1
|
Chan EC, Ablooglu AJ, Ghosh CC, Desai A, Schaible N, Chen X, Zhao M, Olano MR, Ganesan S, Lack JB, Krishnan R, Parikh SM, Druey KM. PARP15 Is a Susceptibility Locus for Clarkson Disease (Monoclonal Gammopathy-Associated Systemic Capillary Leak Syndrome). Arterioscler Thromb Vasc Biol 2024; 44:2628-2646. [PMID: 39479769 PMCID: PMC11602389 DOI: 10.1161/atvbaha.124.321522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Vascular leakage is a deadly complication of severe infections, ranging from bacterial sepsis to malaria. Worldwide, septicemia is among the top 10 causes of lethality because of the shock and multiorgan dysfunction that arise from the host vascular response. In the monoclonal gammopathy-associated capillary leak syndrome (MG-CLS), even otherwise mundane infections induce recurrent septic-like episodes of profound microvascular hyperpermeability and shock. There are no defined genetic risk factors for MG-CLS or effective treatments for acute crises. METHODS We characterized predicted loss-of-function mutations in PARP15 (poly[ADP-ribose] polymerase 15), a protein of unknown function that is absent in mice, in patients with MG-CLS. We analyzed barrier function in PARP15-deficient vascular endothelial cells and vascular leakage in mice engineered to express wild-type or loss-of-function variant human PARP15. RESULTS We discovered several loss-of-function PARP15 variants associated with MG-CLS. These mutations severely reduced PARP15 enzymatic function. The presence of the most frequently detected variant (G628R) correlated with clinical markers of severe vascular leakage. In human microvascular endothelial cells, PARP15 suppressed cytokine-induced barrier disruption by ADP-ribosylating the scaffold protein JIP3 (c-Jun N-terminal kinase-interacting protein 3) and inhibiting p38 MAP (mitogen-activated protein) kinase activation. Mice expressing enzymatically inactive human PARP15(G628R) were significantly more prone to inflammation-associated vascular leakage than mice expressing wild-type PARP15 in a p38-dependent fashion. CONCLUSIONS PARP15 represents a previously unrecognized genetic susceptibility factor for MG-CLS. PARP15-mediated ADP ribosylation is an essential and genetically determined mechanism of the human vascular response to inflammation.
Collapse
Affiliation(s)
- Eunice C. Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Ararat J. Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Chandra C. Ghosh
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Xiuying Chen
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Ming Zhao
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - M. Renee Olano
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Samir M. Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center; Dallas, TX, 75225, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Shao C, Anand V, Andreeff M, Battula VL. Ganglioside GD2: a novel therapeutic target in triple-negative breast cancer. Ann N Y Acad Sci 2021; 1508:35-53. [PMID: 34596246 DOI: 10.1111/nyas.14700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by lack of hormone receptor expression and is known for high rates of recurrence, distant metastases, and poor clinical outcomes. TNBC cells lack targetable receptors; hence, there is an urgent need for targetable markers for the disease. Breast cancer stem-like cells (BCSCs) are a fraction of cells in primary tumors that are associated with tumorigenesis, metastasis, and resistance to chemotherapy. Targeting BCSCs is thus an effective strategy for preventing cancer metastatic spread and sensitizing tumors to chemotherapy. The CD44hi CD24lo phenotype is a well-established phenotype for identification of BCSCs, but CD44 and CD24 are not targetable markers owing to their expression in normal tissues. The ganglioside GD2 has been shown to be upregulated in primary TNBC tumors compared with normal breast tissue and has been shown to identify BCSCs. In this review, we discuss GD2 as a BCSC- and tumor-specific marker in TNBC; epithelial-to-mesenchymal transition and the signaling pathways that are upstream and downstream of GD2 and the role of these pathways in tumorigenesis and metastasis in TNBC; direct and indirect approaches for targeting GD2; and ongoing clinical trials and treatments directed against GD2 as well as future directions for these strategies.
Collapse
Affiliation(s)
- Claire Shao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Gunarta IK, Yuliana D, Erdenebaatar P, Kishi Y, Boldbaatar J, Suzuki R, Odongoo R, Davaakhuu G, Hohjoh H, Yoshioka K. c-Jun NH 2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) attenuates curcumin-induced cell death differently from its family member, JNK-associated leucine zipper protein (JLP). Drug Discov Ther 2021; 15:66-72. [PMID: 33716240 DOI: 10.5582/ddt.2021.01021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Curcumin, a major component of turmeric, is known to exhibit multiple biological functions including antitumor activity. We previously reported that the mitogen-activated protein kinase (MAPK) scaffold protein c-Jun NH2-terminal kinase (JNK)-associated leucine zipper protein (JLP) reduces curcumin-induced cell death by modulating p38 MAPK and autophagy through the regulation of lysosome positioning. In this study, we investigated the role of JNK/stress-activated protein kinase-associated protein 1 (JSAP1), a JLP family member, in curcumin-induced stress, and found that JSAP1 also attenuates curcumin-induced cell death. However, JSAP1 knockout showed no or little effect on the activation of JNK and p38 MAPKs in response to curcumin. In addition, small molecule inhibitors of JNK and p38 MAPKs did not increase curcumin-induced cell death. Furthermore, JSAP1 depletion did not impair lysosome positioning and autophagosome-lysosome fusion. Instead, we noticed substantial autolysosome accumulation accompanied by an inefficient autophagic flux in JSAP1 knockout cells. Taken together, these results indicate that JSAP1 is involved in curcumin-induced cell death differently from JLP, and may suggest that JSAP1 plays a role in autophagosome degradation and its dysfunction results in enhanced cell death. The findings of this study may contribute to the development of novel therapeutic approaches using curcumin for cancer.
Collapse
Affiliation(s)
- I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Dewi Yuliana
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Purev Erdenebaatar
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yuhei Kishi
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Jambaldorj Boldbaatar
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Present address: School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ryusuke Suzuki
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ravdandorj Odongoo
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Gantulga Davaakhuu
- Laboratory of Molecular Biology, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Chaeyklinthes T, Tiyao V, Roytrakul S, Phaonakrop N, Showpittapornchai U, Pradidarcheep W. Proteomics study of the antifibrotic effects of α-mangostin in a rat model of renal fibrosis. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Renal fibrosis is a consequence of a “faulty” wound-healing mechanism that results in the accumulation of extracellular matrix, which could lead to the impairment of renal functions. α-Mangostin (AM) may prevent the formation of liver fibrosis, but there has yet to be a conclusive investigation of its effect on renal fibrosis.
Objectives
To investigate the renoprotective effect of AM against thioacetamide (TAA)-induced renal fibrosis in rats at the morphological and proteomic levels.
Methods
We divided 18 male Wistar rats into 3 groups: a control group, a TAA-treated group, and a TAA + AM group. The various agents used to treat the rats were administered intraperitoneally over 8 weeks. Subsequently, the morphology of renal tissue was analyzed by histology using Sirius Red staining and the relative amount of stained collagen fibers quantified using ImageJ analysis. One-dimensional gel liquid chromatography with tandem mass spectrometry (GeLC-MS/MS) was used to track levels of protein expression. Proteomic bioinformatics tools including STITCH were used to correlate the levels of markers known to be involved in fibrosis with Sirius Red-stained collagen scoring.
Results
Histology revealed that AM could reduce the relative amount of collagen fibers significantly compared with the TAA group. Proteomic analysis revealed the levels of 4 proteins were modulated by AM, namely CASP8 and FADD-like apoptosis regulator (Cflar), Ragulator complex protein LAMTOR3 (Lamtor3), mitogen-activated protein kinase kinase kinase 14 (Map3k14), and C-Jun-amino-terminal kinase-interacting protein 3 (Mapk8ip3).
