1
|
Kumar S, Mishra S, Gourinath S. Structural and functional diversity of Entamoeba histolytica calcium-binding proteins. Biophys Rev 2020; 12:10.1007/s12551-020-00766-6. [PMID: 33063237 PMCID: PMC7755952 DOI: 10.1007/s12551-020-00766-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29-47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Present Address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Shalini Mishra
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| | - S. Gourinath
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
2
|
Solution structure of TbCentrin4 from Trypanosoma brucei and its interactions with Ca 2+ and other centrins. Biochem J 2018; 475:3763-3778. [PMID: 30389845 DOI: 10.1042/bcj20180752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Centrin is a conserved calcium-binding protein that plays an important role in diverse cellular biological processes such as ciliogenesis, gene expression, DNA repair and signal transduction. In Trypanosoma brucei, TbCentrin4 is mainly localized in basal bodies and bi-lobe structure, and is involved in the processes coordinating karyokinesis and cytokinesis. In the present study, we solved the solution structure of TbCentrin4 using NMR (nuclear magnetic resonance) spectroscopy. TbCentrin4 contains four EF-hand motifs consisting of eight α-helices. Isothermal titration calorimetry experiment showed that TbCentrin4 has a strong Ca2+ binding ability. NMR chemical shift perturbation indicated that TbCentrin4 binds to Ca2+ through its C-terminal domain composed of EF-hand 3 and 4. Meanwhile, we revealed that TbCentrin4 undergoes a conformational change and self-assembly induced by high concentration of Ca2+ Intriguingly, localization of TbCentrin4 was dispersed or disappeared from basal bodies and the bi-lobe structure when the cells were treated with Ca2+ in vivo, implying the influence of Ca2+ on the cellular functions of TbCentrin4. Besides, we observed the interactions between TbCentrin4 and other Tbcentrins and revealed that the interactions are Ca2+ dependent. Our findings provide a structural basis for better understanding the biological functions of TbCentrin4 in the relevant cellular processes.
Collapse
|
3
|
Powell CJ, Jenkins ML, Parker ML, Ramaswamy R, Kelsen A, Warshaw DM, Ward GE, Burke JE, Boulanger MJ. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. J Biol Chem 2017; 292:19469-19477. [PMID: 28972141 DOI: 10.1074/jbc.m117.809632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Indexed: 01/28/2023] Open
Abstract
Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm Kd measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a Kd of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction.
Collapse
Affiliation(s)
- Cameron J Powell
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Meredith L Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Michelle L Parker
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Raghavendran Ramaswamy
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Anne Kelsen
- the Departments of Microbiology and Molecular Genetics and
| | - David M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- the Departments of Microbiology and Molecular Genetics and
| | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Martin J Boulanger
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| |
Collapse
|
4
|
Zhang Y, Kawamichi H, Kohama K, Nakamura A. Calcium-mediated regulation of recombinant hybrids of full-length Physarum myosin heavy chain with Physarum/scallop myosin light chains. Acta Biochim Biophys Sin (Shanghai) 2016; 48:536-43. [PMID: 27125976 DOI: 10.1093/abbs/gmw031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Physarum myosin is a Ca(2+)-binding protein and its activity is inhibited by Ca(2+) In the present study, to clarify the light chains (LCs) from the different species (Physarum and scallop) and to determine the specific Ca(2+)-regulated effects, we constructed hybrid myosins with a Physarum myosin heavy chain (Ph·HC) and Physarum and/or scallop myosin LCs, and examined Ca(2+)-mediated regulation of ATPases and motor activities. In these experiments, it was found that Ca(2+) inhibited motilities and ATPase activities of Physarum hybrid myosin with scallop regulatory light chain (ScRLC) and Physarum essential light chain (PhELC) but could not inhibit those of the Physarum hybrid myosin mutant Ph·HC/ScRLC/PhELC-3A which lacks Ca(2+)-binding ability, indicating that PhELC plays a critical role in Ca(2+)-mediated regulation of Physarum myosin. Furthermore, the effects of Ca(2+) on ATPase activities of Physarum myosin constructs are in the following order: Ph·HC/PhRLC/PhELC > Ph·HC/ScRLC/PhELC > Ph·HC/PhRLC/ScELC > Ph·HC/ScRLC/ScELC, suggesting that the presence of PhRLC and PhELC leads to the greatest Ca(2+) sensitivity of Physarum myosin. Although we did not observe the motilities of Physarum hybrid myosin Ph·HC/PhRLC/ScELC and Ph·HC/ScRLC/ScELC, our results suggest that Ca(2+)-binding to the PhELC may alter the flexibility of the regulatory domain and induce a 'closed' state, which may consequently prevent full activity and force generation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Physiology and Medical Bioregulation, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hozumi Kawamichi
- Department of Molecular Pharmacology and Oncology, Faculty of Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiro Kohama
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Akio Nakamura
- Department of Molecular Pharmacology and Oncology, Faculty of Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
5
|
KOHAMA K. Calcium inhibition as an intracellular signal for actin-myosin interaction. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:478-498. [PMID: 27941307 PMCID: PMC5328785 DOI: 10.2183/pjab.92.478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Intracellular signaling pathways include both the activation and the inhibition of biological processes. The activation of Ca2+ regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote. This review describes the investigation of the inhibitory mode since 1980. The inhibitory effect of Ca2+ on myosin was detected chemically by ATPase assays and mechanically by in vitro motility assays. The Ca2+-binding ability of Physarum myosin is as high as that of scallop myosin. Ca2+ inhibits Physarum myosin, whereas it activates scallop myosin. We cloned cDNA of the myosin heavy chain and light chains to express a hybrid of Physarum and scallop myosin, and found that the Ca-binding light chain (CaLc), which belongs to an alkali light chain class, plays a major role in Ca inhibition. The role of CaLc was confirmed by mutating its EF-hand, Ca-binding structure and expressing Physarum myosin as a recombinant protein. Thus, the data obtained by classical protein purification were confirmed by the results obtained with the modern recombinant techniques. However, there are some discrepancies that remain to be solved as described in Section XII.
