1
|
Bonaventura R, Costa C, Deidda I, Zito F, Russo R. Gene Expression Analysis of the Stress Response to Lithium, Nickel, and Zinc in Paracentrotus lividus Embryos. TOXICS 2022; 10:toxics10060325. [PMID: 35736933 PMCID: PMC9231221 DOI: 10.3390/toxics10060325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Many anthropogenic pollutants such as metals are discharged into the marine environment through modern sources. Among these, lithium (Li), nickel (Ni), and zinc (Zn) can interfere with biological processes in many organisms when their concentration rises. These metals are toxic to sea urchin embryos, affecting their development. Indeed, animal/vegetal and dorso/ventral embryonic axes are differently perturbed: Li is a vegetalizing agent, Ni can disrupt dorso-ventral axis, Zn can be animalizing. To address the molecular response adopted by embryos to cope with these metals or involved in the gene networks regulating embryogenesis, and to detect new biomarkers for evaluating hazards in polluted environments in a well-known in vivo model, we applied a high-throughput screening approach to sea urchin embryos. After fertilization, Paracentrotus lividus embryos were exposed to Li, Ni, and Zn for 24/48 h. At both endpoints, RNAs were analyzed by NanoString nCounter technology. By in silico analyses, we selected a panel of 127 transcripts encoding for regulatory and structural proteins, ranked in categories: Apoptosis, Defense, Immune, Nervous, Development, and Biomineralization. The data analysis highlighted the dysregulation of many genes in a metal-dependent manner. A functional annotation analysis was performed by the KEEG Orthology database. This study provides a platform for research on metals biomarkers in sea urchins.
Collapse
|
2
|
Xiao B, Guo Q, Zhai Y, Gu Z. Transcriptomic Insights into the Diversity and Evolution of Myxozoa (Cnidaria, Endocnidozoa) Toxin-like Proteins. Mar Drugs 2022; 20:291. [PMID: 35621942 PMCID: PMC9144971 DOI: 10.3390/md20050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Myxozoa is a speciose group of endoparasitic cnidarians that can cause severe ecological and economic effects. Their cnidarian affinity is affirmed by genetic relatedness and the presence of nematocysts, historically called "polar capsules". Previous studies have revealed the presence of toxin-like proteins in myxozoans; however, the diversity and evolution of venom in Myxozoa are not fully understood. Here, we performed a comparative analysis using the newly sequenced transcriptomes of five Myxobolidae species as well as some public datasets. Toxin mining revealed that myxozoans have lost most of their toxin families, while most species retained Kunitz, M12B, and CRISP, which may play a role in endoparasitism. The venom composition of Endocnidozoa (Myxozoa + Polypodium) differs from that of free-living cnidarians and may be influenced by ecological and environmental factors. Phylogenetic analyses showed that toxin families of myxozoans and free-living cnidarians were clustered into different clades. Selection analyses showed that purifying selection was the dominant evolutionary pressure in toxins, while they were still influenced by episodic adaptive selection. This suggests that the potency or specificity of a particular toxin or species might increase. Overall, our findings provide a more comprehensive framework for understanding the diversity and evolution of Myxozoa venoms.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
3
|
Bonaventura R, Zito F, Russo R, Costa C. A preliminary gene expression analysis on Paracentrotus lividus embryos exposed to UVB, Cadmium and their combination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105770. [PMID: 33581547 DOI: 10.1016/j.aquatox.2021.105770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Paracentrotus lividus is a Mediterranean and Eastern Atlantic sea urchin species, very sensitive to chemical and physical environmental changes and widely used in eco-toxicological studies. Here, we applied a high throughput screening approach on P. lividus embryos exposed to UVB radiation (UV), Cadmium Chloride (Cd) and their combination (Cd/UV), to deeply characterize the molecular responses adopted by embryos to cope with these stressors. in vitro eco-toxicological assays were performed by exposing embryos to Cd (10-4 M) soon after fertilization, to UV (200 and 400J/m2) at early stage of development, while in co-exposure experiments, Cd-exposed embryos were irradiated with UV at 200 J/m2. By NanoString nCounter technology, custom-made probes were developed and hybridized on total RNA extracted from exposed embryos at 51h after fertilization. By in silico analyses, we selected and retrieved at the NCBI nucleotide database a panel of P. lividus transcripts encoding for many regulatory and structural proteins that we ranked in categories, i.e., Apoptosis, Biomineralization, Defense, Development, Immunity, Signaling and Transcription Factors. The analysis of 127 transcripts highlighted the dysregulation of many genes, some specifically activated to cope with stress agents, others involved in the complex molecular network of genes that regulate embryo development. We revealed the downregulation of Biomineralization and Development genes and the upregulation of Defensive genes in Cd and Cd/UV embryos. Our approach, using sea urchin embryo as an in vivomodel, contributes to advance our knowledge about cellular responses to UV, Cd and their combination.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
4
|
Kwan YH, Zhang D, Mestre NC, Wong WC, Wang X, Lu B, Wang C, Qian PY, Sun J. Comparative Proteomics on Deep-Sea Amphipods after in Situ Copper Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13981-13991. [PMID: 31638389 DOI: 10.1021/acs.est.9b04503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.
