1
|
Acetyl-CoA-mediated autoacetylation of fatty acid synthase as a metabolic switch of de novo lipogenesis in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2212220119. [PMID: 36459649 PMCID: PMC9894184 DOI: 10.1073/pnas.2212220119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
De novo lipogenesis is a highly regulated metabolic process, which is known to be activated through transcriptional regulation of lipogenic genes, including fatty acid synthase (FASN). Unexpectedly, we find that the expression of FASN protein remains unchanged during Drosophila larval development from the second to the third instar larval stages (L2 to L3) when lipogenesis is hyperactive. Instead, acetylation of FASN is significantly upregulated in fast-growing larvae. We further show that lysine K813 residue is highly acetylated in developing larvae, and its acetylation is required for elevated FASN activity, body fat accumulation, and normal development. Intriguingly, K813 is autoacetylated by acetyl-CoA (AcCoA) in a dosage-dependent manner independent of acetyltransferases. Mechanistically, the autoacetylation of K813 is mediated by a novel P-loop-like motif (N-xx-G-x-A). Lastly, we find that K813 is deacetylated by Sirt1, which brings FASN activity to baseline level. In summary, this work uncovers a previously unappreciated role of FASN acetylation in developmental lipogenesis and a novel mechanism for protein autoacetylation, through which Drosophila larvae control metabolic homeostasis by linking AcCoA, lysine acetylation, and de novo lipogenesis.
Collapse
|
2
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Finelli R, Darbandi S, Pushparaj PN, Henkel R, Ko E, Agarwal A. In Silico Sperm Proteome Analysis to Investigate DNA Repair Mechanisms in Varicocele Patients. Front Endocrinol (Lausanne) 2021; 12:757592. [PMID: 34975746 PMCID: PMC8719329 DOI: 10.3389/fendo.2021.757592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Varicocele, a condition associated with increased oxidative stress, negatively affects sperm DNA integrity and reduces pregnancy rates. However, the molecular mechanisms related to DNA integrity, damage, and repair in varicocele patients remain unclear. This study aimed to determine the role of DNA repair molecular mechanisms in varicocele-related infertility by combining an in silico proteomics approach with wet-laboratory techniques. Proteomics results previously generated from varicocele patients (n=50) and fertile controls (n=10) attending our Andrology Center were reanalyzed using bioinformatics tools, including the WEB-based Gene SeT AnaLysis Toolkit, Open Target Platform, and Ingenuity Pathway Analysis (IPA), to identify differentially expressed proteins (DEPs) involved in DNA repair. Subsequently, selected DEPs in spermatozoa were validated using western blotting in varicocele (n = 13) and fertile control (n = 5) samples. We identified 99 DEPs mainly involved in male reproductive system disease (n=66) and male infertility (n=47). IPA analysis identified five proteins [fatty acid synthase (FASN), myeloperoxidase (MPO), mitochondrial aconitate hydratase (ACO2), nucleoporin 93 (NUP93), and 26S proteasome non-ATPase regulatory subunit 14 (PSMD14)] associated with DNA repair deficiency, which showed altered expression in varicocele (P <0.03). We validated ACO2 downregulation (fold change=0.37, change%=-62.7%, P=0.0001) and FASN overexpression (fold change = 4.04, change %= 303.7%, P = 0.014) in men with varicocele compared to controls. This study combined a unique in silico approach with an in vitro validation of the molecular mechanisms that may be responsible for varicocele-associated infertility. We identified ACO2 and FASN as possible proteins involved in DNA repair, whose altered expression may contribute to DNA damage in varicocele pathophysiology.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Reading, United Kingdom
