1
|
Murphy KJ, Cutter AR, Fang H, Postnikov YV, Bustin M, Hayes JJ. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Nucleic Acids Res 2017; 45:9917-9930. [PMID: 28973435 PMCID: PMC5622319 DOI: 10.1093/nar/gkx579] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 01/23/2023] Open
Abstract
The structure of the nucleosome, the basic building block of the chromatin fiber, plays a key role in epigenetic regulatory processes that affect DNA-dependent processes in the context of chromatin. Members of the HMGN family of proteins bind specifically to nucleosomes and affect chromatin structure and function, including transcription and DNA repair. To better understand the mechanisms by which HMGN 1 and 2 alter chromatin, we analyzed their effect on the organization of histone tails and linker histone H1 in nucleosomes. We find that HMGNs counteract linker histone (H1)-dependent stabilization of higher order ‘tertiary’ chromatin structures but do not alter the intrinsic ability of nucleosome arrays to undergo salt-induced compaction and self-association. Surprisingly, HMGNs do not displace H1s from nucleosomes; rather these proteins bind nucleosomes simultaneously with H1s without disturbing specific contacts between the H1 globular domain and nucleosomal DNA. However, HMGNs do alter the nucleosome-dependent condensation of the linker histone C-terminal domain, which is critical for stabilizing higher-order chromatin structures. Moreover, HMGNs affect the interactions of the core histone tail domains with nucleosomal DNA, redirecting the tails to more interior positions within the nucleosome. Our studies provide new insights into the molecular mechanisms whereby HMGNs affect chromatin structure.
Collapse
Affiliation(s)
- Kevin J Murphy
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - He Fang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Yuri V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Riedmann C, Fondufe-Mittendorf YN. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility. Sci Rep 2016; 6:33186. [PMID: 27624769 PMCID: PMC5021983 DOI: 10.1038/srep33186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Chromatin architectural proteins (CAPs) bind the entry/exit DNA of nucleosomes and linker DNA to form higher order chromatin structures with distinct transcriptional outcomes. How CAPs mediate nucleosome dynamics is not well understood. We hypothesize that CAPs regulate DNA target site accessibility through alteration of the rate of spontaneous dissociation of DNA from nucleosomes. We investigated the effects of histone H1, high mobility group D1 (HMGD1), and methyl CpG binding protein 2 (MeCP2), on the biophysical properties of nucleosomes and chromatin. We show that MeCP2, like the repressive histone H1, traps the nucleosome in a more compact mononucleosome structure. Furthermore, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding to its cognate DNA site within the nucleosomal DNA. These results demonstrate that MeCP2 behaves like a repressor even in the absence of methylation. Additionally, MeCP2 behaves similarly to histone H1 and HMGD1 in creating a higher-order chromatin structure, which is susceptible to chromatin remodeling by ISWI. Overall, we show that CAP binding results in unique changes to nucleosome structure and dynamics.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
3
|
Functional interplay between histone H1 and HMG proteins in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:462-7. [PMID: 26455954 DOI: 10.1016/j.bbagrm.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
The dynamic interaction of nucleosome binding proteins with their chromatin targets is an important element in regulating the structure and function of chromatin. Histone H1 variants and High Mobility Group (HMG) proteins are ubiquitously expressed in all vertebrate cells, bind dynamically to chromatin, and are known to affect chromatin condensation and the ability of regulatory factors to access their genomic binding sites. Here, we review the studies that focus on the interactions between H1 and HMGs and highlight the functional consequences of the interplay between these architectural chromatin binding proteins. H1 and HMG proteins are mobile molecules that bind to nucleosomes as members of a dynamic protein network. All HMGs compete with H1 for chromatin binding sites, in a dose dependent fashion, but each HMG family has specific effects on the interaction of H1 with chromatin. The interplay between H1 and HMGs affects chromatin organization and plays a role in epigenetic regulation.