Conclusion
AM can attenuate renal fibrosis by the suppression of pathways involving Cflar, Lamtor3, Map3k14, and Mapk8ip3.
Collapse
Affiliation(s)
- Thana Chaeyklinthes
- Department of Science, Mahidol University International College, Mahidol University , Nakhon Pathom 73170 , Thailand
| | - Vilailak Tiyao
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | | | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| |
Collapse
|
5
|
JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells. Mol Cell Biochem 2017; 444:1-13. [PMID: 29159770 PMCID: PMC6002436 DOI: 10.1007/s11010-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Abstract
The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.
Collapse
|
6
|
Gunarta IK, Li R, Nakazato R, Suzuki R, Boldbaatar J, Suzuki T, Yoshioka K. Critical role of glioma-associated oncogene homolog 1 in maintaining invasive and mesenchymal-like properties of melanoma cells. Cancer Sci 2017; 108:1602-1611. [PMID: 28635133 PMCID: PMC5543504 DOI: 10.1111/cas.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is the most aggressive form of skin cancer. This aggressiveness appears to be due to the cancer cells' ability to reversibly switch between phenotypes with non-invasive and invasive potential, and microphthalmia-associated transcription factor (MITF) is known to play a central role in this process. The transcription factor glioma-associated oncogene homolog 1 (GLI1) is a component of the canonical and noncanonical sonic hedgehog pathways. Although GLI1 has been suggested to be involved in melanoma progression, its precise role and the mechanism underlying invasion remain unclear. Here we investigated whether and how GLI1 is involved in the invasive ability of melanoma cells. Gli1 knockdown (KD) melanoma cell lines, established by using Gli1-targeting lentiviral short hairpin RNA, exhibited a markedly reduced invasion ability, but their MITF expression and activity were the same as controls. Gli1 KD melanoma cells also led to less lung metastasis in mice compared with control melanoma cells. Furthermore, the Gli1 KD melanoma cells underwent a mesenchymal-to-epithelial-like transition, accompanied by downregulation of the epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (EMT-TF) Snail1, Zeb1 and Twist1, but not Snail2 or Zeb2. Collectively, these results indicate that GLI1 is important for maintaining the invasive and mesenchymal-like properties of melanoma cells independent of MITF, most likely by modulating a subset of EMT-TF. Our findings provide new insight into how heterogeneity and plasticity are achieved and regulated in melanoma.
Collapse
Affiliation(s)
- I Ketut Gunarta
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Rong Li
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Ryota Nakazato
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Ryusuke Suzuki
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Jambaldorj Boldbaatar
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takeshi Suzuki
- Division of Functional GenomicCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Katsuji Yoshioka
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| |
Collapse
|
7
|
In silico analyses and global transcriptional profiling reveal novel putative targets for Pea3 transcription factor related to its function in neurons. PLoS One 2017; 12:e0170585. [PMID: 28158215 PMCID: PMC5291419 DOI: 10.1371/journal.pone.0170585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/08/2017] [Indexed: 01/05/2023] Open
Abstract
Pea3 transcription factor belongs to the PEA3 subfamily within the ETS domain transcription factor superfamily, and has been largely studied in relation to its role in breast cancer metastasis. Nonetheless, Pea3 plays a role not only in breast tumor, but also in other tissues with branching morphogenesis, including kidneys, blood vasculature, bronchi and the developing nervous system. Identification of Pea3 target promoters in these systems are important for a thorough understanding of how Pea3 functions. Present study particularly focuses on the identification of novel neuronal targets of Pea3 in a combinatorial approach, through curation, computational analysis and microarray studies in a neuronal model system, SH-SY5Y neuroblastoma cells. We not only show that quite a number of genes in cancer, immune system and cell cycle pathways, among many others, are either up- or down-regulated by Pea3, but also identify novel targets including ephrins and ephrin receptors, semaphorins, cell adhesion molecules, as well as metalloproteases such as kallikreins, to be among potential target promoters in neuronal systems. Our overall results indicate that rather than early stages of neurite extension and axonal guidance, Pea3 is more involved in target identification and synaptic maturation.
Collapse
|
8
|
Wang PY, Wang SR, Xiao L, Chen J, Wang JY, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Physiol Cell Physiol 2017; 312:C367-C375. [PMID: 28100486 DOI: 10.1152/ajpcell.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
c-Jun is an activating protein 1 (AP-1) transcription factor and implicated in many aspects of cellular functions, but its exact role in the regulation of early intestinal epithelial restitution after injury remains largely unknown. Phospholipase C-γ1 (PLCγ1) catalyzes hydrolysis of phosphatidylinositol 4,5 biphosphate into the second messenger diacylglycerol and inositol 1,4,5 triphosphate, coordinates Ca2+ store mobilization, and regulates cell migration and proliferation in response to stress. Here we reported that c-Jun upregulates PLCγ1 expression and enhances PLCγ1-induced Ca2+ signaling, thus promoting intestinal epithelial restitution after wounding. Ectopically expressed c-Jun increased PLCγ1 expression at the transcription level, and this stimulation is mediated by directly interacting with AP-1 and CCAAT-enhancer-binding protein (C/EBP) binding sites that are located at the proximal region of the rat PLCγ1 promoter. Increased levels of PLCγ1 by c-Jun elevated cytosolic free Ca2+ concentration and stimulated intestinal epithelial cell migration over the denuded area after wounding. The c-Jun-mediated PLCγ1/Ca2+ signal also plays an important role in polyamine-induced cell migration after wounding because increased c-Jun rescued Ca2+ influx and cell migration in polyamine-deficient cells. These findings indicate that c-Jun induces PLCγ1 expression transcriptionally and enhances rapid epithelial restitution after injury by activating Ca2+ signal.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
9
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
10
|
Ramkumar P, Lee CM, Moradian A, Sweredoski MJ, Hess S, Sharrocks AD, Haines DS, Reddy EP. JNK-associated Leucine Zipper Protein Functions as a Docking Platform for Polo-like Kinase 1 and Regulation of the Associating Transcription Factor Forkhead Box Protein K1. J Biol Chem 2015; 290:29617-28. [PMID: 26468278 PMCID: PMC4705960 DOI: 10.1074/jbc.m115.664649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1.
Collapse
Affiliation(s)
- Poornima Ramkumar
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Clement M Lee
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Annie Moradian
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Andrew D Sharrocks
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Dale S Haines
- the Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - E Premkumar Reddy
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
11
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
12
|
Wang Z, Chen Y, Lü Y, Chen X, Cheng L, Mi X, Xu X, Deng W, Zhang Y, Wang N, Li J, Li Y, Wang X. Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures. Neuroscience 2015; 300:314-24. [PMID: 26002316 DOI: 10.1016/j.neuroscience.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
JNK-interacting protein 3 (JIP3), also known as JNK stress-activated protein kinase-associated protein 1 (JSAP1), is a scaffold protein mainly involved in the regulation of the pro-apoptotic signaling cascade mediated by c-Jun N-terminal kinase (JNK). Overexpression of JIP3 in neurons in vitro has been reported to lead to accelerated activation of JNK and enhanced apoptosis response to cellular stress. However, the occurrence and the functional significance of stress-induced modulations of JIP3 levels in vivo remain elusive. In this study, we investigated the expression of JIP3 in temporal lobe epilepsy (TLE) and in a kainic acid (KA)-induced mouse model of epileptic seizures, and determined whether down-regulation of JIP3 can decrease susceptibility to seizures and neuron damage induced by KA. We found that JIP3 was markedly increased in TLE patients and a mouse model of epileptic seizures; mice underexpressing JIP3 through lentivirus bearing LV-Letm1-RNAi showed decreased susceptibility, delayed first seizure and decreased seizure duration response to the epileptogenic properties of KA. Subsequently, a decreased activation of JNK following seizure induction was observed in mice underexpressing JIP3, which also exhibited less neuronal apoptosis in the CA3 region of the hippocampus, as assessed three days after KA administration. We also found that mice underexpressing JIP3 exhibited a delayed pentylenetetrazole (PTZ)-induced kindling seizure process.