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, United States
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Ashok Agarwal,
| |
Collapse
|
4
|
Ates G, Goldberg J, Currais A, Maher P. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease. Redox Biol 2020; 36:101648. [PMID: 32863221 PMCID: PMC7394765 DOI: 10.1016/j.redox.2020.101648] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023] Open
Abstract
The oxidative degradation of lipids has been shown to be implicated in the progression of several neurodegenerative diseases and modulating lipid peroxidation may be efficacious for treating Alzheimer’s disease (AD). This hypothesis is strengthened by recent findings suggesting that oxytosis/ferroptosis, a cell death process characterized by increased lipid peroxidation, plays an important role in AD-related toxicities. CMS121 is a small molecule developed against these aspects of neurodegeneration. Here we show that CMS121 alleviates cognitive loss, modulates lipid metabolism and reduces inflammation and lipid peroxidation in the brains of transgenic AD mice. We identify fatty acid synthase (FASN) as a molecular target of CMS121 and demonstrate that modulating lipid metabolism through the inhibition of FASN protects against several AD-related toxicities. These results support the involvement of lipid peroxidation and perturbed lipid metabolism in AD pathophysiology and propose FASN as a target in AD-associated toxicities. CMS121, a fisetin-derivative, alleviates memory decline in a double transgenic AD mouse model. CMS121 is able to reduce lipid peroxidation and neuroinflammation, both in vitro and in vivo. We identify fatty acid synthase (FASN), which shows increased protein levels in human AD patients, as a target of CMS121. Our results confirm the involvement of lipid peroxidation and perturbed lipid metabolism in AD pathophysiology. Decreasing lipid levels through FASN inhibition can be effective against excess lipid peroxidation.
Collapse
Affiliation(s)
- Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joshua Goldberg
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Medina FE, Ramos MJ, Fernandes PA. Complexities of the Reaction Mechanisms of CC Double Bond Reduction in Mammalian Fatty Acid Synthase Studied with Quantum Mechanics/Molecular Mechanics Calculations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Gelman SJ, Naser F, Mahieu NG, McKenzie LD, Dunn GP, Chheda MG, Patti GJ. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress. Cell Rep 2019; 22:512-522. [PMID: 29320744 PMCID: PMC6053654 DOI: 10.1016/j.celrep.2017.12.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023] Open
Abstract
Gain-of-function mutations in isocitrate dehydroge-nase 1 (IDH1) occur in multiple types of human cancer. Here, we show that these mutations significantly disrupt NADPH homeostasis by consuming NADPH for 2-hydroxyglutarate (2-HG) synthesis. Cells respond to 2-HG synthesis, but not exogenous administration of 2-HG, by increasing pentose phosphate pathway (PPP) flux. We show that 2-HG production competes with reductive biosynthesis and the buffering of oxidative stress, processes that also require NADPH. IDH1 mutants have a decreased capacity to synthesize palmitate and an increased sensitivity to oxidative stress. Our results demonstrate that, even when NADPH is limiting, IDH1 mutants continue to synthesize 2-HG at the expense of other NADPH-requiring pathways that are essential for cell viability. Thus, rather than attempting to decrease 2-HG synthesis in the clinic, the consumption of NADPH by mutant IDH1 may be exploited as a metabolic weakness that sensitizes tumor cells to ionizing radiation, a commonly used anti-cancer therapy.
