1
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dong D, Fu Y, Chen F, Zhang J, Jia H, Li J, Wang H, Wen J. Hyperoxia sensitizes hypoxic HeLa cells to ionizing radiation by downregulating HIF‑1α and VEGF expression. Mol Med Rep 2021; 23:62. [PMID: 33215223 PMCID: PMC7706008 DOI: 10.3892/mmr.2020.11700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The current study investigated whether hyperoxia may reverse hypoxia‑induced radioresistance (RR) in cervical cancer. Human HeLa cells exposed to hypoxic, normoxic or hyperoxic conditions were irradiated using X‑rays. Cell proliferation and apoptosis were analyzed using MTT assays and flow cytometry. The expression levels of hypoxia‑inducible factor‑1α (HIF‑1α), VEGF165, VEGFRs, Akt and ERK were measured via western blotting and/or ELISA. The results demonstrated that hypoxia stimulated HIF‑1α and VEGF expression, and induced RR in HeLa cells. The administration of recombinant VEGF or the forced expression of VEGF promoted RR, whereas inactivating HIF‑1α or blocking the VEGF‑VEGFR interaction abrogated hypoxia‑induced RR. Notably, hyperoxia decreased the level of hypoxia‑stimulated HIF‑1α and VEGF, and enhanced radiosensitivity in hypoxic HeLa cells. The results demonstrated that hyperoxia suppressed the hypoxia‑activated Akt and ERK signaling pathways in HeLa cells. Therefore, a high O2 concentration may be considered as a radiotherapeutic sensitizer for hypoxic HeLa cells.
Collapse
Affiliation(s)
- Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Fu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feng Chen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiyan Jia
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huailin Wang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jihong Wen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
5
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
6
|
Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A. Genetic signatures of natural selection in a model invasive ascidian. Sci Rep 2017; 7:44080. [PMID: 28266616 PMCID: PMC5339779 DOI: 10.1038/srep44080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.
Collapse
Affiliation(s)
- Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Changho Yi
- Marine Biodiversity Assessment and Management Team, National Marine Biodiversity Institute of Korea, 101-75 Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Korea
| | - Jonathan J Fong
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, New Territories, Hong Kong, China
| | - Won Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom.,Department of Zoology, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
7
|
Eliseeva IA, Lyabin DN, Ovchinnikov LP. Poly(A)-binding proteins: structure, domain organization, and activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1377-91. [PMID: 24490729 DOI: 10.1134/s0006297913130014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
8
|
McKinney C, Yu D, Mohr I. A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication. Genes Dev 2013; 27:1809-20. [PMID: 23964095 PMCID: PMC3759697 DOI: 10.1101/gad.221341.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, Mohr and colleagues establish a role for the poly(A)-binding protein (PABP) repressor Paip2 in viral infection. The investigators find that human cytomegalovirus (HCMV) infection causes the up-regulation of Paip2 as well as PABP. The data indicate that Paip2 accumulation represents an innate host response to counteract the virus-induced increase in PABP abundance, limit the assembly of translation initiation factor complexes, and restrict viral growth. Paip2 thus plays a significant role in an innate defense mechanism to restrict viral protein synthesis and replication. The capacity of polyadenylate-binding protein PABPC1 (PABP1) to stimulate translation is regulated by its repressor, Paip2. Paradoxically, while PABP accumulation promotes human cytomegalovirus (HCMV) protein synthesis, we show that this is accompanied by an analogous increase in the abundance of Paip2 and EDD1, an E3 ubiquitin ligase that destabilizes Paip2. Coordinate control of PABP1, Paip2, and EDD1 required the virus-encoded UL38 mTORC1 activator and resulted in augmented Paip2 synthesis, stability, and association with PABP1. Paip2 synthesis also increased following serum stimulation of uninfected normal fibroblasts, suggesting that this coregulation may play a role in how uninfected cells respond to stress. Significantly, Paip2 accumulation was dependent on PABP accrual, as preventing PABP1 accumulation suppressed viral replication and inhibited the corresponding Paip2 increase. Furthermore, depleting Paip2 restored the ability of infected cells to assemble the translation initiation factor eIF4F, promoting viral protein synthesis and replication without increasing PABP1. This establishes a new role for the cellular PABP1 inhibitor Paip2 as an innate defense that restricts viral protein synthesis and replication. Moreover, it illustrates how a stress-induced rise in PABP1 triggered by virus infection can counter and surpass a corresponding increase in Paip2 abundance and stability.