Collapse
Affiliation(s)
- Z Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Department of Neurology, Fuling Central Hospital, Chongqing 408000, China
| | - Y Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Lü
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - L Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Mi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - W Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - N Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - J Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Y Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - X Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
13
|
Watt D, Dixit R, Cavalli V. JIP3 Activates Kinesin-1 Motility to Promote Axon Elongation. J Biol Chem 2015; 290:15512-15525. [PMID: 25944905 DOI: 10.1074/jbc.m115.651885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.
Collapse
Affiliation(s)
- Dana Watt
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
14
|
Onuki-Nagasaki R, Nagasaki A, Hakamada K, Uyeda TQP, Miyake M, Miyake J, Fujita S. Identification of kinases and regulatory proteins required for cell migration using a transfected cell-microarray system. BMC Genet 2015; 16:9. [PMID: 25652422 PMCID: PMC4365556 DOI: 10.1186/s12863-015-0170-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Cell migration plays a major role in a variety of normal biological processes, and a detailed understanding of the associated mechanisms should lead to advances in the medical sciences in areas such as cancer therapy. Previously, we developed a simple chip, based on transfected-cell microarray (TCM) technology, for the identification of genes related to cell migration. In the present study, we used the TCM chip for high-throughput screening (HTS) of a kinome siRNA library to identify genes involved in the motility of highly invasive NBT-L2b cells. Results We performed HTS using TCM coupled with a programmed image tracer to capture time-lapse fluorescence images of siRNA-transfected cells and calculated speeds of cell movement. This first screening allowed us to identify 52 genes. After quantitative PCR (qPCR) and a second screening by a conventional transfection method, we confirmed that 32 of these genes were associated with the migration of NBT-L2b cells. We investigated the subcellular localization of proteins and levels of expression of these 32 genes, and then we used our results and databases of protein-protein interactions (PPIs) to construct a hypothetic but comprehensive signal network for cell migration. Conclusions The genes that we identified belonged to several functional categories, and our pathway analysis suggested that some of the encoded proteins functioned as the hubs of networks required for cell migration. Our signal pathways suggest that epidermal growth factor receptor (EGFR) is an upstream regulator in the network, while Src and GRB2 seem to represent nodes for control of respective the downstream proteins that are required to coordinate the many cellular events that are involved in migration. Our microarray appears to be a useful tool for the analysis of protein networks and signal pathways related to cancer metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0170-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiko Onuki-Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kazumi Hakamada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan. .,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan. .,Current address: Central Research Laboratories Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 657-2271, Japan.
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masato Miyake
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Jun Miyake
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan. .,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Satoshi Fujita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
15
|
Armendáriz BG, Masdeu MDM, Soriano E, Ureña JM, Burgaya F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014; 40:3573-90. [DOI: 10.1111/ejn.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Beatriz G. Armendáriz
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Maria del Mar Masdeu
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Eduardo Soriano
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Jesús M. Ureña
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Ferran Burgaya
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| |
Collapse
|
16
|
Figueroa DS, Kemeny SF, Clyne AM. Glycated Collagen Decreased Endothelial Cell Fibronectin Alignment in Response to Cyclic Stretch Via Interruption of Actin Alignment. J Biomech Eng 2014; 136:101010. [DOI: 10.1115/1.4028037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Hyperglycemia is a defining characteristic of diabetes, and uncontrolled blood glucose in diabetes is associated with accelerated cardiovascular disease. Chronic hyperglycemia glycates extracellular matrix (ECM) collagen, which can lead to endothelial cell dysfunction. In healthy conditions, endothelial cells respond to mechanical stimuli such as cyclic stretch (CS) by aligning their actin cytoskeleton. Other cell types, specifically fibroblasts, align their ECM in response to CS. We previously demonstrated that glycated collagen inhibits endothelial cell actin alignment in response to CS. The aim of this study was to determine the effect of glycated collagen on ECM remodeling and protein alignment in response to stretch. Porcine aortic endothelial cells (PAEC) seeded on native or glycated collagen coated elastic substrates were exposed to 10% CS. Cells on native collagen aligned subcellular fibronectin fibers in response to stretch, whereas cells on glycated collagen did not. The loss of fibronectin alignment was due to inhibited actin alignment in response to CS, since fibronectin alignment did not occur in cells on native collagen when actin alignment was inhibited with cytochalasin. Further, while ECM protein content did not change in cells on native or glycated collagen in response to CS, degradation activity decreased in cells on glycated collagen. Matrix metalloproteinase 2 (MMP-2) and membrane-associated type 1 matrix metalloproteinase (MT1-MMP) protein levels decreased, and therefore MMP-2 activity also decreased. These MMP changes may relate to c-Jun N-terminal kinase (Jnk) phosphorylation inhibition with CS, which has previously been linked to focal adhesion kinase (FAK). These data demonstrate the importance of endothelial cell actin tension in remodeling and aligning matrix proteins in response to mechanical stimuli, which is critical to vascular remodeling in health and disease.
Collapse
Affiliation(s)
- Dannielle S. Figueroa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Steven F. Kemeny
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Alisa Morss Clyne
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
17
|
Sinha D, Dutta K, Ganguly KK, Biswas J, Bishayee A. A novel synthetic oleanane triterpenoid suppresses adhesion, migration, and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis. Mol Carcinog 2014; 54:654-67. [PMID: 24510625 DOI: 10.1002/mc.22136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic, and antiinflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration, and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA, and immunocytochemistry. The results elicited that AMR-Me was successful in restricting the adhesion, migration, and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/phosphorylated forms of focal adhesion kinase (pFAK397 )/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover, the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2, and MMP-9. AMR-Me suppresses the activity of MT1-MMP, MMP-2, and MMP-9 by downregulation of VEGF/pFAK397 /pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kaustav Dutta
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kirat K Ganguly
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Translational and Clinical Research, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California
| |
Collapse
|
18
|
The Impact of JNK on Neuronal Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:37-57. [DOI: 10.1007/978-94-007-7687-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Sun T, Yu N, Zhai LK, Li N, Zhang C, Zhou L, Huang Z, Jiang XY, Shen Y, Chen ZY. c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner. J Biol Chem 2013; 288:14531-14543. [PMID: 23576431 DOI: 10.1074/jbc.m113.464453] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of neuronal polarity is essential for the establishment of the accurate patterning of neuronal circuits in the brain. However, little is known about the underlying molecular mechanisms that control rapid axon elongation during neuronal development. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed at axon tips during the critical period for axon development. Using gain- and loss-of-function approaches, immunofluorescence analysis, and in utero electroporation, we find that JIP3 can enhance axon elongation in primary hippocampal neurons and cortical neurons in vivo. We further demonstrate that JIP3 promotes axon elongation in a kinesin- and JNK-dependent manner using several deletion mutants of JIP3. Next, we demonstrate that the successful transportation of JIP3 to axon tips by kinesin is a prerequisite for enhancing JNK phosphorylation in this area and therefore promotes axon elongation, constituting a novel mechanism for coupling JIP3 anterograde transport with JNK signaling at the distal axons and axon elongation. Finally, our immunofluorescence data suggest that the activation of JNK at axon tips facilitates axon elongation by modulating cofilin activity and actin filament dynamics. These findings may have important implications for our understanding of neuronal axon elongation during development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Nuo Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Lu-Kai Zhai
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Na Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Chao Zhang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhuo Huang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing-Yu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012.
