pretreated VSMCs. UTP induced the phosphorylation of ERK, AKT and PKC and the translocation of Rac-1 and ROCK2 from cytosol to membrane as well as stress fiber formation, which were markedly increased in the IL-1β-pretreated VSMCs but not in the P2Y2R-siRNA-transfected VSMCs. These results demonstrate that pro-inflammatory cytokines associated with atherosclerosis, such as IL-1β, can accelerate the process of atherosclerosis through the upregulation of P2Y2R.
Collapse
Affiliation(s)
- So Young Eun
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Young Shin Ko
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea.
| |
Collapse
|
39
|
Ibuka S, Matsumoto S, Fujii S, Kikuchi A. The P2Y₂ receptor promotes Wnt3a- and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 2015; 128:2156-68. [PMID: 25908848 DOI: 10.1242/jcs.169060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial tubular structures are essential units in various organs. Here, we used rat intestinal epithelial IEC6 cells to investigate tubulogenesis and we found that tubular formation was induced by a combination of Wnt3a and EGF signaling during three-dimensional culture. Wnt3a and EGF induced the expression of the P2Y2 receptor (P2Y2R, also known as P2RY2), and knockdown of P2Y2R suppressed tubular formation. A P2Y2R mutant that lacks nucleotide responsiveness rescued the phenotypes resulting from P2Y2R knockdown, suggesting that nucleotide-dependent responses are not required for P2Y2R functions in tubular formation. The Arg-Gly-Asp (RGD) sequence of P2Y2R has been shown to interact with integrins, and a P2Y2R mutant lacking integrin-binding activity was unable to induce tubular formation. P2Y2R expression inhibited the interaction between integrins and fibronectin, and induced cell morphological changes and proliferation. Inhibition of integrin and fibronectin binding by treatment with the cyclic RGD peptide and fibronectin knockdown induced tubular formation in the presence of EGF alone, but a fibronectin coat suppressed Wnt3a- and EGF-induced tubular formation. These results suggest that Wnt3a- and EGF-induced P2Y2R expression causes tubular formation by preventing the binding of integrins and fibronectin rather than by mediating nucleotide responses.
Collapse
Affiliation(s)
- Souji Ibuka
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Pediatric Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Jin H, Seo J, Eun SY, Joo YN, Park SW, Lee JH, Chang KC, Kim HJ. P2Y2 R activation by nucleotides promotes skin wound-healing process. Exp Dermatol 2015; 23:480-5. [PMID: 24816122 DOI: 10.1111/exd.12440] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 12/29/2022]
Abstract
P2Y2 R has been shown to be upregulated in a variety of tissues in response to stress or injury and to mediate tissue regeneration through its ability to activate multiple signalling pathways. This study aimed to investigate the role of P2Y2 R in the wound-healing process and the mechanisms by which P2Y2 R activation promotes wound healing in fibroblasts. The role of P2Y2 R in skin wound healing was examined using a full-thickness skin wound model in wildtype (WT) and P2Y2 R(-/-) mice and an in vitro scratch wound model in control or P2Y2 R siRNA-transfected fibroblasts. WT mice showed significantly decreased wound size compared with P2Y2 R(-/-) mice at day 14 post-wounding, and immunohistochemical analysis showed that a proliferation marker Ki67 and extracellular matrix (ECM)-related proteins VEGF, collagen I, fibronectin and α-SMA were overexpressed in WT mice, which were reduced in P2Y2 R(-/-) mice. Scratch-wounded fibroblasts increased ATP release, which peaked at 5 min. In addition, scratch wounding increased the level of P2Y2 R mRNA. Activation of P2Y2 R by ATP or UTP enhanced proliferation and migration of fibroblasts in in vitro scratch wound assays and were blocked by P2Y2 R siRNA. Finally, ATP or UTP also increased the levels of ECM-related proteins through the activation of P2Y2 R in fibroblasts. This study suggests that P2Y2 R may be a potential therapeutic target to promote wound healing in chronic wound diseases.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Erb L, Cao C, Ajit D, Weisman GA. P2Y receptors in Alzheimer's disease. Biol Cell 2014; 107:1-21. [PMID: 25179475 DOI: 10.1111/boc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta-amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signalling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein-coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO, 65211, U.S.A
| | | | | | | |
Collapse
|
42
|
The roles of P2Y2 purinergic receptors in osteoblasts and mechanotransduction. PLoS One 2014; 9:e108417. [PMID: 25268784 PMCID: PMC4182465 DOI: 10.1371/journal.pone.0108417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023] Open
Abstract
We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow), and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice.
