1
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
2
|
Hattan JI, Furubayashi M, Maoka T, Takemura M, Misawa N. Reconstruction of the Native Biosynthetic System of Carotenoids in E. coli─Biosynthesis of a Series of Carotenoids Specific to Paprika Fruit. ACS Synth Biol 2023; 12:1072-1080. [PMID: 36943278 DOI: 10.1021/acssynbio.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Capsanthin, capsorubin, cucurbitaxanthin A, and capsanthin 3,6-epoxide, a series of carotenoids specific to the red fruit of paprika (Capsicum annuum), were produced in pathway-engineered Escherichia coli cells. These cells functionally expressed multiple genes for eight carotenogenic enzymes, two of which, paprika capsanthin/capsorubin synthase (CaCCS) and zeaxanthin epoxidase (CaZEP), were designed to be located adjacently. The biosynthesis of these carotenoids, except for capsanthin, was the first successful attempt in E. coli. In a previous study, the levels of capsanthin synthesized were low despite the high expression of the CaCCS gene, which may have been due to the dual activity of CaCCS as a lycopene β-cyclase and CCS. An enhanced interaction between CaCCS and CaZEP that supplies antheraxanthin and violaxanthin, substrates for CaCCS, was considered to be crucial for an efficient reaction. To achieve this, we adapted S·tag and S-protein binding. The S·tag Thrombin Purification Kit (Novagen) is merchandized for in vitro affinity purification, and S·tag-fused proteins in the E. coli lysate are specifically trapped by S-proteins fixed on the agarose carrier. Furthermore, S-proteins have been reported to oligomerize via C-terminal swapping. In the present study, CaCCS and CaZEP were individually fused to the S·tag and designed to interact on oligomerized S-protein scaffolds in E. coli, which led to the biosynthesis of not only capsanthin and capsorubin but also cucurbitaxanthin A and capsanthin 3,6-epoxide. The latter reaction by CaCCS was assigned for the first time. This approach reinforces the scaffold's importance for multienzyme pathways when native biosynthetic systems are reconstructed in microorganisms.
Collapse
Affiliation(s)
- Jun-Ichiro Hattan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| | - Maiko Furubayashi
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Division of Food Function and Chemistry, 15 Shimogamo-morimoto, Sakyo-ku, Kyoto 606-0858, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| |
Collapse
|
3
|
Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int J Mol Sci 2022; 23:ijms231911192. [PMID: 36232496 PMCID: PMC9569824 DOI: 10.3390/ijms231911192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits’ N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not “amyloid-like” derivatives. This confirms that RNase A acts as an “auto-chaperone”, although it displays many amyloid-prone short segments, including the 16–22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers’ dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.
Collapse
|
4
|
Gotte G, Campagnari R, Loreto D, Bettin I, Calzetti F, Menegazzi M, Merlino A. The crystal structure of the domain-swapped dimer of onconase highlights some catalytic and antitumor activity features of the enzyme. Int J Biol Macromol 2021; 191:560-571. [PMID: 34563576 DOI: 10.1016/j.ijbiomac.2021.09.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.