| |
Collapse
|
20
|
The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials 2013; 34:3303-14. [PMID: 23398885 DOI: 10.1016/j.biomaterials.2013.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
Enamel formation involves highly orchestrated intracellular and extracellular events; following development, the tissue is unable to regenerate, making it a challenging target for tissue engineering. We previously demonstrated the ability to trigger enamel differentiation and regeneration in the embryonic mouse incisor using a self-assembling matrix that displayed the integrin-binding epitope RGDS (Arg-Gly-Asp-Ser). To further elucidate the intracellular signaling pathways responsible for this phenomenon, we explore here the coupling response of integrin receptors to the biomaterial and subsequent downstream gene expression profiles. We demonstrate that the artificial matrix activates focal adhesion kinase (FAK) to increase phosphorylation of both c-Jun N-terminal kinase (JNK) and its downstream transcription factor c-Jun (c-Jun). Inhibition of FAK blocked activation of the identified matrix-mediated pathways, while independent inhibition of JNK nearly abolished phosphorylated-c-Jun (p-c-Jun) and attenuated the pathways identified to promote enamel regeneration. Cognate binding sites in the amelogenin promoter were identified to be transcriptionally up-regulated in response to p-c-Jun. Furthermore, the artificial matrix induced gene expression as evidenced by an increased abundance of amelogenin, the main protein expressed during enamel formation, and the CCAAT enhancer binding protein alpha (C/EBPα), which is the known activator of amelogenin expression. Elucidating these cues not only provides guidelines for the design of synthetic regenerative strategies and opportunities to manipulate pathways to regulate enamel regeneration, but can provide insight into the molecular mechanisms involved in tissue formation.
Collapse
|
21
|
Pan YR, Tseng WS, Chang PW, Chen HC. Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2013; 126:5670-80. [DOI: 10.1242/jcs.134361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podosomes are actin-based membrane protrusions that facilitate extracellular matrix degradation and invasive cell motility. Podosomes can self-organize into large rosette-like structures in Src-transformed fibroblasts, osteoclasts, and some highly invasive cancer cells. However, the mechanism of this assembly remains obscure. In this study, we show that the suppression of c-Jun N-terminal kinase (JNK) by the JNK inhibitor SP600125 or short-hairpin RNA inhibited podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. In addition, SrcY527F was less potent to induce podosome rosettes in JNK1-null or JNK2-null mouse embryo fibroblasts than in their wild-type counterparts. The kinase activity of JNK was essential for promoting podosome rosette formation but not for its localization to podosome rosettes. Moesin, a member of the ERM (ezrin, radixin, and moesin) protein family, was identified as a substrate of JNK. We show that the phosphorylation of moesin at Thr558 by JNK was important for podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. Taken together, our results unveil a novel role of JNK in podosome rosette formation by phosphorylating moesin.
Collapse
|
22
|
c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. Mol Cell Biol 2012; 32:3513-26. [PMID: 22751924 DOI: 10.1128/mcb.00713-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.
Collapse
|
23
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
24
|
Cho IH, Lee KW, Ha HY, Han PL. JNK/stress-activated protein kinase associated protein 1 is required for early development of telencephalic commissures in embryonic brains. Exp Mol Med 2012; 43:462-70. [PMID: 21685723 DOI: 10.3858/emm.2011.43.8.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We previously reported that mice lacking JSAP1 (jsap1-/-) were lethal and the brain of jsap1-/- at E18.5 exhibited multiple types of developmental defects, which included impaired axon projection of the corpus callosum and anterior commissures. In the current study, we examined whether the early telencephalic commissures were formed abnormally from the beginning of initial development or whether they arose normally, but have been progressively lost their maintenance in the absence of JSAP1. The early corpus callosum in the brain of jsap1+/+ at E15.5-E16.5 was found to cross the midline with forming a distinct U-shaped tract, whereas the early axonal tract in jsap1-/- appeared to cross the midline in a diffuse manner, but the lately arriving axons did not cross the midline. In the brain of jsap1-/- at E17.5, the axon terminals of lately arriving collaterals remained within each hemisphere, forming an early Probst's bundle-like shape. The early anterior commissure in the brain of jsap1+/+ at E14.5-E15.5 crossed the midline, whereas the anterior commissure in jsap1-/- developed, but was deviated from their normal path before approaching the midline. The axon tracts of the corpus callosum and anterior commissure in the brain of jsap1-/- at E16.5-E17.5 expressed phosphorylated forms of FAK and JNK, however, their expression levels in the axonal tracts were reduced compared to the respective controls in jsap1+/+. Considering the known scaffolding function of JSAP1 for the FAK and JNK pathways, these results suggest that JSAP1 is required for the pathfinding of the developing telencephalic commissures in the early brains.
Collapse
Affiliation(s)
- Ik-Hyun Cho
- Department of Anatomy, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
25
|
Qin Y, Alderliesten MC, Stokman G, Pennekamp P, Bonventre JV, de Heer E, Ichimura T, de Graauw M, Price LS, van de Water B. Focal adhesion kinase signaling mediates acute renal injury induced by ischemia/reperfusion. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2766-78. [PMID: 21982831 DOI: 10.1016/j.ajpath.2011.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/21/2011] [Accepted: 08/24/2011] [Indexed: 11/16/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is associated with cell matrix and focal adhesion remodeling. Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase that localizes at focal adhesions and regulates their turnover. Here, we investigated the role of FAK in renal I/R injury, using a novel conditional proximal tubule-specific fak-deletion mouse model. Tamoxifen treatment of FAK(loxP/loxP)//γGT-Cre-ER(T2) mice caused renal-specific fak recombination (FAK(ΔloxP/ΔloxP)) and reduction of FAK expression in proximal tubules. In FAK(ΔloxP/ΔloxP) mice compared with FAK(loxP/loxP) controls, unilateral renal ischemia followed by reperfusion resulted in less tubular damage with reduced tubular cell proliferation and lower expression of kidney injury molecule-1, which was independent from the postischemic inflammatory response. Oxidative stress is involved in the pathophysiology of I/R injury. Primary cultured mouse renal cells were used to study the role of FAK deficiency for oxidative stress in vitro. The conditional fak deletion did not affect cell survival after hydrogen peroxide-induced cellular stress, whereas it impaired the recovery of focal adhesions that were disrupted by hydrogen peroxide. This was associated with reduced c-Jun N-terminal kinase-dependent phosphorylation of paxillin at serine 178 in FAK-deficient cells, which is required for focal adhesion turnover. Our findings support a role for FAK as a novel factor in the initiation of c-Jun N-terminal kinase-mediated cellular stress response during renal I/R injury and suggest FAK as a target in renal injury protection.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
JIP3 mediates TrkB axonal anterograde transport and enhances BDNF signaling by directly bridging TrkB with kinesin-1. J Neurosci 2011; 31:10602-14. [PMID: 21775604 DOI: 10.1523/jneurosci.0436-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), secreted from target tissues, binds and activates TrkB receptors, located on axonal terminals of the innervating neurons, and thereby initiates retrograde signaling. Long-range anterograde transport of TrkB in axons and dendrites requires kinesin-mediated transport. However, it remains unknown whether anterograde TrkB transport mechanisms are the same in axons versus in dendrites. Here, we show that c-Jun NH(2)-terminal kinase-interacting protein 3 (JIP3) binds directly to TrkB, via a minimal 12 aa domain in the TrkB juxtamembrane region, and links TrkB to kinesin-1. The JIP3/TrkB interaction selectively drives TrkB anterograde transport in axons but not in dendrites of rat hippocampal neurons. Moreover, we find that TrkB axonal transport mediated by JIP3 could regulate BDNF-induced Erk activation and axonal filopodia formation. Our findings demonstrate a role for JIP3-mediated TrkB anterograde axonal transport in recruiting more TrkB into distal axons and facilitating BDNF-induced retrograde signaling and synapse modulation, which provides a novel mechanism of how the TrkB anterograde transport can be coupled to BDNF signaling in distal axons.