Collapse
|
43
|
El-Sayed FG, Camden JM, Woods LT, Khalafalla MG, Petris MJ, Erb L, Weisman GA. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. Am J Physiol Cell Physiol 2014; 307:C83-96. [PMID: 24760984 DOI: 10.1152/ajpcell.00380.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
Collapse
Affiliation(s)
- Farid G El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Mahmoud G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri; and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
44
|
Eun SY, Park SW, Lee JH, Chang KC, Kim HJ. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production. Free Radic Biol Med 2014; 69:157-66. [PMID: 24486339 DOI: 10.1016/j.freeradbiomed.2014.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken together, our findings suggest that P2Y2R could be a therapeutic target for the prevention of vascular disorders, including atherosclerosis.
Collapse
Affiliation(s)
- So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
45
|
Liao Z, Cao C, Wang J, Huxley VH, Baker O, Weisman GA, Erb L. The P2Y 2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. ACTA ACUST UNITED AC 2014; 7:1105-1121. [PMID: 25657827 PMCID: PMC4314728 DOI: 10.4236/jbise.2014.714109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial cadherin (VE-cadherin) mediates homophylic adhesion between endothelial cells and is an important regulator of angiogenesis, blood vessel permeability and leukocyte trafficking. Rac1, a member of the Rho family of GTPases, controls VE-cadherin adhesion by acting downstream of several growth factors, including angiopoietin-1 and vascular endothelial growth factor (VEGF). Here we show that UTP-induced activation of the Gq protein-coupled P2Y2 nucleotide receptor (P2Y2R) in human coronary artery endothelial cells (HCAECs) activated Rac1 and caused a transient complex to form between P2Y2R, VE-cadherin and VEGF receptor-2 (VEGFR-2). Knockdown of VE-cadherin expression with siRNA did not affect UTP-induced activation of extracellular signal-regulated kinases 1/2 (ERK1/2) but led to a loss of UTP-induced Rac1 activation and tyrosine phosphorylation of p120 catenin, a cytoplasmic protein known to interact with VE-cadherin. Activation of the P2Y2R by UTP also caused a prolonged interaction between p120 catenin and vav2 (a guanine nucleotide exchange factor for Rac) that correlated with the kinetics of UTP-induced tyrosine phosphorylation of p120 catenin and VE-cadherin. Inhibitors of VEGFR-2 (SU1498) or Src (PP2) significantly diminished UTP-induced Rac1 activation, tyrosine phosphorylation of p120 catenin and VE-cadherin, and association of the P2Y2R with VE-cadherin and p120 catenin with vav2. These findings suggest that the P2Y2R uses Src and VEGFR-2 to mediate association of the P2Y2R with VE-cadherin complexes in endothelial adherens junctions to activate Rac1.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California, San Diego, USA
| | - Chen Cao
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| | - Jianjie Wang
- Department of Biomedical Sciences, Missouri State University, Springfield, USA
| | - Virginia H Huxley
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA
| | - Olga Baker
- School of Dentistry, University of Utah, Salt Lake City, USA
| | - Gary A Weisman
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| | - Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| |
Collapse
|
46
|
LPS potentiates nucleotide-induced inflammatory gene expression in macrophages via the upregulation of P2Y2 receptor. Int Immunopharmacol 2013; 18:270-6. [PMID: 24316256 DOI: 10.1016/j.intimp.2013.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022]
Abstract