Collapse
Affiliation(s)
- Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federica Calzetti
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
5
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
6
|
Montioli R, Campagnari R, Fasoli S, Fagagnini A, Caloiu A, Smania M, Menegazzi M, Gotte G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life (Basel) 2021; 11:life11020168. [PMID: 33669993 PMCID: PMC7926746 DOI: 10.3390/life11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andrea Fagagnini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andra Caloiu
- Department of Microbiology and Virology, Wexham Park Hospital, Wexham Road, Slough SL24HL, Berkshire, UK;
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| |
Collapse
|
7
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Onconase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Biochem J 2017; 474:3767-3781. [PMID: 28963346 DOI: 10.1042/bcj20170541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022]
Abstract
Onconase® (ONC), a protein extracted from the oocytes of the Rana pipiens frog, is a monomeric member of the secretory 'pancreatic-type' RNase superfamily. Interestingly, ONC is the only monomeric ribonuclease endowed with a high cytotoxic activity. In contrast with other monomeric RNases, ONC displays a high cytotoxic activity. In this work, we found that ONC spontaneously forms dimeric traces and that the dimer amount increases about four times after lyophilization from acetic acid solutions. Differently from RNase A (bovine pancreatic ribonuclease) and the bovine seminal ribonuclease, which produce N- and C-terminal domain-swapped conformers, ONC forms only one dimer, here named ONC-D. Cross-linking with divinylsulfone reveals that this dimer forms through the three-dimensional domain swapping of its N-termini, being the C-terminus blocked by a disulfide bond. Also, a homology model is proposed for ONC-D, starting from the well-known structure of RNase A N-swapped dimer and taking into account the results obtained from spectroscopic and stability analyses. Finally, we show that ONC is more cytotoxic and exerts a higher apoptotic effect in its dimeric rather than in its monomeric form, either when administered alone or when accompanied by the chemotherapeutic drug gemcitabine. These results suggest new promising implications in cancer treatment.
Collapse
|
9
|
Yamanaka M, Hoshizumi M, Nagao S, Nakayama R, Shibata N, Higuchi Y, Hirota S. Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c' oligomers using domain-swapped dimers. Protein Sci 2017; 26:464-474. [PMID: 27883268 PMCID: PMC5326568 DOI: 10.1002/pro.3090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO. Herein, domain-swapped dimeric AVCP was constructed and utilized to form a tetramer and high-order oligomers. The X-ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain-swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain-swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit-subunit interactions at the interfaces of the domain-swapped dimer and monomer subunits in the tetramer were also similar to the subunit-subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain-swapped dimer and two monomers upon CO binding. Without monomers, the domain-swapped dimers formed tetramers, hexamers, and higher-order oligomers in the absence of CO, whereas the oligomers dissociated to domain-swapped dimers in the presence of CO, demonstrating that the domain-swapped dimer maintains the CO-induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer-monomer transition protein.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Makoto Hoshizumi
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Satoshi Nagao
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Ryoko Nakayama
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Naoki Shibata
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Yoshiki Higuchi
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Shun Hirota
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| |
Collapse
|
10
|
Deshpande MS, Parui PP, Kamikubo H, Yamanaka M, Nagao S, Komori H, Kataoka M, Higuchi Y, Hirota S. Formation of Domain-Swapped Oligomer of Cytochrome c from Its Molten Globule State Oligomer. Biochemistry 2014; 53:4696-703. [DOI: 10.1021/bi500497s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Megha Subhash Deshpande
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Partha Pratim Parui
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Hironari Kamikubo
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty
of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Mikio Kataoka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshiki Higuchi
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
11
|
Spadaccini R, Ercole C, Graziano G, Wechselberger R, Boelens R, Picone D. Mechanism of 3D domain swapping in bovine seminal ribonuclease. FEBS J 2014; 281:842-50. [PMID: 24616921 PMCID: PMC7164040 DOI: 10.1111/febs.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