Collapse
|
27
|
Xu B, Zhou Y, O K, Choy PC, Pierce GN, Siow YL. Regulation of stress-associated scaffold proteins JIP1 and JIP3 on the c-Jun NH2-terminal kinase in ischemia-reperfusion. Can J Physiol Pharmacol 2011; 88:1084-92. [PMID: 21076496 DOI: 10.1139/y10-088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion (IR)-induced cell apoptosis involves the activation of c-Jun NH2-terminal kinase (JNK). The activation of JNK requires the presence of scaffold proteins called JNK-interacting proteins (JIP), which bind several members of a signaling cascade for proper signaling specificity. In this study, the expression of scaffold proteins JIP1 and JIP3 and their roles in the regulation of JNK activity were investigated in simulated IR in a cell model (H9c2). JIP1 protein expression was significantly decreased, whereas JIP3 protein expression was increased in IR H9c2 cells. Adenovirus-induced overexpression of JIP1 reduced IR-induced JNK activity and apoptosis. Conversely, overexpression of JIP3 increased JNK activity and apoptosis following IR. Depletion of endogenous JIP1 by siRNA treatment increased the IR-induced JNK activity, whereas siRNA-mediated depletion of endogenous JIP3 inhibited JNK activity. These results suggest that JIP1 and JIP3 play important roles in the activation of JNK during simulated IR challenge in H9c2 cells.
Collapse
Affiliation(s)
- Bing Xu
- Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Mengistu M, Brotzman H, Ghadiali S, Lowe-Krentz L. Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. J Cell Physiol 2010; 226:110-21. [PMID: 20626006 DOI: 10.1002/jcp.22311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluid shear stress (FSS) exerted on endothelial cell (EC) surfaces induces actin cytoskeleton remodeling through mechanotransduction. This study was designed to determine whether FSS activates Jun N-terminal kinase (JNK), to examine the spatial and temporal distribution of active JNK relative to the actin cytoskeleton in ECs exposed to different FSS conditions, and to evaluate the effects of active JNK on actin realignment. Exposure to 15 and 20 dyn/cm(2) FSS induced higher activity levels of JNK than the lower 2 and 4 dyn/cm(2) flow conditions. At the higher FSS treatments, JNK activity increased with increasing exposure time, peaking 30 min after flow onset with an eightfold activity increase compared to cells in static culture. FSS-induced phospho-JNK co-localized with actin filaments at cell peripheries, as well as with stress fibers. Pharmacologically blocking JNK activity altered FSS-induced actin structure and distribution as a response to FSS. Our results indicate that FSS-induced actin remodeling occurs in three phases, and that JNK plays a role in at least one, suggesting that this kinase activity is involved in mechanotransduction from the apical surface to the actin cytoskeleton in ECs.
Collapse
Affiliation(s)
- Meron Mengistu
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | |
Collapse
|
29
|
Genomic analysis reveals pre- and postchallenge differences in a rhesus macaque AIDS vaccine trial: insights into mechanisms of vaccine efficacy. J Virol 2010; 85:1099-116. [PMID: 21068249 DOI: 10.1128/jvi.01522-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have employed global transcriptional profiling of whole blood to identify biologically relevant changes in cellular gene expression in response to alternative AIDS vaccine strategies with subsequent viral challenge in a rhesus macaque vaccine model. Samples were taken at day 0 (prechallenge), day 14 (peak viremia), and week 12 (set point) from animals immunized with replicating adenovirus type 5 host range (Ad5hr) recombinant viruses expressing human immunodeficiency virus HIV(env)(89.6P), simian immunodeficiency virus SIV(gag)(239), or SIV(nef)(239) alone or in combination with two intramuscular boosts with HIV(89.6P)gp140ΔCFI protein (L. J. Patterson et al., Virology 374:322-337, 2008), and each treatment resulted in significant control of viremia following simian-human immunodeficiency virus SHIV(89.6P) challenge (six animals per group plus six controls). At day 0, 8 weeks after the last treatment, the microarray profiles revealed significant prechallenge differences between treatment groups; data from the best-protected animals led to identification of a network of genes related to B cell development and lymphocyte survival. At peak viremia, expression profiles of the immunized groups were extremely similar, and comparisons to control animals reflected immunological differences other than effector T cell functions. Suggested protective mechanisms for vaccinated animals included upregulation of interleukin-27, a cytokine known to inhibit lentivirus replication, and increased expression of complement components, which may synergize with vaccine-induced antibodies. Divergent expression profiles at set point for the immunized groups implied distinct immunological responses despite phenotypic similarities in viral load and CD4(+) T cell levels. Data for the gp140-boosted group provided evidence for antibody-dependent, cell-mediated viral control, whereas animals immunized with only the replicating Ad5hr recombinants exhibited a different evolution of the B cell compartment even at 3 months postchallenge. This study demonstrates the sensitivity and discrimination of gene expression profiling of whole blood as an analytical tool in AIDS vaccine trials, providing unique insights into in vivo mechanisms and potential correlates of protection.
Collapse
|
30
|
Xu M, Bower KA, Wang S, Frank JA, Chen G, Ding M, Wang S, Shi X, Ke Z, Luo J. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Mol Cancer 2010; 9:285. [PMID: 21034468 PMCID: PMC2984473 DOI: 10.1186/1476-4598-9-285] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/29/2010] [Indexed: 12/21/2022] Open
Abstract
Background Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. Results C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130Cas, as well as interactions among these proteins. C3G abolished ethanol-mediated p130Cas/JNK interaction. Conclusions C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.
Collapse
Affiliation(s)
- Mei Xu
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Takino T, Tsuge H, Ozawa T, Sato H. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix. Biochem Biophys Res Commun 2010; 396:1042-7. [PMID: 20471961 DOI: 10.1016/j.bbrc.2010.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21(WAF1) and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin alpha(v)beta(3) were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
32
|
Kim JH, Konieczkowski M, Mukherjee A, Schechtman S, Khan S, Schelling JR, Ross MD, Bruggeman LA, Sedor JR. Podocyte injury induces nuclear translocation of WTIP via microtubule-dependent transport. J Biol Chem 2010; 285:9995-10004. [PMID: 20086015 DOI: 10.1074/jbc.m109.061671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Podocyte structural and transcriptional phenotype plasticity characterizes glomerular injury. Transcriptional activity of WT1 (Wilm's tumor 1) is required for normal podocyte structure and is repressed by the podocyte adherens junction protein, WTIP (WT1 interacting protein). Here we show that WTIP translocated into podocyte nuclei in lipopolysaccharide (LPS)-treated mice, a model of transient nephrotic syndrome. Cultured podocytes, which stably expressed an epitope-tagged WTIP, were treated with LPS. Imaging and cellular fractionation studies demonstrated that WTIP translocated from podocyte cell contacts into nuclei within 6 h and relocalized to cell contacts within 24 h after LPS treatment. LPS-stimulated WTIP nuclear translocation required JNK activity, which assembled a multiprotein complex of the scaffolding protein JNK-interacting protein 3 and the molecular motor dynein. Intact microtubule networks and dynein activity were necessary for LPS-stimulated WTIP translocation. Podocytes expressing sh-Wtip change morphology and demonstrate altered actin assembly in cell spreading assays. Stress signaling pathways initiate WTIP nuclear translocation, and the concomitant loss of WTIP from cell contacts changes podocyte morphology and dynamic actin assembly, suggesting a mechanism that transmits changes in podocyte morphology to the nucleus.