Collapse
Affiliation(s)
- Susan J Gelman
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Fuad Naser
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Nathaniel G Mahieu
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Lisa D McKenzie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gavin P Dunn
- Departments of Neurological Surgery and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Milan G Chheda
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Rittner A, Paithankar KS, Drexler DJ, Himmler A, Grininger M. Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I. Protein Sci 2018; 28:414-428. [PMID: 30394635 DOI: 10.1002/pro.3550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re-engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS-like modules as well as bimodular constructs. The novel re-engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS-based biosynthetic pathways for custom compound design.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - David Jan Drexler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Aaron Himmler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
8
|
Carroll RG, Zasłona Z, Galván-Peña S, Koppe EL, Sévin DC, Angiari S, Triantafilou M, Triantafilou K, Modis LK, O'Neill LA. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem 2018; 293:5509-5521. [PMID: 29463677 PMCID: PMC5900750 DOI: 10.1074/jbc.ra118.001921] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/08/2018] [Indexed: 11/11/2022] Open
Abstract
Different immune activation states require distinct metabolic features and activities in immune cells. For instance, inhibition of fatty acid synthase (FASN), which catalyzes the synthesis of long-chain fatty acids, prevents the proinflammatory response in macrophages; however, the precise role of this enzyme in this response remains poorly defined. Consistent with previous studies, we found here that FASN is essential for lipopolysaccharide-induced, Toll-like receptor (TLR)-mediated macrophage activation. Interestingly, only agents that block FASN upstream of acetoacetyl-CoA synthesis, including the well-characterized FASN inhibitor C75, inhibited TLR4 signaling, while those acting downstream had no effect. We found that acetoacetyl-CoA could overcome C75's inhibitory effect, whereas other FASN metabolites, including palmitate, did not prevent C75-mediated inhibition. This suggested an unexpected role for acetoacetyl-CoA in inflammation that is independent of its role in palmitate synthesis. Our evidence further suggested that acetoacetyl-CoA arising from FASN activity promotes cholesterol production, indicating a surprising link between fatty acid synthesis and cholesterol synthesis. We further demonstrate that this process is required for TLR4 to enter lipid rafts and facilitate TLR4 signaling. In conclusion, we have uncovered an unexpected link between FASN and cholesterol synthesis that appears to be required for TLR signal transduction and proinflammatory macrophage activation.
Collapse
Affiliation(s)
- Richard G Carroll
- From the School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin 2, Ireland.,the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Zbigniew Zasłona
- From the School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin 2, Ireland
| | - Silvia Galván-Peña
- From the School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin 2, Ireland.,the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Emma L Koppe
- the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Daniel C Sévin
- Cellzome, GlaxoSmithKline, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Stefano Angiari
- From the School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin 2, Ireland
| | - Martha Triantafilou
- the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom.,the Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff CF14 4XW, Wales, United Kingdom, and
| | - Kathy Triantafilou
- the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom.,the Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff CF14 4XW, Wales, United Kingdom, and
| | - Louise K Modis
- the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Luke A O'Neill
- From the School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin 2, Ireland, .,the Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
9
|
Hardwicke MA, Rendina AR, Williams SP, Moore ML, Wang L, Krueger JA, Plant RN, Totoritis RD, Zhang G, Briand J, Burkhart WA, Brown KK, Parrish CA. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat Chem Biol 2014; 10:774-9. [DOI: 10.1038/nchembio.1603] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/27/2014] [Indexed: 01/19/2023]
|
10
|
Sridharan GV, Yi M, Hassoun S, Lee K. Metabolic flux-based modularity using shortest retroactive distances. BMC SYSTEMS BIOLOGY 2012; 6:155. [PMID: 23270532 PMCID: PMC3556310 DOI: 10.1186/1752-0509-6-155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/27/2012] [Indexed: 01/07/2023]
Abstract
Background Graph-based modularity analysis has emerged as an important tool to study the functional organization of biological networks. However, few methods are available to study state-dependent changes in network modularity using biological activity data. We develop a weighting scheme, based on metabolic flux data, to adjust the interaction distances in a reaction-centric graph model of a metabolic network. The weighting scheme was combined with a hierarchical module assignment algorithm featuring the preservation of metabolic cycles to examine the effects of cellular differentiation and enzyme inhibitions on the functional organization of adipocyte metabolism. Results Our analysis found that the differences between various metabolic states primarily involved the assignment of two specific reactions in fatty acid synthesis and glycerogenesis. Our analysis also identified cyclical interactions between reactions that are robust with respect to metabolic state, suggesting possible co-regulation. Comparisons based on cyclical interaction distances between reaction pairs suggest that the modular organization of adipocyte metabolism is stable with respect to the inhibition of an enzyme, whereas a major physiological change such as cellular differentiation leads to a more substantial reorganization. Conclusion Taken together, our results support the notion that network modularity is influenced by both the connectivity of the network’s components as well as the relative engagements of the connections.
Collapse
Affiliation(s)
- Gautham Vivek Sridharan
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Room 150, Medford, MA 02155, USA
| | | | | | | |
Collapse
|