3D domain swapping (3D‐DS) is a complex protein aggregation process for which no unique mechanism exists. We report an analysis of 3D‐DS in bovine seminal ribonuclease, a homodimeric protein whose subunits are linked by two disulfide bridges, based on NMR and biochemical studies. The presence of the covalent bonds between the subunits stabilizes the unswapped dimer, and allows distinct evaluation of the structural and dynamic effects of the swapping with respect to the dimerization process. In comparison with the monomeric subunit, which, in solution has a compact structure without any propensity for local unfolding, both swapped and unswapped dimers show increased flexibility. NMR analysis, together with urea denaturation and hydrogen–deuterium exchange data, indicates that the two dimers have increased conformational fluctuations. Furthermore, we found that the rate‐limiting step of both the swapping and unswapping pathways is the detachment of the N‐terminal helices from the monomers. These results suggest a new general mechanism in which a dimeric intermediate could facilitate 3D‐DS in globular proteins. Structured digital abstract http://www.uniprot.org/uniprot/P00669 and http://www.uniprot.org/uniprot/P00669 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0077 (http://www.ebi.ac.uk/intact/interaction/EBI-8870415)
Collapse
|
12
|
Parui PP, Deshpande MS, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S. Formation of Oligomeric Cytochrome c during Folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry 2013; 52:8732-44. [DOI: 10.1021/bi400986g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Partha Pratim Parui
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Megha Subhash Deshpande
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Higuchi
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mikio Kataoka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
13
|
Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: new scaffolds for potential antitumor drugs. FEBS Lett 2013; 587:3601-8. [PMID: 24113657 DOI: 10.1016/j.febslet.2013.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
Abstract
Protein aggregation via 3D domain swapping is a complex mechanism which can lead to the acquisition of new biological, benign or also malignant functions, such as amyloid deposits. In this context, RNase A represents a fascinating model system, since by dislocating different polypeptide chain regions, it forms many diverse oligomers. No other protein displays such a large number of different quaternary structures. Here we report a comparative structural analysis between natural and artificial RNase A dimers and bovine seminal ribonuclease, a natively dimeric RNase with antitumor activity, with the aim to design RNase A derivatives with improved pharmacological potential.
Collapse
|
14
|
Double domain swapping in bovine seminal RNase: formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities. PLoS One 2012; 7:e46804. [PMID: 23071641 PMCID: PMC3469567 DOI: 10.1371/journal.pone.0046804] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022] Open
Abstract
Bovine seminal (BS) RNase, the unique natively dimeric member of the RNase super-family, represents a special case not only for its additional biological actions but also for the singular features of 3D domain swapping. The native enzyme is indeed a mixture of two isoforms: M = M, a dimer held together by two inter-subunit disulfide bonds, and MxM, 70% of the total, which, besides the two mentioned disulfides, is additionally stabilized by the swapping of its N-termini. When lyophilized from 40% acetic acid, BS-RNase oligomerizes as the super-family proto-type RNase A does. In this paper, we induced BS-RNase self-association and analyzed the multimers by size-exclusion chromatography, cross-linking, electrophoresis, mutagenesis, dynamic light scattering, molecular modelling. Finally, we evaluated their enzymatic and cytotoxic activities. Several BS-RNase domain-swapped oligomers were detected, including two tetramers, one exchanging only the N-termini, the other being either N- or C-swapped. The C-swapping event, confirmed by results on a BS-K113N mutant, has been firstly seen in BS-RNase here, and probably stabilizes also multimers larger than tetramers. Interestingly, all BS-RNase oligomers are more enzymatically active than the native dimer and, above all, they display a cytotoxic activity that definitely increases with the molecular weight of the multimers. This latter feature, to date unknown for BS-RNase, suggests again that the self-association of RNases strongly modulates their biological and potentially therapeutic properties.
Collapse
|
15
|
Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. ACTA ACUST UNITED AC 2012; 152:521-9. [DOI: 10.1093/jb/mvs098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Liu L, Byeon IJL, Bahar I, Gronenborn AM. Domain swapping proceeds via complete unfolding: a 19F- and 1H-NMR study of the Cyanovirin-N protein. J Am Chem Soc 2012; 134:4229-35. [PMID: 22296296 DOI: 10.1021/ja210118w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Domain swapping creates protein oligomers by exchange of structural units between identical monomers. At present, no unifying molecular mechanism of domain swapping has emerged. Here we used the protein Cyanovirin-N (CV-N) and (19)F-NMR to investigate the process of domain swapping. CV-N is an HIV inactivating protein that can exist as a monomer or a domain-swapped dimer. We measured thermodynamic and kinetic parameters of the conversion process and determined the size of the energy barrier between the two species. The barrier is very large and of similar magnitude to that for equilibrium unfolding of the protein. Therefore, for CV-N, overall unfolding of the polypeptide is required for domain swapping.