Collapse
Affiliation(s)
- Caleb McKinney
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
9
|
Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, Schmitz K, Kleinert H, Pautz A. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide 2013; 33:6-17. [DOI: 10.1016/j.niox.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
|
10
|
Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 2013; 41:7997-8010. [PMID: 23851566 PMCID: PMC3783158 DOI: 10.1093/nar/gkt539] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular Endothelial Growth Factor A (VEGF-A) is a potent secreted mitogen crucial for physiological and pathological angiogenesis. Post-transcriptional regulation of VEGF-A occurs at multiple levels. Firstly, alternative splicing gives rise to different transcript variants encoding diverse isoforms that exhibit distinct biological properties with regard to receptor binding and extra-cellular localization. Secondly, VEGF-A mRNA stability is regulated by effectors such as hypoxia or growth factors through the binding of stabilizing and destabilizing proteins at AU-rich elements located in the 3′-untranslated region. Thirdly, translation of VEGF-A mRNA is a controlled process involving alternative initiation codons, internal ribosome entry sites (IRESs), an upstream open reading frame (uORF), miRNA targeting and a riboswitch in the 3′ untranslated region. These different levels of regulation cooperate for the crucial fine-tuning of the expression of VEGF-A variants. This review will be focused on our current knowledge of the complex post-transcriptional regulatory switches that modulate the cellular VEGF-A level, a paradigmatic model of post-transcriptional regulation.
Collapse
Affiliation(s)
- Tania Arcondéguy
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse Cedex 4, France and Université Toulouse III Paul-Sabatier, 118 Route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol Cell Biol 2012; 32:4323-36. [PMID: 22907758 DOI: 10.1128/mcb.06785-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Poly(A) binding proteins (PABPs) specifically bind the polyadenosine tail of mRNA and have been shown to be important for RNA polyadenylation, translation initiation, and mRNA stability. Using a modified L1 retrotransposition vector, we examined the effects of two PABPs (encoded by PABPN1 and PABPC1) on the retrotransposition activity of the L1 non-long-terminal-repeat (non-LTR) retrotransposon in both HeLa and HEK293T cells. We demonstrated that knockdown of these two genes by RNA interference (RNAi) effectively reduced L1 retrotransposition by 70 to 80% without significantly changing L1 transcription or translation or the status of the poly(A) tail. We identified that both poly(A) binding proteins were associated with the L1 ribonucleoprotein complex, presumably through L1 mRNA. Depletion of PABPC1 caused a defect in L1 RNP formation. Knockdown of the PABPC1 inhibitor PAIP2 increased L1 retrotransposition up to 2-fold. Low levels of exogenous overexpression of PABPN1 and PABPC1 increased L1 retrotransposition, whereas unregulated overexpression of these two proteins caused pleiotropic effects, such as hypersensitivity to puromycin and decreased L1 activity. Our data suggest that PABPC1 is essential for the formation of L1 RNA-protein complexes and may play a role in L1 RNP translocation in the host cell.