Collapse
Affiliation(s)
- Jane H Kim
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Martha Konieczkowski
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109
| | - Amitava Mukherjee
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109
| | - Sam Schechtman
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109
| | - Shenaz Khan
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109; Department of Medicine, MetroHealth System Campus, Cleveland, Ohio 44109
| | - Michael D Ross
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Leslie A Bruggeman
- Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109; Department of Medicine, MetroHealth System Campus, Cleveland, Ohio 44109
| | - John R Sedor
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Case Western Reserve University Center for the Study of Kidney Disease and Biology, Cleveland, Ohio 44109; Department of Medicine, MetroHealth System Campus, Cleveland, Ohio 44109.
| |
Collapse
|
33
|
Abstract
This paper summarises how scaffold proteins affects and regulate the JNK signalling pathway. We believe that some of these scaffold proteins, by virtue of their anchoring and catalytic properties contribute to a high degree of specificity of intra cellular signalling pathways that regulate the progression through the cell cycle.
Collapse
Affiliation(s)
- W Engström
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
34
|
Rosse C, Formstecher E, Boeckeler K, Zhao Y, Kremerskothen J, White MD, Camonis JH, Parker PJ. An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol 2009; 7:e1000235. [PMID: 19885391 PMCID: PMC2762617 DOI: 10.1371/journal.pbio.1000235] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/23/2009] [Indexed: 12/27/2022] Open
Abstract
The exocyst/aPKC complex controls the spatiotemporal activation of the kinases JNK and ERK at the leading edge of migrating cells and thereby controls the dynamic behaviour of the adhesion protein paxillin during cell migration. Atypical protein kinase C (aPKC) isoforms have been implicated in cell polarisation and migration through association with Cdc42 and Par6. In distinct migratory models, the Exocyst complex has been shown to be involved in secretory events and migration. By RNA interference (RNAi) we show that the polarised delivery of the Exocyst to the leading edge of migrating NRK cells is dependent upon aPKCs. Reciprocally we demonstrate that aPKC localisation at the leading edge is dependent upon the Exocyst. The basis of this inter-dependence derives from two-hybrid, mass spectrometry, and co-immunoprecipitation studies, which demonstrate the existence of an aPKC–Exocyst interaction mediated by Kibra. Using RNAi and small molecule inhibitors, the aPKCs, Kibra, and the Exocyst are shown to be required for NRK cell migration and it is further demonstrated that they are necessary for the localized activation of JNK at the leading edge. The migration associated control of JNK by aPKCs determines JNK phosphorylation of the plasma membrane substrate Paxillin, but not the phosphorylation of the nuclear JNK substrate, c-jun. This plasma membrane localized JNK cascade serves to control the stability of focal adhesion complexes, regulating migration. The study integrates the polarising behaviour of aPKCs with the pro-migratory properties of the Exocyst complex, defining a higher order complex associated with the localised activation of JNK at the leading edge of migrating cells that determines migration rate. Cell migration is an essential process in multicellular organisms during such events as embryonic development, the immune response, and wound healing. Cell migration is also instrumental in the development of pathologies such as cancer cell invasion of healthy tissues. To make cells move, key molecules must be engaged in a coordinated manner; understanding which molecules, and how and when they work (for example, under physiological versus pathological conditions) will impact on new therapies designed to suppress abnormal migration. Migrating cells must coordinate two key processes: extension of the front or ‘leading’ edge of the cell and retraction of the back edge. Both processes require the turnover of protein assemblies known as focal adhesion complexes. In this paper we show that two different groups of regulators of migration – aPKC, a protein kinase, and exocyst, a complex of proteins also known to be required for exocytosis – interact physically via the scaffold protein kibra. All these components are required for efficient cell migration and all are enriched at the leading edge of moving cells, in a mutually dependent manner. At the leading edge, these components control the local activation of two additional protein kinases, ERK and JNK. The activation of ERK and JNK at the front of migrating cells in turn controls the phosphorylation of paxillin, a component of focal adhesions. Phosphorylation of paxillin is associated with the presence of more dynamic focal adhesions. Our data thus indicate that an aPKC-kibra-exocyst complex plays a crucial role in delivering local stimulatory signals to the leading edge of migrating cells.
Collapse
Affiliation(s)
- Carine Rosse
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | | | - Katrina Boeckeler
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Yingming Zhao
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | - Michael D. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | - Peter J. Parker
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Division of Cancer Studies, King's College School of Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Cho SG, Yi Z, Pang X, Yi T, Wang Y, Luo J, Wu Z, Li D, Liu M. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res 2009; 69:7062-70. [PMID: 19671799 PMCID: PMC3242001 DOI: 10.1158/0008-5472.can-09-0476] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kisspeptin-10 (Kp-10), a decapeptide derived from the primary translation product of KISS1 gene, has been reported previously to be a key hormone for puberty and an inhibitor for tumor metastasis via the activation of G protein-coupled receptor 54. However, whether Kp-10 inhibits angiogenesis, which is critical for tumor growth and metastasis and other human diseases, is still unknown. Here we show that Kp-10 significantly inhibits human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation, key processes in angiogenesis. Using chicken chorioallantoic membrane assay and vascular endothelial growth factor (VEGF)-induced mouse corneal micropocket assay, we show that Kp-10 inhibits angiogenesis in vivo. Furthermore, Kp-10 inhibits tumor growth in severe combined immunodeficient mice xenografted with human prostate cancer cells (PC-3) through inhibiting tumor angiogenesis, whereas Kp-10 has little effect on the proliferation of HUVECs and human prostate cancer cells. In deciphering the underlying molecular mechanisms, we show that Kp-10 suppresses VEGF expression by inhibiting the binding of specificity protein 1 to VEGF promoter and by blocking the activation of c-Src/focal adhesion kinase and Rac/Cdc42 signaling pathways in HUVECs, leading to the inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Sung-Gook Cho
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Interdisciplinary Genetics Program, Texas A&M University, College Station, TX77843
| | - Zhengfang Yi
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Pang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tingfang Yi
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ying Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Jian Luo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zirong Wu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dali Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Interdisciplinary Genetics Program, Texas A&M University, College Station, TX77843
| |
Collapse
|
36
|