Collapse
|
4
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
5
|
Masaoka A, Gassman NR, Kedar PS, Prasad R, Hou EW, Horton JK, Bustin M, Wilson SH. HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts. J Biol Chem 2012; 287:27648-58. [PMID: 22736760 DOI: 10.1074/jbc.m112.370759] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mammalian cells, the nucleosome-binding protein HMGN1 (high mobility group N1) affects the structure and function of chromatin and plays a role in repair of damaged DNA. HMGN1 affects the interaction of DNA repair factors with chromatin and their access to damaged DNA; however, not all of the repair factors affected have been identified. Here, we report that HMGN1 affects the self-poly(ADP-ribosyl)ation (i.e., PARylation) of poly(ADP-ribose) polymerase-1 (PARP-1), a multifunctional and abundant nuclear enzyme known to recognize DNA lesions and promote chromatin remodeling, DNA repair, and other nucleic acid transactions. The catalytic activity of PARP-1 is activated by DNA with a strand break, and this results in self-PARylation and PARylation of other chromatin proteins. Using cells obtained from Hmgn1(-/-) and Hmgn1(+/+) littermate mice, we find that in untreated cells, loss of HMGN1 protein reduces PARP-1 self-PARylation. A similar result was obtained after MMS treatment of these cells. In imaging experiments after low energy laser-induced DNA damage, less PARylation at lesion sites was observed in Hmgn1(-/-) than in Hmgn1(+/+) cells. The HMGN1 regulation of PARP-1 activity could be mediated by direct protein-protein interaction as HMGN1 and PARP-1 were found to interact in binding assays. Purified HMGN1 was able to stimulate self-PARylation of purified PARP-1, and in experiments with cell extracts, self-PARylation was greater in Hmgn1(+/+) than in Hmgn1(-/-) extract. The results suggest a regulatory role for HMGN1 in PARP-1 activation.
Collapse
Affiliation(s)
- Aya Masaoka
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
The HMGN family of chromatin-binding proteins: dynamic modulators of epigenetic processes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:652-6. [PMID: 22326857 DOI: 10.1016/j.bbagrm.2012.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 12/21/2022]
Abstract
The HMGN family of proteins binds to nucleosomes without any specificity for the underlying DNA sequence. They affect the global and local structure of chromatin, as well as the levels of histone modifications and thus play a role in epigenetic regulation of gene expression. This review focuses on the recent studies that provide new insights on the interactions between HMGN proteins, nucleosomes, and chromatin, and the effects of these interactions on epigenetic and transcriptional regulation. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
7
|
Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions. Mol Cell Biol 2010; 31:700-9. [PMID: 21173166 DOI: 10.1128/mcb.00740-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The interaction of architectural proteins such as the linker histone H1 and high-mobility-group (HMG) proteins with nucleosomes leads to changes in chromatin structure and histone modifications and alters the cellular transcription profile. The interaction of HMG proteins with chromatin is dynamic. However, it is not clear whether the proteins are constantly and randomly redistributed among all the nucleosomes or whether they preferentially associate with, and turn over at, specific regions in chromatin. To address this question, we examined the genome-wide distribution of the nucleosome binding protein HMGN1 and compared it to that of regulatory chromatin marks. We find that HMGN1 is not randomly distributed throughout the genome. Instead, the protein preferentially localizes to DNase I hypersensitive (HS) sites, promoters, functional enhancers, and transcription factor binding sites. Our results suggest that HMGN1 is part of the cellular machinery that modulates transcriptional fidelity by generating, maintaining, or preferentially interacting with specific sites in chromatin.
Collapse
|
8
|
Ong MS, Vasudevan D, Davey CA. Divalent metal- and high mobility group N protein-dependent nucleosome stability and conformation. J Nucleic Acids 2010; 2010:143890. [PMID: 21188164 PMCID: PMC3005839 DOI: 10.4061/2010/143890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/29/2010] [Indexed: 11/21/2022] Open
Abstract
High mobility group N proteins (HMGNs) bind specifically to the nucleosome core and act as chromatin unfolding and activating factors. Using an all-Xenopus system, we found that HMGN1 and HMGN2 binding to nucleosomes results in distinct ion-dependent conformation and stability. HMGN2 association with nucleosome core particle or nucleosomal array in the presence of divalent metal triggers a reversible transition to a species with much reduced electrophoretic mobility, consistent with a less compact state of the nucleosome. Residues outside of the nucleosome binding domain are required for the activity, which is also displayed by an HMGN1 truncation product lacking part of the regulatory domain. In addition, thermal denaturation assays show that the presence of 1 mM Mg2+> or Ca2+ gives a reduction in nucleosome core terminus stability, which is further substantially diminished by the binding of HMGN2 or truncated HMGN1. Our findings emphasize the importance of divalent metals in nucleosome dynamics and suggest that the differential biological activities of HMGNs in chromatin activation may involve different conformational alterations and modulation of nucleosome core stability.
