1
|
Sabherwal N, Thuret R, Lea R, Stanley P, Papalopulu N. aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control. Dev Cell 2015; 31:559-71. [PMID: 25490266 PMCID: PMC4262734 DOI: 10.1016/j.devcel.2014.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
Abstract
During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis have a shorter cell cycle than nonpolar progenitors, consistent with mammalian systems. We show that the apically localized serine/threonine kinase aPKC directly phosphorylates an N-terminal site of the cell-cycle inhibitor p27Xic1 and reduces its ability to inhibit the cyclin-dependent kinase 2 (Cdk2), leading to shortening of G1 and S phases. Overexpression of activated aPKC blocks the neuronal differentiation-promoting activity of p27Xic1. These findings provide a direct mechanistic link between apicobasal polarity and the cell cycle, which may explain how proliferation is favored over differentiation in polarized neural stem cells. aPKC shortens G1 and S phases of cell cycle by phosphorylating p27Xic1 Phosphorylated p27Xic1 exhibits weaker binding to and inhibition of Cdk2 p27Xic1 promotes neuronal differentiation and elongates cell cycle via G1 phase Effects of p27Xic1 on neuronal differentiation are rescued by activated aPKC
Collapse
Affiliation(s)
- Nitin Sabherwal
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Raphael Thuret
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Peter Stanley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
3
|
Zhu XN, Kim DH, Lin HR, Budhavarapu VN, Rosenbaum HB, Mueller PR, Yew PR. Proteolysis of Xenopus Cip-type CDK inhibitor, p16Xic2, is regulated by PCNA binding and CDK2 phosphorylation. Cell Div 2013; 8:5. [PMID: 23607668 PMCID: PMC3655096 DOI: 10.1186/1747-1028-8-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3. Methods We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation. Results Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation. Conclusions During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.
Collapse
Affiliation(s)
- Xi-Ning Zhu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Havens CG, Shobnam N, Guarino E, Centore RC, Zou L, Kearsey SE, Walter JC. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J Biol Chem 2012; 287:11410-21. [PMID: 22303007 DOI: 10.1074/jbc.m111.337683] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
6
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
7
|
The CRL4Cdt2 ubiquitin ligase mediates the proteolysis of cyclin-dependent kinase inhibitor Xic1 through a direct association with PCNA. Mol Cell Biol 2010; 30:4120-33. [PMID: 20606006 DOI: 10.1128/mcb.01135-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During DNA polymerase switching, the Xenopus laevis Cip/Kip-type cyclin-dependent kinase inhibitor Xic1 associates with trimeric proliferating cell nuclear antigen (PCNA) and is recruited to chromatin, where it is ubiquitinated and degraded. In this study, we show that the predominant E3 for Xic1 in the egg is the Cul4-DDB1-XCdt2 (Xenopus Cdt2) (CRL4(Cdt2)) ubiquitin ligase. The addition of full-length XCdt2 to the Xenopus extract promotes Xic1 turnover, while the N-terminal domain of XCdt2 (residues 1 to 400) cannot promote Xic1 turnover, despite its ability to bind both Xic1 and DDB1. Further analysis demonstrated that XCdt2 binds directly to PCNA through its C-terminal domain (residues 401 to 710), indicating that this interaction is important for promoting Xic1 turnover. We also identify the cis-acting sequences required for Xic1 binding to Cdt2. Xic1 binds to Cdt2 through two domains (residues 161 to 170 and 179 to 190) directly flanking the Xic1 PCNA binding domain (PIP box) but does not require PIP box sequences (residues 171 to 178). Similarly, human p21 binds to human Cdt2 through residues 156 to 161, adjacent to the p21 PIP box. In addition, we identify five lysine residues (K180, K182, K183, K188, and K193) immediately downstream of the Xic1 PIP box and within the second Cdt2 binding domain as critical sites for Xic1 ubiquitination. Our studies suggest a model in which both the CRL4(Cdt2) E3- and PIP box-containing substrates, like Xic1, are recruited to chromatin through independent direct associations with PCNA.