Sepsis is a severe systemic inflammatory response that is associated with high morbidity and mortality. A previous study using an animal model of sepsis showed that survival was significantly lower in WT mice than in P2Y(2) receptor (P2Y(2)R)-deficient mice, suggesting that P2Y(2)R plays a role in septic death. We therefore investigated the role of P2Y(2)R in the inflammatory responses of RAW264.7 murine macrophages to LPS. LPS time-dependently upregulated P2Y(2)R mRNA levels, with a prominent increase observed at 4 h. In addition, LPS increased ATP release in a time dependent manner (5-120 min post LPS treatment). Accordingly, we pretreated cells with LPS for 4 h to induce P2Y(2)R expression and then stimulated the cells with UTP or ATP for 16 h. Interestingly, ATP- or UTP-dependent P2Y(2)R activation in LPS-pretreated cells resulted in dramatically enhanced HMGB1 secretion, COX-2 and iNOS expression, and furthermore PGE2 and NO production compared to LPS treatment alone (4 h) or ATP or UTP treatment alone (16 h), an effect that was inhibited by P2Y(2)R silencing. In addition, these increases in HMGB1 secretion, COX-2 and iNOS expression and PGE(2) and NO production commonly involved the JNK, PKC and PDK pathways. Taken together, these data demonstrate that LPS-dependent upregulation of P2Y(2)R plays a critical role in facilitating the inflammatory responses induced by LPS.
Collapse
|
47
|
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y₂ nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer's disease. Mol Neurobiol 2013; 49:1031-42. [PMID: 24193664 DOI: 10.1007/s12035-013-8577-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1-42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Deepa Ajit
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fortin Ensign SP, Mathews IT, Symons MH, Berens ME, Tran NL. Implications of Rho GTPase Signaling in Glioma Cell Invasion and Tumor Progression. Front Oncol 2013; 3:241. [PMID: 24109588 PMCID: PMC3790103 DOI: 10.3389/fonc.2013.00241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most malignant of primary adult brain tumors, characterized by a highly locally invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.
Collapse
Affiliation(s)
- Shannon Patricia Fortin Ensign
- Cancer and Cell Biology Division, Translational Genomics Research Institute , Phoenix, AZ , USA ; Cancer Biology Graduate Interdisciplinary Program, University of Arizona , Tucson, AZ , USA
| | | | | | | | | |
Collapse
|
49
|
Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, Fang WG. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer 2013; 109:1666-75. [PMID: 23969730 PMCID: PMC3776994 DOI: 10.1038/bjc.2013.484] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/11/2013] [Accepted: 07/26/2013] [Indexed: 01/03/2023] Open
Abstract
Background: Our previous study demonstrated that extracellular adenosine 5′-triphosphate (ATP) stimulated prostate cancer cell invasion via P2Y receptors. However, the purinergic receptor subtype(s) involved in this process remains unclear. Here we aimed to determine whether P2Y2, one subtype of P2Y receptors, was involved in the invasion and metastasis of prostate cancer cells, and elucidated the underlying mechanism. Methods: RNAi was introduced to silence the expression of P2Y2. In vitro invasion and migration assays and in vivo experiments were carried out to examine the role of P2Y2 receptor in cell invasion and metastasis. cDNA microarray was performed to identify the differentially expressed genes downstream of ATP treatment. Results: P2Y2 was significantly expressed in the prostate cancer cells. Knockdown of P2Y2 receptor suppressed cell invasion and metastasis in vitro and in vivo. Further experiments identified that ATP could promote IL-8 and Snail expression and inhibit E-cadherin and Claudin-1 expression. Knockdown of P2Y2 receptor affected the expression of these EMT/invasion-related genes in vitro and in vivo. Conclusion: P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes. Thereby, P2Y2 receptor could be a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- W-H Li
- 1] Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China [2] Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Bao Y, Chen Y, Ledderose C, Li L, Junger WG. Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 2013; 288:22650-7. [PMID: 23798685 DOI: 10.1074/jbc.m113.476283] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.
Collapse
Affiliation(s)
- Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|