Collapse
Affiliation(s)
- Lin Liu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
17
|
Spadaccini R, Ercole C, Gentile MA, Sanfelice D, Boelens R, Wechselberger R, Batta G, Bernini A, Niccolai N, Picone D. NMR studies on structure and dynamics of the monomeric derivative of BS-RNase: new insights for 3D domain swapping. PLoS One 2012; 7:e29076. [PMID: 22253705 PMCID: PMC3257227 DOI: 10.1371/journal.pone.0029076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional domain swapping is a common phenomenon in pancreatic-like ribonucleases. In the aggregated state, these proteins acquire new biological functions, including selective cytotoxicity against tumour cells. RNase A is able to dislocate both N- and C-termini, but usually this process requires denaturing conditions. In contrast, bovine seminal ribonuclease (BS-RNase), which is a homo-dimeric protein sharing 80% of sequence identity with RNase A, occurs natively as a mixture of swapped and unswapped isoforms. The presence of two disulfides bridging the subunits, indeed, ensures a dimeric structure also to the unswapped molecule. In vitro, the two BS-RNase isoforms interconvert under physiological conditions. Since the tendency to swap is often related to the instability of the monomeric proteins, in these paper we have analysed in detail the stability in solution of the monomeric derivative of BS-RNase (mBS) by a combination of NMR studies and Molecular Dynamics Simulations. The refinement of NMR structure and relaxation data indicate a close similarity with RNase A, without any evidence of aggregation or partial opening. The high compactness of mBS structure is confirmed also by H/D exchange, urea denaturation, and TEMPOL mapping of the protein surface. The present extensive structural and dynamic investigation of (monomeric) mBS did not show any experimental evidence that could explain the known differences in swapping between BS-RNase and RNase A. Hence, we conclude that the swapping in BS-RNase must be influenced by the distinct features of the dimers, suggesting a prominent role for the interchain disulfide bridges.
Collapse
Affiliation(s)
- Roberta Spadaccini
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy
| | - Carmine Ercole
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Maria A. Gentile
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Domenico Sanfelice
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Rolf Boelens
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Rainer Wechselberger
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Gyula Batta
- Institute of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Andrea Bernini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | - Neri Niccolai
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | - Delia Picone
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- * E-mail:
| |
Collapse
|
18
|
Vottariello F, Giacomelli E, Frasson R, Pozzi N, De Filippis V, Gotte G. RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Biochimie 2011; 93:1846-57. [PMID: 21771635 DOI: 10.1016/j.biochi.2011.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/04/2011] [Indexed: 11/27/2022]
Abstract
Bovine pancreatic ribonuclease A forms 3D domain-swapped oligomers by lyophilization from 40% acetic acid solutions or if subjected to various thermally-induced denaturation procedures. Considering that the intrinsic swapping propensity of bovine seminal RNase, the only member of the pancreatic-type RNase super-family that is dimeric in nature, is decreased from 70 to 30% if Arg80 is substituted by Ser (the corresponding residue in native RNase A), we introduced the opposite mutation in position 80 of the pancreatic enzyme. Our aim was to detect if the RNase A tendency to aggregate through domain swapping could increase. Aggregation of the S80R-RNase A mutant was induced either through the 'classic' acetic acid lyophilization, or through a thermally-induced method. The results indicate that the S80R mutant aggregates to a higher extent than the native protein, and that the increase occurs especially through N-terminal swapping. Additional investigations on the dimeric and multimeric species formed indicate that the S80R mutation increases their stability against regression to monomer, and does not significantly change their structural and functional features.