Collapse
Affiliation(s)
- Kazuhiro KOHAMA
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, Japan
- Professor emeritus, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
7
|
Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. PLoS Pathog 2014; 10:e1004532. [PMID: 25502654 PMCID: PMC4263763 DOI: 10.1371/journal.ppat.1004532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.
Collapse
|
8
|
Zhang Y, Kawamichi H, Tanaka H, Yoshiyama S, Kohama K, Nakamura A. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin. J Biochem 2012; 152:185-90. [PMID: 22648562 DOI: 10.1093/jb/mvs062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Kuai L, Ong SE, Madison JM, Wang X, Duvall JR, Lewis TA, Luce CJ, Conner SD, Pearlman DA, Wood JL, Schreiber SL, Carr SA, Scolnick EM, Haggarty SJ. AAK1 identified as an inhibitor of neuregulin-1/ErbB4-dependent neurotrophic factor signaling using integrative chemical genomics and proteomics. ACTA ACUST UNITED AC 2011; 18:891-906. [PMID: 21802010 DOI: 10.1016/j.chembiol.2011.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 02/18/2011] [Accepted: 03/07/2011] [Indexed: 12/15/2022]
Abstract
Target identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of AAK1 alters ErbB4 trafficking and expression levels, providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development.
Collapse
Affiliation(s)
- Letian Kuai
- Stanley Center for Psychiatric Research, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR, Cowman AF, Tonkin CJ. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 2011; 7:e1002222. [PMID: 21980283 PMCID: PMC3182922 DOI: 10.1371/journal.ppat.1002222] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/05/2011] [Indexed: 01/29/2023] Open
Abstract
Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. Apicomplexan parasites are a group of obligate intracellular pathogens of wide medical and agricultural significance. Included within this phylum is Plasmodium spp, the causative agents to malaria and the ubiquitous parasite Toxoplasma, which inflicts disease burden on AIDS patients, transplant recipients and the unborn fetus. No matter the host cell that they target, all apicomplexan parasites must activate invasion upon host cell contact. Calcium-mediated signal transduction pathways modulate this process, yet the molecular processes are largely unknown. Using a range of proteomics approaches we reveal proteins in Toxoplasma that are phosphorylated upon calcium signaling, and furthermore, identify phosphorylation sites on a range of proteins that may play crucial roles in regulating parasite motility and microneme secretion. By quantitatively monitoring phosphorylation deposition upon calcium signaling we define putative regulatory domains of GAP45 and MLC1 and further show evidence that the invasion motor potentially more strongly associates upon calcium signaling. We also identified that a new Calmodulin-like protein is part of the invasion motor and this suggests that direct Ca2+ binding may also modulate motor activity.
Collapse
Affiliation(s)
- Thomas Nebl
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Judith Helena Prieto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eugene Kapp
- Joint Proteomics Facility, The Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute, Victoria, Australia
| | - Brian J. Smith
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Melanie J. Williams
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
11
|
Laine E, Martínez L, Blondel A, Malliavin TE. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding. Biophys J 2011; 99:2264-72. [PMID: 20923661 DOI: 10.1016/j.bpj.2010.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/14/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites.
Collapse
Affiliation(s)
- Elodie Laine
- Unité de Bioinformatique Structurale, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
12
|
Visualizing key hinges and a potential major source of compliance in the lever arm of myosin. Proc Natl Acad Sci U S A 2010; 108:114-9. [PMID: 21149681 DOI: 10.1073/pnas.1016288107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the 2.3-Å-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ("smooth") muscle. This structure reveals hinges that may function in the "on" and "off" states of myosin. The molecule adopts two different conformations about the heavy chain "hook" and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 Å. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.