Moon C, Han JR, Park HJ, Hah JS, Kang JL. Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways. Respir Res 2009; 10:18. [PMID: 19272161 PMCID: PMC2666640 DOI: 10.1186/1465-9921-10-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/09/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Synthetic peptides containing the RGD sequence inhibit integrin-related functions in different cell systems. Here, we investigated the effects of synthetic Arg-Gly-Asp-Ser (RGDS) peptide on key inflammatory responses to intratracheal (i.t.) lipopolysaccharide (LPS) treatment and on the integrin signaled mitogen-activated protein (MAP) kinase pathway during the development of acute lung injury. METHODS Saline or LPS (1.5 mg/kg) was administered i.t. with or without a single dose of RGDS (1, 2.5, or 5 mg/kg, i.p.), anti-alphav or anti-beta3 mAb (5 mg/kg, i.p.). Mice were sacrificed 4 or 24 h post-LPS. RESULTS A pretreatment with RGDS inhibited LPS-induced increases in neutrophil and macrophage numbers, total protein levels and TNF-alpha and MIP-2 levels, and matrix metalloproteinase-9 activity in bronchoalveolar lavage (BAL) fluid at 4 or 24 h post-LPS treatment. RGDS inhibited LPS-induced phosphorylation of focal adhesion kinase and MAP kinases, including ERK, JNK, and p38 MAP kinase, in lung tissue. Importantly, the inhibition of the inflammatory responses and the kinase pathways were still evident when this peptide was administered 2 h after LPS treatment. Similarly, a blocking antibody against integrin alphav significantly inhibited LPS-induced inflammatory cell migration into the lung, protein accumulation and proinflammatory mediator production in BAL fluid, at 4 or 24 h post-LPS. Anti-beta3 also inhibited all LPS-induced inflammatory responses, except the accumulation of BAL protein at 24 h post-LPS. CONCLUSION These results suggest that RGDS with high specificity for alphavintegrins attenuates inflammatory cascade during LPS-induced development of acute lung injury.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jeong Ran Han
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Hyun-Jung Park
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jong Sik Hah
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jihee Lee Kang
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| |
Collapse
|
37
|
Huang CC, Gadd S, Breslow N, Cutcliffe C, Sredni ST, Helenowski IB, Dome JS, Grundy PE, Green DM, Fritsch MK, Perlman EJ. Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the Renal Tumor Committee of the Children's Oncology Group. Clin Cancer Res 2009; 15:1770-8. [PMID: 19208794 DOI: 10.1158/1078-0432.ccr-08-1030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The past two decades has seen significant improvement in the overall survival of patients with favorable histology Wilms tumor (FHWT); however, this progress has reached a plateau. Further improvements may rely on the ability to better stratify patients by risk of relapse. This study determines the feasibility and potential clinical utility of classifiers of relapse based on global gene expression analysis. EXPERIMENTAL DESIGN Two hundred fifty FHWT of all stages enriched for relapses treated on National Wilms Tumor Study-5 passed quality variables and were suitable for analysis using oligonucleotide arrays. Relapse risk stratification used support vector machine; 2- and 10-fold cross-validations were applied. RESULTS The number of genes associated with relapse was less than that predicted by chance alone for 106 patients (32 relapses) with stages I and II FHWT treated with chemotherapy, and no further analyses were done. This number was greater than expected by chance for 76 local stage III patients. Cross-validation including an additional 68 local stage III patients (total 144 patients, 53 relapses) showed that classifiers for relapse composed of 50 genes were associated with a median sensitivity of 47% and specificity of 70%. CONCLUSIONS This study shows the feasibility and modest accuracy of stratifying local stage III FHWT using a classifier of <50 genes. Validation using an independent patient population is needed. Analysis of genes differentially expressed in relapse patients revealed apoptosis, Wnt signaling, insulin-like growth factor pathway, and epigenetic modification to be mechanisms important in relapse. Potential therapeutic targets include FRAP/MTOR and CD40.
Collapse
Affiliation(s)
- Chiang-Ching Huang
- Department of Preventive Medicine, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois 60614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pathak A, Zhao R, Huang J, Stouffer GA. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells. Cardiovasc Diabetol 2008; 7:36. [PMID: 19108709 PMCID: PMC2628888 DOI: 10.1186/1475-2840-7-36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/23/2008] [Indexed: 01/08/2023] Open
Abstract
Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC.
Collapse
Affiliation(s)
- Alokkumar Pathak
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
39
|
Sato T, Torashima T, Sugihara K, Hirai H, Asano M, Yoshioka K. The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling. Mol Cell Neurosci 2008; 39:569-78. [DOI: 10.1016/j.mcn.2008.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/30/2008] [Accepted: 08/10/2008] [Indexed: 12/11/2022] Open
|
40
|
Ha HY, Kim JB, Cho IH, Joo HJ, Kim KS, Lee KW, Sunwoo H, Im JY, Lee JK, Hong JH, Han PL. Morphogenetic lung defects of JSAP1-deficient embryos proceeds via the disruptions of the normal expressions of cytoskeletal and chaperone proteins. Proteomics 2008; 8:1071-80. [PMID: 18324732 DOI: 10.1002/pmic.200700815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies have shown that JNK/stress-activated protein kinase-associated protein 1 (JSAP1)-deficient mice die from respiratory failure shortly after birth. To understand the underlying mechanism, we investigated the histological appearances and cell type changes in developing jsap1(-/-) lungs between E12.5 and E18.5. At the light microscopic level, no overt abnormality was detected in jsap1(-/-) until E16.5. However, alveoli and airway formations that normally occur after E16.5 were poorly advanced in jsap1(-/-). Despite these morphological defects, surfactant secreting cells labeled by anti-SP-B or anti-SP-C were present in normal ranges in jsap1(-/-) lungs. Smooth muscle alpha-actin expressing cells were also developed in jsap1(-/-) lungs, although actin expression was decreased. The expressions of transcriptional factors, such as, nuclear factor Ib (Nfib), N-myc, and octamer transcriptional factor 1 (Oct-1), which play a critical role in lung morphogenesis, were found to be down-regulated, whereas signal transducer and activator of transcription 3 (Stat3), sonic hedgehog (Shh), and smoothened (Smo) were up-regulated, in jsap1(-/-) lungs at E17.5-E18.5 compared with those in jsap1(+/+) lungs. Proteomics analysis of E17.5 lung identified 39 proteins with altered expressions, which included actin, tropomyosin, myosin light chain, vimentin, heat shock protein (Hsp27), and Hsp84. These results suggest that JSAP1 is required for the normal expressions of cytoskeletal and chaperone proteins in the developing lung, and that impaired expressions of these proteins might cause morphogenetic defects observed in jsap1(-/-) lungs.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Division of Nano Sciences and Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Snider JL, Allison C, Bellaire BH, Ferrero RL, Cardelli JA. The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem 2008; 283:13952-63. [PMID: 18356158 DOI: 10.1074/jbc.m800289200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Helicobacter pylori CagA protein is translocated into gastric epithelial cells through a type IV secretion system (TFSS), and published studies suggest CagA is critical for H. pylori-associated carcinogenesis. CagA is thought to be necessary and sufficient to induce the motogenic response observed in response to CagA+ strains, as CagA interacts with proteins involved in adhesion and motility. We report that H. pylori strain 60190 stimulated AGS cell motility through a CagA- and TFSS-dependent mechanism, because strains 60190DeltacagA or 60190DeltacagE (TFSS-defective) did not increase motility. The JNK pathway is critical for H. pylori-dependent cell motility, as inhibition using SP600125 (JNK1/2/3 inhibitor) or a JNK2/3-specific inhibitor blocked motility. JNK mediates H. pylori-induced cell motility by activating paxillin, because JNK inhibition blocked paxillinTyr-118 phosphorylation, and paxillin expression knockdown completely abrogated bacteria-induced motility. Furthermore, JNK and paxillinTyr-118 were activated by 60190DeltacagA but not 60190DeltacagE, demonstrating CagA-independent signaling critical for cell motility. A beta1 integrin-blocking antibody significantly inhibited JNK and paxillinTyr-118 phosphorylation and cell scattering, demonstrating that CagA-independent signaling required for cell motility occurs through beta1. The requirement of both Src and focal adhesion kinase for signaling and motility further suggests the importance of integrin signaling in H. pylori-induced cell motility. Finally, we show that JNK activation occurs independent of known upstream kinases and signaling molecules, including Nod1, Cdc42, Rac1, MKK4, and MKK7, which demonstrates novel signaling leading to JNK activation. We report for the first time that H. pylori mediates CagA-independent signaling that promotes cell motility through the beta1 integrin pathway.