Collapse
Affiliation(s)
- Michelle S Ong
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | |
Collapse
|
9
|
Zhu N, Hansen U. Transcriptional regulation by HMGN proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:74-9. [PMID: 20123070 DOI: 10.1016/j.bbagrm.2009.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/25/2009] [Accepted: 11/03/2009] [Indexed: 12/20/2022]
Abstract
High mobility group nucleosomal proteins (HMGNs) are small non-histone proteins associated with chromatin. HMGNs have the unique ability to bind to nucleosomes with higher affinity than to naked DNA [1]. They have been studied extensively for their ability to modulate transcription. Although initially viewed as general transcriptional activators on chromatin templates, it is now appreciated that they are instead highly specific modulators of gene expression. We review the mechanisms for targeting HMGNs to specific genes and for how they subsequently regulate transcription.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
10
|
Regulation of chromatin structure and function by HMGN proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:62-8. [PMID: 19948260 DOI: 10.1016/j.bbagrm.2009.11.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 01/23/2023]
Abstract
High mobility group nucleosome-binding (HMGN) proteins are architectural non-histone chromosomal proteins that bind to nucleosomes and modulate the structure and function of chromatin. The interaction of HMGN proteins with nucleosomes is dynamic and the proteins compete with the linker histone H1 chromatin-binding sites. HMGNs reduce the H1-mediated compaction of the chromatin fiber and facilitate the targeting of regulatory factors to chromatin. They modulate the cellular epigenetic profile, affect gene expression and impact the biological processes such as development and the cellular response to environmental and hormonal signals. Here we review the role of HMGN in chromatin structure, the link between HMGN proteins and histone modifications, and discuss the consequence of this link on nuclear processes and cellular phenotype.
Collapse
|
11
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|
12
|
Rattner BP, Yusufzai T, Kadonaga JT. HMGN proteins act in opposition to ATP-dependent chromatin remodeling factors to restrict nucleosome mobility. Mol Cell 2009; 34:620-6. [PMID: 19524541 DOI: 10.1016/j.molcel.2009.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 12/20/2022]
Abstract
The high-mobility group N (HMGN) proteins are abundant nonhistone chromosomal proteins that bind specifically to nucleosomes at two high-affinity sites. Here we report that purified recombinant human HMGN1 (HMG14) and HMGN2 (HMG17) potently repress ATP-dependent chromatin remodeling by four different molecular motor proteins. In contrast, mutant HMGN proteins with double Ser-to-Glu mutations in their nucleosome-binding domains are unable to inhibit chromatin remodeling. The HMGN-mediated repression of chromatin remodeling is reversible and dynamic. With the ACF chromatin remodeling factor, HMGN2 does not directly inhibit the ATPase activity but rather appears to reduce the affinity of the factor to chromatin. These findings suggest that HMGN proteins serve as a counterbalance to the action of the many ATP-dependent chromatin remodeling activities in the nucleus.
Collapse
Affiliation(s)
- Barbara P Rattner
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | |
Collapse
|
13
|
Abstract
alphaB-Crystallin (CRYAB) is a small heat-shock protein that is implicated in many cellular processes, such as transcription and differentiation, as well as pathologic process. It is expressed at high levels in vertebrate eye lens and at low levels in a variety of other cell types. We previously identified CRYAB as a target gene of the chromatin-remodeling SWI/SNF-like Brg or hBrm-associated factors (BAF) complexes. In this report, we identify a 30 bp DNA element required for mediating the activation of CRYAB by brahma-related gene 1 (BRG1). This BRG1-response element is located at the edge of a positioned nucleosome immediately upstream of the transcription initiation site. An AT-rich sequence within this region is bound by the high-mobility group AT-hook 1 (HMGA1) proteins in vitro and in vivo. We demonstrate that the HMGA1 target sequences and HMGA1 proteins are required for the maximal activation of the CRYAB promoter by BRG1. Our data indicate that HMGA1 nonhistone chromatin proteins, the SWI/SNF chromatin remodeling complexes, and sequence-specific transcription factors act together to regulate the expression of the CRYAB gene.
Collapse
Affiliation(s)
- Beverly Duncan
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Abstract
It is now widely recognized that the packaging of genomic DNA together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, repair and recombination. How chromatin structure modulates the expression and maintenance of knowledge encoded in eukaryotic genomes, and how these processes take place within the context of a highly complex and compacted genomic chromatin environment remains a major unresolved question in biology. Here we review recent advances in our understanding of how nucleosome and chromatin structure may have to adapt to promote these vital functions.
Collapse
Affiliation(s)
- Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA.
| |
Collapse
|