Collapse
|
13
|
Zhang Y, Nakamura A, Kawamichi H, Yoshiyama S, Katayama T, Kohama K. Calcium regulation of the ATPase activity of Physarum
and scallop myosins using hybrid smooth muscle myosin: The role of the essential light chain. FEBS Lett 2010; 584:3486-91. [DOI: 10.1016/j.febslet.2010.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
|
14
|
|
15
|
Szigeti K, Smeller L, Osváth S, Majer Z, Fidy J. The structure of horseradish peroxidase C characterized as a molten globule state after Ca2+ depletion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1965-74. [DOI: 10.1016/j.bbapap.2008.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 11/28/2022]
|
16
|
Crystal-structure and biochemical characterization of recombinant human calcyphosine delineates a novel EF-hand-containing protein family. J Mol Biol 2008; 383:455-64. [PMID: 18775726 DOI: 10.1016/j.jmb.2008.08.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 01/08/2023]
Abstract
Calcyphosine is an EF-hand protein involved in both Ca(2+)-phosphatidylinositol and cyclic AMP signal cascades, as well as in other cellular functions. The crystal structure of Ca(2+)-loaded calcyphosine was determined up to 2.65 A resolution and reveals a protein containing two pairs of Ca(2+)-binding EF-hand motifs. Calcyphosine shares a highly similar overall topology with calmodulin. However, there are striking differences between EF-hand 4, both N-terminal and C-terminal regions, and interdomain linkers. The C-terminal domain of calcyphosine possesses a large hydrophobic pocket in the presence of calcium ions that might be implicated in ligand binding, while its N-terminal hydrophobic pocket is almost shielded by an additional terminal helix. Calcyphosine is largely monomeric, regardless of the presence of Ca(2+). Differences in structure, oligomeric state in the presence and in the absence of Ca(2+), a highly conserved sequence with low similarity to other proteins, and phylogeny define a new EF-hand-containing family of calcyphosine proteins that extends from arthropods to humans.
Collapse
|
17
|
Brown JH, Yang Y, Reshetnikova L, Gourinath S, Süveges D, Kardos J, Hóbor F, Reutzel R, Nyitray L, Cohen C. An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. J Mol Biol 2008; 375:1434-43. [PMID: 18155233 PMCID: PMC2665131 DOI: 10.1016/j.jmb.2007.11.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
The N-terminal region of myosin's rod-like subfragment 2 (S2) joins the two heads of this dimeric molecule and is key to its function. Previously, a crystal structure of this predominantly coiled-coil region was determined for a short fragment (51 residues plus a leucine zipper) of the scallop striated muscle myosin isoform. In that study, the N-terminal 10-14 residues were found to be disordered. We have now determined the structure of the same scallop peptide in three additional crystal environments. In each of two of these structures, improved order has allowed visualization of the entire N-terminus in one chain of the dimeric peptide. We have also compared the melting temperatures of this scallop S2 peptide with those of analogous peptides from three other isoforms. Taken together, these experiments, along with examination of sequences, point to a diminished stability of the N-terminal region of S2 in regulated myosins, compared with those myosins whose regulation is thin filament linked. It seems plain that this isoform-specific instability promotes the off-state conformation of the heads in regulated myosins. We also discuss how myosin isoforms with varied thermal stabilities share the basic capacity to transmit force efficiently in order to produce contraction in their on states.
Collapse
Affiliation(s)
- Jerry H. Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Yuting Yang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Ludmilla Reshetnikova
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - S. Gourinath
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Fruzsina Hóbor
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Robbie Reutzel
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Carolyn Cohen
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| |
Collapse
|
18
|
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 2007; 405:199-221. [PMID: 17590154 DOI: 10.1042/bj20070255] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.
Collapse
Affiliation(s)
- Jessica L Gifford
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
19
|
Bosch J, Turley S, Roach CM, Daly TM, Bergman LW, Hol WGJ. The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery. J Mol Biol 2007; 372:77-88. [PMID: 17628590 PMCID: PMC2702245 DOI: 10.1016/j.jmb.2007.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/02/2007] [Accepted: 06/06/2007] [Indexed: 10/24/2022]
Abstract
The Myosin A-tail interacting protein (MTIP) of the malaria parasite links the actomyosin motor of the host cell invasion machinery to its inner membrane complex. We report here that at neutral pH Plasmodium falciparum MTIP in complex with Myosin A adopts a compact conformation, with its two domains completely surrounding the Myosin A-tail helix, dramatically different from previously observed extended MTIP structures. Crystallographic and mutagenesis studies show that H810 and K813 of Myosin A are key players in the formation of the compact MTIP:Myosin A complex. Only the unprotonated state of Myosin A-H810 is compatible with the compact complex. Most surprisingly, every side-chain atom of Myosin A-K813 is engaged in contacts with MTIP. While this side-chain was previously considered to prevent a compact conformation of MTIP with Myosin A, it actually appears to be essential for the formation of the compact complex. The hydrophobic pockets and adaptability seen in the available series of MTIP structures bodes well for the discovery of inhibitors of cell invasion by malaria parasites.
Collapse
Affiliation(s)
- Jürgen Bosch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Structural Genomics of Pathogenic Protozoa (SGPP), University of Washington, Seattle, WA 98195
| | - Stewart Turley
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Claudia M. Roach
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Thomas M. Daly
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Structural Genomics of Pathogenic Protozoa (SGPP), University of Washington, Seattle, WA 98195
- Corresponding author - Tel: 206-685-7044; Fax: 206-685-7002; E-mail:
| |
Collapse
|
20
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|