Collapse
Affiliation(s)
- Francesca Vottariello
- Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Ercole C, López-Alonso JP, Font J, Ribó M, Vilanova M, Picone D, Laurents DV. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers. Arch Biochem Biophys 2011; 506:123-9. [DOI: 10.1016/j.abb.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
|
20
|
López-Alonso JP, Bruix M, Font J, Ribó M, Vilanova M, Jiménez MA, Santoro J, González C, Laurents DV. NMR Spectroscopy Reveals that RNase A is Chiefly Denatured in 40% Acetic Acid: Implications for Oligomer Formation by 3D Domain Swapping. J Am Chem Soc 2010; 132:1621-30. [DOI: 10.1021/ja9081638] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Pedro López-Alonso
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Marta Bruix
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Josep Font
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Marc Ribó
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Maria Vilanova
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - María Angeles Jiménez
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Jorge Santoro
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Carlos González
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| |
Collapse
|
21
|
López-Alonso JP, Gotte G, Laurents DV. Kinetic analysis provides insight into the mechanism of ribonuclease A oligomer formation. Arch Biochem Biophys 2009; 489:41-7. [PMID: 19638275 DOI: 10.1016/j.abb.2009.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 12/01/2022]
Abstract
Ribonuclease A forms a series of oligomers by 3D domain swapping, a possible mechanism for amyloid formation. Using experimental data, the Ribonuclease oligomerization process is analyzed to obtain estimates of individual equilibrium and microscopic rate constants. The results suggest several novel insights into Ribonuclease oligomer formation: (i) two dimers may combine to yield tetramers, (ii) the lower abundance of the cyclic trimer could be ascribed to the cis conformation of its Asn113-Pro114 peptide bonds, (iii) oligomers become the dominant species at very high protein concentrations or upon applying a modest tenfold increase in the equilibrium constants (iv) the rate constants for trimer and tetramer formation are faster than those of dimer formation and (v) glycosylation affects the relative populations of different trimer and tetramer species. By mass spectrometry, oligomers as large as tetradecamers are detected. These results are consistent with the proposal that 3D domain swapping is a mechanism for amyloid formation.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Instituto de Química Física "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | | | | |
Collapse
|
22
|
López-Alonso JP, Diez-García F, Font J, Ribó M, Vilanova M, Scholtz JM, González C, Vottariello F, Gotte G, Libonati M, Laurents DV. Carbodiimide EDC Induces Cross-Links That Stabilize RNase A C-Dimer against Dissociation: EDC Adducts Can Affect Protein Net Charge, Conformation, and Activity. Bioconjug Chem 2009; 20:1459-73. [DOI: 10.1021/bc9001486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jorge P. López-Alonso
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Fernando Diez-García
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Josep Font
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Marc Ribó
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Maria Vilanova
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - J. Martin Scholtz
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Carlos González
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Francesca Vottariello
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Giovanni Gotte
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Massimo Libonati
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| |
Collapse
|
23
|
Gotte G, Libonati M. Oligomerization of ribonuclease A under reducing conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:638-50. [PMID: 18261475 DOI: 10.1016/j.bbapap.2007.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/14/2007] [Accepted: 12/24/2007] [Indexed: 11/30/2022]
Abstract
By lyophilization from 40% acetic acid solutions, bovine ribonuclease A forms well characterized, three-dimensional domain-swapped oligomers: dimers, trimers, tetramers, and higher order multimers. Each oligomeric species consists of at least two conformers. Identical oligomers also form by thermally-inducing the oligomerization of highly concentrated RNase A dissolved in fluids endowed with various denaturing power. Now, our question is: which might the influence of a reducing agent be on RNase A oligomerization, i.e., of conditions that decrease the stability of the protein and increase the mobility of its swapping domains? To address this question, we carried out experiments of RNase A oligomerization in the presence of increasing concentrations of dithiothreitol (DTT) under the two experimental conditions mentioned above. Results indicate that RNase A oligomers similar to those previously known form anyhow, but with a change of their relative proportions. The amounts of dimers and trimers decrease by increasing the concentration of DTT, while the yields of two tetramers remarkably increase. Moreover, in the presence of DTT RNase A forms labile and probably unstructured aggregates that can possibly drive the protein towards precipitation when the reducing agent's concentration increases. Taken together, these results point out once again (i) the important role of the 3D domain swapping mechanism in protein oligomerization, and (ii) the importance of the native structure of RNase A (and of proteins in general) in preventing an uncontrolled aggregation and precipitation in a reducing and highly crowded environment like that existing in a living cell.