Collapse
|
12
|
The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Biochem J 2012; 441:803-12. [PMID: 22004688 PMCID: PMC3298439 DOI: 10.1042/bj20111474] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PABP1 [poly(A)-binding protein 1] is a central regulator of mRNA translation and stability and is required for miRNA (microRNA)-mediated regulation and nonsense-mediated decay. Numerous protein, as well as RNA, interactions underlie its multi-functional nature; however, it is unclear how its different activities are co-ordinated, since many partners interact via overlapping binding sites. In the present study, we show that human PABP1 is subject to elaborate post-translational modification, identifying 14 modifications located throughout the functional domains, all but one of which are conserved in mouse. Intriguingly, PABP1 contains glutamate and aspartate methylations, modifications of unknown function in eukaryotes, as well as lysine and arginine methylations, and lysine acetylations. The latter dramatically alter the pI of PABP1, an effect also observed during the cell cycle, suggesting that different biological processes/stimuli can regulate its modification status, although PABP1 also probably exists in differentially modified subpopulations within cells. Two lysine residues were differentially acetylated or methylated, revealing that PABP1 may be the first example of a cytoplasmic protein utilizing a ‘methylation/acetylation switch’. Modelling using available structures implicates these modifications in regulating interactions with individual PAM2 (PABP-interacting motif 2)-containing proteins, suggesting a direct link between PABP1 modification status and the formation of distinct mRNP (messenger ribonucleoprotein) complexes that regulate mRNA fate in the cytoplasm.
Collapse
|
13
|
Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae. Genetics 2011; 189:469-78. [PMID: 21840854 PMCID: PMC3189813 DOI: 10.1534/genetics.111.132068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 5'-UTR serves as the loading dock for ribosomes during translation initiation and is the key site for translation regulation. Many genes in the yeast Saccharomyces cerevisiae contain poly(A) tracts in their 5'-UTRs. We studied these pre-AUG poly(A) tracts in a set of 3274 recently identified 5'-UTRs in the yeast to characterize their effect on in vivo protein abundance, ribosomal density, and protein synthesis rate in the yeast. The protein abundance and the protein synthesis rate increase with the length of the poly(A), but exhibit a dramatic decrease when the poly(A) length is ≥12. The ribosomal density also reaches the lowest level when the poly(A) length is ≥12. This supports the hypothesis that a pre-AUG poly(A) tract can bind to translation initiation factors to enhance translation initiation, but a long (≥12) pre-AUG poly(A) tract will bind to Pab1p, whose binding size is 12 consecutive A residues in yeast, resulting in repression of translation. The hypothesis explains why a long pre-AUG poly(A) leads to more efficient translation initiation than a short one when PABP is absent, and why pre-AUG poly(A) is short in the early genes but long in the late genes of vaccinia virus.
Collapse
|
14
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol 2009; 7:e1000107. [PMID: 19468299 PMCID: PMC2680333 DOI: 10.1371/journal.pbio.1000107] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 03/26/2009] [Indexed: 12/30/2022] Open
Abstract
Inhibition of host cell gene expression by the human herpesvirus KSHV occurs via a novel mechanism involving polyadenylation-linked RNA turnover. Regulation of messenger RNA (mRNA) stability plays critical roles in controlling gene expression, ensuring transcript fidelity, and allowing cells to respond to environmental cues. Unregulated enhancement of mRNA turnover could therefore dampen cellular responses to such signals. Indeed, several herpesviruses instigate widespread destruction of cellular mRNAs to block host gene expression and evade immune detection. Kaposi's sarcoma-associated herpesvirus (KSHV) promotes this phenotype via the activity of its viral SOX protein, although the mechanism of SOX-induced mRNA turnover has remained unknown, given its apparent lack of intrinsic ribonuclease activity. Here, we report that KSHV SOX stimulates cellular transcriptome turnover via a unique mechanism involving aberrant polyadenylation. Transcripts in SOX-expressing cells exhibit extended poly(A) polymerase II-generated poly(A) tails and polyadenylation-linked mRNA turnover. SOX-induced polyadenylation changes correlate with its RNA turnover function, and inhibition of poly(A) tail formation blocks SOX activity. Both nuclear and cytoplasmic poly(A) binding proteins are critical cellular cofactors for SOX function, the latter of which undergoes striking nuclear relocalization by SOX. SOX-induced mRNA turnover therefore represents both a novel mechanism of host shutoff as well as a new model system to probe the regulation of poly(A) tail-stimulated mRNA turnover in mammalian cells. During viral infection, many essential cellular functions are targets for viral manipulation, yet aside from RNA interference, surprisingly few examples of viruses disrupting RNA turnover have been documented. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus that induces widespread cellular messenger RNA destabilization during lytic infection. The viral protein SOX is a critical effector of this phenotype, yet it lacks ribonuclease activity, so presumably it targets cellular factors governing RNA stability. Here, we show that SOX stimulates host mRNA destruction via a unique mechanism involving polyadenylation. During SOX expression, newly formed messages have longer than normal poly(A) tails, leading to their retention in the nucleus. Coincident with this hyperadenylation, poly(A) binding protein (PABPC) is relocalized from the cytoplasm to the nucleus. PABPC has prominent roles in translation, messenger RNA stabilization, and quality control in the cytoplasm; we find its nuclear relocalization by SOX correlates with enhanced mRNA turnover in the cytoplasm. Thus, KSHV appears to have evolved distinct polyadenylation-linked mechanisms to target both new messages in the nucleus and preexisting cytoplasmic messages for destruction, thereby effectively inhibiting cellular gene expression.