Collapse
Affiliation(s)
- Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dongsheng Zhang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Nélia C Mestre
- CIMA - Centro de Investigação Marinha e Ambiental , Universidade do Algarve , Campus de Gambelas, 8005-139 Faro , Portugal
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Xiaogu Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Bo Lu
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Chunsheng Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| |
Collapse
|
5
|
Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genomics 2019; 20:581. [PMID: 31299887 PMCID: PMC6626399 DOI: 10.1186/s12864-019-5917-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.
Collapse
|
6
|
Wang L, Ye Y, Lykourinou V, Yang J, Angerhofer A, Zhao Y, Ming L. Catalytic Cooperativity, Nuclearity, and O
2
/H
2
O
2
Specificity of Multi‐Copper(II) Complexes of Cyclen‐Tethered Cyclotriphosphazene Ligands in Aqueous Media. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Le Wang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science 201620 Shanghai People's Republic of China
- College of Chemistry and Molecular Engineering Zhengzhou University 450001 Zhengzhou People's Republic of China
- Department of Chemistry University of South Florida 33620‐5250 Tampa FL USA
| | - Yong Ye
- College of Chemistry and Molecular Engineering Zhengzhou University 450001 Zhengzhou People's Republic of China
| | | | - Junliang Yang
- College of Chemistry and Molecular Engineering Zhengzhou University 450001 Zhengzhou People's Republic of China
| | | | - Yufen Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University 450001 Zhengzhou People's Republic of China
- Department of Chemical Biology Xiamen University 361005 Xiamen People's Republic of China
| | - Li‐June Ming
- Department of Chemistry University of South Florida 33620‐5250 Tampa FL USA
| |
Collapse
|
7
|
Roedersheimer M. Solving the Measurement Problem and then Steppin' Out over the Line Riding the Rarest Italian: Crossing the Streams to Retrieve Stable Bioactivity in Majorana Bound States of Dialy zed Human Platelet Lysates. Open Neurol J 2015; 9:32-44. [PMID: 26191092 PMCID: PMC4503829 DOI: 10.2174/1874205x01509010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
Exhaustive dialysis (ED) of lysed human platelets against dilute HCl yields stable angiogenic activity. Dialysis against a constrained external volume, with subsequent relaxation of the separation upon opening the dialysis bag, produces material able to maintain phenotypes and viability of human cells in culture better than ED material. Significant graded changes in MTT viability measurement tracked with external volume. The presence of elements smaller than the MW cutoff, capable of setting up cycling currents initiated by oriented flow of HCl across the membrane, suggests that maturation of bioactivity occurred through establishment of a novel type of geometric phase. These information-rich bound states fit recent descriptions of topological order and Majorana fermions, suggesting relevance in testing Penrose and Hameroff's theory of Orchestrated Objective Reduction, under conditions more general, and on finer scales, than those dependent on tubulin protein. The Berry curvature appears to be a good tool for building a general field theory of physiologic stress dependent on the quantum Hall effect. A new form of geometric phase, and an associated "geometric" quantum Hall effect underlying memory retrieval, dependent on the rate of path traversal and reduction from more than two initial field influences is described.
Collapse
|
8
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
9
|
Wang L, Ye Y, Lykourinou V, Angerhofer A, Ming LJ, Zhao Y. Metal Complexes of a Multidentate Cyclophosphazene with Imidazole-Containing Side Chains for Hydrolyses of Phosphoesters - Bimolecular vs. Intramolecular Dinuclear Pathway. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201000668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Xiong X, Chen L, Li Y, Xie L, Zhang R. Pf-ALMP, a novel astacin-like metalloproteinase with cysteine arrays, is abundant in hemocytes of pearl oyster Pinctada fucata. ACTA ACUST UNITED AC 2006; 1759:526-34. [PMID: 17207871 DOI: 10.1016/j.bbaexp.2006.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
The astacin family metalloproteinase is a family of zinc-dependent endopeptidases which play crucial roles in embryonic development, bone growth and morphogenesis. A cDNA clone encoding a putative astacin-like metalloproteinase (pf-ALMP) was isolated from hemocytes of pearl oyster, Pinctada fucata. The novel metalloproteinase presents a molecular organization close to the astacins, but has a novel C-terminal domain with cysteine arrays. RT-PCR analysis revealed that pf-ALMP was expressed dramatically high in hemocytes, which was affected by lipopolysaccharides (LPS) challenge. High expression of pf-ALMP was also found in gill, gonad and digestion gland, and in situ hybridization demonstrated that pf-ALMP was expressed in the epithelia cells of these tissues. Substrate analysis studies indicated that the recombinant pf-ALMP catalytic domain could digest gelatin. Interestingly, the pf-ALMP also could be involved in cell proliferation processes and the cysteine arrays were necessary for the proliferative activity. Taken together, these studies also help to further understand the functions of astacins which may be related to the processes of molluscan inflammatory response, embryo development, proliferation and shell formation.
Collapse
Affiliation(s)
- Xunhao Xiong
- Institute of Marine Biotechnology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|