Collapse
Affiliation(s)
- Giovanni Gotte
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | | |
Collapse
|
24
|
Pulido D, López-Alonso JP, Marchán V, González C, Grandas A, Laurents DV. Preparation of ribonuclease S domain-swapped dimers conjugated with DNA and PNA: modulating the activity of ribonucleases. Bioconjug Chem 2007; 19:263-70. [PMID: 18163547 DOI: 10.1021/bc700374q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Obtaining highly specific and active ribonuclease activities is an important goal with numerous medical and biochemical applications. As a step toward more active and specific ribonucleases, we describe the preparation and the enzymatic and structural properties of RNase S monomers and dimers conjugated to DNA and PNA molecules. Poly(dT)n (2'-oligodeoxyribonucleotides, n = 8, 15) and t8 peptide nucleic acid (PNA) chains have been conjugated to the S-peptide of ribonuclease S. Monomers and dimers of the conjugated enzyme have been obtained and characterized by 1H NMR spectroscopy, showing that DNA or PNA conjugation does not alter the native structure of ribonuclease S. The oligonucleotide-conjugated RNase S monomer and dimer show significant activity against single-stranded RNA and very low/negligible hydrolysis of double-stranded poly(A).poly(U). In contrast, the t8-conjugated RNase S monomer and dimer show substantial activity against both ssRNA and dsRNA. These results highlight the importance of positive charges near but not in the active site in enhancing activity against dsRNA and reveal the promise of PNA-RNase conjugates for modulating RNase activity.
Collapse
Affiliation(s)
- Daniel Pulido
- Department de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Pancreatic ribonuclease A (EC 3.1.27.5, RNase) is, perhaps, the best-studied enzyme of the 20th century. It was isolated by René Dubos, crystallized by Moses Kunitz, sequenced by Stanford Moore and William Stein, and synthesized in the laboratory of Bruce Merrifield, all at the Rockefeller Institute/University. It has proven to be an excellent model system for many different types of experiments, both as an enzyme and as a well-characterized protein for biophysical studies. Of major significance was the demonstration by Chris Anfinsen at NIH that the primary sequence of RNase encoded the three-dimensional structure of the enzyme. Many other prominent protein chemists/enzymologists have utilized RNase as a dominant theme in their research. In this review, the history of RNase and its offspring, RNase S (S-protein/S-peptide), will be considered, especially the work in the Merrifield group, as a preface to preliminary data and proposed experiments addressing topics of current interest. These include entropy-enthalpy compensation, entropy of ligand binding, the impact of protein modification on thermal stability, and the role of protein dynamics in enzyme action. In continuing to use RNase as a prototypical enzyme, we stand on the shoulders of the giants of protein chemistry to survey the future.
Collapse
Affiliation(s)
- Garland R Marshall
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
26
|
Font J, Torrent J, Ribó M, Laurents DV, Balny C, Vilanova M, Lange R. Pressure-jump-induced kinetics reveals a hydration dependent folding/unfolding mechanism of ribonuclease A. Biophys J 2006; 91:2264-74. [PMID: 16798802 PMCID: PMC1557576 DOI: 10.1529/biophysj.106.082552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and 50 degrees C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50 degrees C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113-Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect.
Collapse
Affiliation(s)
- J Font
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, 17071 Girona, Spain
| | | | | | | | | | | | | |
Collapse
|