Collapse
|
16
|
Ma S, Bhattacharjee RB, Bag J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J 2008; 276:552-70. [DOI: 10.1111/j.1742-4658.2008.06803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sugimoto I, Li Z, Sakamoto Y, Ito S, Hashimoto E. Mass-spectrometric identification of proteins detected in forskolin-stimulated Xenopus laevis oocytes using antibody against phospho-(Ser/Thr) cAMP-dependent protein kinase substrate. ACTA ACUST UNITED AC 2008; 28:231-8. [PMID: 18000335 DOI: 10.2220/biomedres.28.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to study the phosphorylated proteins in the resting Xenopus laevis oocytes, the proteins detected by Western blotting using phospho-(Ser/Thr) PKA substrate antibody (PKA substrate antibody) in forskolin-stimulated oocytes were purified and identified by mass spectrometry. Several proteins (ribosomal S6 protein, elongation factor-2 (EF-2), poly A binding protein, releasing factor 1) were identified, and the phosphorylation of EF-2 was further studied. Partially purified Xenopus EF-2 (xEF-2) was phosphorylated by PKA in vitro and this phosphorylation was detected by Western blotting using PKA substrate antibody. The phosphorylation of Thr-57 in xEF-2 (corresponding to Thr-56 of the mammalian enzyme) was detected in the partially purified xEF-2 from the resting oocytes, but this xEF-2 did not react with the PKA substrate antibody. These results suggest that Thr-57 in xEF-2 was phosphorylated, but xEF-2 does not seem to be phosphorylated by PKA in resting oocytes although PKA can phosphorylate xEF-2 in vitro and probably in forskolin-treated oocytes.
Collapse
Affiliation(s)
- Isamu Sugimoto
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Nishi-cho, Yonago
| | | | | | | | | |
Collapse
|
18
|
Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 2007; 28:772-83. [PMID: 18039850 DOI: 10.1128/mcb.02078-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3' untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo.
Collapse
|
19
|
Abstract
The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.
Collapse
Affiliation(s)
- Adrienne E McKee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007; 18:1385-96. [PMID: 17392519 PMCID: PMC1838996 DOI: 10.1091/mbc.e06-12-1120] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tight control of translation is fundamental for eukaryotic cells, and deregulation of proteins implicated contributes to numerous human diseases. The neurodegenerative disorder spinocerebellar ataxia type 2 is caused by a trinucleotide expansion in the SCA2 gene encoding a lengthened polyglutamine stretch in the gene product ataxin-2, which seems to be implicated in cellular RNA-processing pathways and translational regulation. Here, we substantiate a function of ataxin-2 in such pathways by demonstrating that ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6, a component of P-bodies and stress granules, representing cellular structures of mRNA triage. We discovered that altered ataxin-2 levels interfere with the assembly of stress granules and cellular P-body structures. Moreover, ataxin-2 regulates the intracellular concentration of its interaction partner, the poly(A)-binding protein, another stress granule component and a key factor for translational control. Thus, our data imply that the cellular ataxin-2 concentration is important for the assembly of stress granules and P-bodies, which are main compartments for regulating and controlling mRNA degradation, stability, and translation.
Collapse
Affiliation(s)
- Ute Nonhoff
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Markus Ralser
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Franziska Welzel
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilaria Piccini
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|