Collapse
Affiliation(s)
- Jared L Snider
- Department of Microbiology and Immunology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
42
|
Takino T, Saeki H, Miyamori H, Kudo T, Sato H. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions. Cancer Res 2008; 67:11621-9. [PMID: 18089791 DOI: 10.1158/0008-5472.can-07-5251] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate critical signaling pathways involved in cell proliferation, differentiation and apoptosis. Recent studies have shown that a novel class of scaffold proteins mediates the structural and functional organization of the three-tier MAPK module. By linking the MAP3K, MAP2K and MAPK into a multienzyme complex, these MAPK-specific scaffold proteins provide an insulated physical conduit through which signals from the respective MAPK can be transmitted to the appropriate spatiotemporal cellular loci. Scaffold proteins play a determinant role in modulating the signaling strength of their cognate MAPK module by regulating the signal amplitude and duration. The scaffold proteins themselves are finely regulated resulting in dynamic intra- and inter-molecular interactions that can modulate the signaling outputs of MAPK modules. This review focuses on defining the diverse mechanisms by which these scaffold proteins interact with their respective MAPK modules and the role of such interactions in the spatiotemporal organization as well as context-specific signaling of the different MAPK modules.
Collapse
Affiliation(s)
- D N Dhanasekaran
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
44
|
Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M. The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 2007; 120:1927-34. [PMID: 17504809 DOI: 10.1242/jcs.03456] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wrch-1 (Wnt-regulated Cdc42 homolog) is a new member of the Rho family that was identified as a gene transcriptionally upregulated by Wnt-1. Wrch-1 has no detectable GTPase activity and displays very high intrinsic guanine nucleotide exchange, implying that it is constitutively GTP-bound. The biological functions of Wrch-1 largely remain to be characterized. Here, we report that Wrch-1 prominently localizes to focal adhesions. Depletion of Wrch-1 by small interfering RNA increases focal adhesion formation, whereas Wrch-1 overexpression disassembles focal adhesions. Wrch-1 depletion inhibits myosin-light-chain phosphorylation, which in turn leads to an increase in the number of focal adhesions and inhibits cell migration in response to wound healing. Depletion of Wrch-1 also inhibits Akt and JNK activation. Although pharmacological inhibitors of Akt and JNK inhibit cell migration, they do not affect focal adhesions. Thus, our data suggest that Wrch-1 regulates cell migration by multiple mechanisms: on the one hand Wrch-1 controls focal adhesions by regulating myosin light chain and on the other hand Wrch-1 stimulates the activation of Akt and JNK.
Collapse
Affiliation(s)
- Ya-yu Chuang
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
45
|
Bayarsaikhan M, Takino T, Gantulga D, Sato H, Ito T, Yoshioka K. Regulation of N-cadherin-based cell–cell interaction by JSAP1 scaffold in PC12h cells. Biochem Biophys Res Commun 2007; 353:357-62. [PMID: 17188238 DOI: 10.1016/j.bbrc.2006.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 12/16/2022]
Abstract
We previously reported that the level of c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), a scaffold protein for JNK signaling, increases dramatically during nerve growth factor (NGF)-induced differentiation of PC12h cells. In the present study, we investigated the function of JSAP1 during PC12h cell differentiation by knocking down the level of JSAP1. The depletion of JSAP1 caused NGF-treated PC12h cells to form aggregates and impaired their differentiation. The aggregation was not observed in JSAP1-depleted cells that were untreated or treated with epidermal growth factor. Immunocytochemical studies indicated that N-cadherin, but not E-cadherin, was localized to sites of cell-cell contact in the aggregated cells. Furthermore, an inhibitory anti-N-cadherin antibody completely blocked the aggregation. Taken together, these results suggest that JSAP1 regulates cell-cell interactions in PC12h cells specifically in the NGF-induced signaling pathway, and does so by modulating N-cadherin.
Collapse
Affiliation(s)
- Munkhuu Bayarsaikhan
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The components of MAPK (mitogen-activated protein kinase) signalling pathways can assemble into complexes that are co-ordinated by regulatory proteins including scaffold proteins. There is increasing evidence that scaffold proteins (i) maintain signalling specificity and facilitate the activation of pathway components, (ii) localize pathway components to particular subcellular sites or to specific targets, and (iii) serve as a point of signal integration to allow regulation of MAPK pathways by other signalling events in the cell. One family of scaffold proteins that regulate signalling by stress-activated MAPKs are the JIPs [JNK (c-Jun N-terminal kinase)-interacting proteins]. JIP proteins have been demonstrated to form complexes with specific JNK and p38 MAPK signalling modules and to play important roles in brain development, neuronal trafficking, apoptosis, beta-cell function and insulin responses. Here, I briefly review our current understanding of the biochemical properties and physiological roles of JIP proteins.
Collapse
Affiliation(s)
- A J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
47
|
Golubovskaya VM, Cance WG. Focal adhesion kinase and p53 signaling in cancer cells. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:103-53. [PMID: 17725966 DOI: 10.1016/s0074-7696(07)63003-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The progression of human cancer is characterized by a process of tumor cell motility, invasion, and metastasis to distant sites, requiring the cancer cells to be able to survive the apoptotic pressures of anchorage-independent conditions. One of the critical tyrosine kinases linked to these processes of tumor invasion and survival is the focal adhesion kinase (FAK). FAK was first isolated from human tumors, and FAK mRNA was found to be upregulated in invasive and metastatic human breast and colon cancer samples. Recently, the FAK promoter was cloned, and it has been found to contain p53-binding sites. p53 inhibits FAK transcription, and recent data show direct binding of FAK and p53 proteins in vitro and in vivo. The structure of FAK and p53, proteins interacting with FAK, and the role of FAK in tumorigenesis and FAK-p53-related therapy are reviewed. This review focuses on FAK signal transduction pathways, particularly on FAK and p53 signaling, revealing a new paradigm in cell biology, linking signaling from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgery, University of Florida School of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
48
|
Takino T. Roles of Membrane-type 1 Matrix Metalloproteinase in Tumor Invasion and Progression. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 2006; 70:1061-95. [PMID: 17158707 PMCID: PMC1698509 DOI: 10.1128/mmbr.00025-06] [Citation(s) in RCA: 439] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK. There are now more than 50 proteins shown to be substrates for JNK. These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K, and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
50
|
Cox BD, Natarajan M, Stettner MR, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem 2006; 99:35-52. [PMID: 16823799 DOI: 10.1002/jcb.20956] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor cytoplasmic tyrosine kinase that plays a key role in the regulation of proliferation and migration of normal and tumor cells. FAK associates with integrin receptors and recruits other molecules to the site of this interaction thus forming a signaling complex that transmits signals from the extracellular matrix to the cell cytoskeleton. Crk-associated substrate (CAS) family members appear to play a pivotal role in FAK regulation of cell migration. Cellular Src bound to FAK phosphorylates CAS proteins leading to the recruitment of a Crk family adaptor molecule and activation of a small GTPase and c-Jun N-terminal kinase (JNK) promoting membrane protrusion and cell migration. The relocalization of CAS and signaling through specific CAS family members appears to determine the outcome of this pathway. FAK also plays an important role in regulating cell cycle progression through transcriptional control of the cyclin D1 promoter by the Ets B and Kruppel-like factor 8 (KLF8) transcription factors. FAK regulation of cell cycle progression in tumor cells requires Erk activity, cyclin D1 transcription, and the cyclin-dependent kinase (cdk) inhibitor p27Kip1. The ability of FAK to integrate integrin and growth factor signals resulting in synergistic promotion of cell migration and proliferation, and its potential regulation by nuclear factor kappa B (NFkappaB) and p53 and a ubiquitously expressed inhibitory protein, suggest that it is remarkable in its capacity to integrate multiple extracellular and intracellular stimuli.
Collapse
Affiliation(s)
- Braden D Cox
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|