Collapse
|
8
|
Havens CG, Walter JC. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 2009; 35:93-104. [PMID: 19595719 DOI: 10.1016/j.molcel.2009.05.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/14/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
Abstract
Substrates of the E3 ubiquitin ligase CRL4(Cdt2), including Cdt1 and p21, contain a PCNA-binding motif called a PIP box. Upon binding of the PIP box to PCNA on chromatin, CRL4(Cdt2) is recruited and the substrate is ubiquitylated. Importantly, a PIP box cannot be sufficient for destruction, as most PIP box proteins are stable. Using Xenopus egg extracts, we identify two sequence elements in CRL4(Cdt2) substrates that promote their proteolysis: a specialized PIP box that confers exceptionally efficient PCNA binding and a basic amino acid 4 residues downstream of the PIP box, which recruits CRL4(Cdt2) to the substrate-PCNA complex. We also identify two mechanisms that couple CRL4(Cdt2)-dependent proteolysis to the chromatin-bound form of PCNA, ensuring that this proteolysis pathway is active only in S phase or after DNA damage. Thus, CRL4(Cdt2) recognizes an unusual degron, which is assembled specifically on chromatin via the binding of a specialized PIP box to PCNA.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Mochizuki T, Bilitou A, Waters CT, Hussain K, Zollo M, Ohnuma SI. Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1. Neural Dev 2009; 4:1. [PMID: 19123928 PMCID: PMC2647920 DOI: 10.1186/1749-8104-4-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/05/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In Xenopus retinogenesis, p27Xic1, a Xenopus cyclin dependent kinase inhibitor, functions as a cell fate determinant in both gliogenesis and neurogenesis in a context dependent manner. This activity is essential for co-ordination of determination and cell cycle regulation. However, very little is known about the mechanism regulating the context dependent choice between gliogenesis versus neurogenesis. RESULTS We have identified NM23-X4, a NM23 family member, as a binding partner of p27Xic1. NM23-X4 is expressed at the periphery of the ciliary marginal zone of the Xenopus retina and the expression overlaps with p27Xic1 at the central side. Our in vivo functional analysis in Xenopus retina has shown that knockdown of NM23-X4 activates gliogenesis. Furthermore, co-overexpression of NM23-X4 with p27Xic1 results in the inhibition of p27Xic1-mediated gliogenesis, through direct interaction of NM23-X4 with the amino-terminal side of p27Xic1. This inhibitory effect on gliogenesis requires serine-150 and histidine-148, which correspond to the important residues for the kinase activities of NM23 family members. CONCLUSION This study demonstrates that NM23-X4 functions as an inhibitor of p27Xic1-mediated gliogenesis in Xenopus retina and suggests that this activity contributes to the proper spatio-temporal regulation of gliogenesis.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Movassagh M, Philpott A. Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. Cardiovasc Res 2008; 79:436-47. [PMID: 18442987 PMCID: PMC2492727 DOI: 10.1093/cvr/cvn105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Cyclin-dependent kinase inhibitors (CDKIs) play a critical role in negatively regulating the proliferation of cardiomyocytes, although their role in cardiac differentiation remains largely undetermined. We have shown that the most prominent CDKI in Xenopus, p27Xic1(Xic1), plays a role in neuronal and myotome differentiation beyond its ability to arrest the cell cycle. Thus, we investigated whether it plays a similar role in cardiomyocyte differentiation. Methods and results Xenopus laevis embryos were sectioned, and whole-mount antibody staining and immunofluorescence studies were carried out to determine the total number and percentage of differentiated cardiomyocytes in mitosis. Capped RNA and/or translation-blocking Xic1 morpholino antisense oligonucleotides (Xic1Mo) were microinjected into embryos, and their role on cardiac differentiation was assessed by in situ hybridization and/or PCR. We show that cell-cycling post-gastrulation is not essential for cardiac differentiation in Xenopus embryos, and conversely that some cells can express markers of cardiac differentiation even when still in cycle. A targeted knock-down of Xic1 protein by Xic1Mo microinjection decreases the expression of markers of cardiac differentiation, which can be partially rescued by co-injection of full-length Xic1 RNA, demonstrating that Xic1 is essential for heart formation. Furthermore, using deleted and mutant forms of Xic1, we show that neither its abilities to inhibit the cell cycle nor the great majority of CDK kinase activity are essential for Xic1’s function in cardiomyocyte differentiation, an activity that resides in the N-terminus of the molecule. Conclusion Altogether, our results demonstrate that the CDKI Xic1 is required in Xenopus cardiac differentiation, and that this function is localized at its N-terminus, but it is distinct from its ability to arrest the cell cycle and inhibit overall CDK kinase activity. Hence, these results suggest that CDKIs play an important direct role in driving cardiomyocyte differentiation in addition to cell-cycle regulation.
Collapse
Affiliation(s)
- Mehregan Movassagh
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
11
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
12
|
Chuang LC, Yew PR. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 2005; 280:35299-309. [PMID: 16118211 DOI: 10.1074/jbc.m506429200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus cyclin-dependent kinase (CDK) inhibitor, p27(Xic1) (Xic1), binds to CDK2-cyclins and proliferating cell nuclear antigen (PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin-mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha-primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild-type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA-depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- University of Texas Health Science Center at San Antonio, Department of Molecular Medicine, Institute of Biotechnology, San Antonio, Texas 78245-3207, USA
| | | |
Collapse
|