1
|
Womack E, Antone M, Eichenbaum Z. Unraveling the full impact of SPD_0739: a key effector in S. pneumoniae iron homeostasis. Microbiol Spectr 2024; 12:e0133124. [PMID: 39470285 PMCID: PMC11620282 DOI: 10.1128/spectrum.01331-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Streptococcus pneumoniae is a common member of the nasopharynx commensal microflora and the leading etiological agent of bacterial pneumonia in young children and aging adults. SPD_0739, a highly expressed lipoprotein, is the predicted substrate-binding component of an ABC transporter linked to the uptake of nucleosides and heme by independent studies (named PnrA or Spbhp-37, respectively). Here, we demonstrate that SPD_0739 binds heme in vitro and contributes to the bacterial binding to hemoglobin. A ∆spd_0739 strain exhibited growth attenuation that was relieved by the inactivation of the piuBCDA transporter. Knocking out spd_0739 in the wild type, or the ΔpiuBCDA strain resulted in heme accumulation, higher sensitivity to heme toxicity, and a small growth reduction compared to medium supplemented with a nucleoside mixture. In addition, spd_0739 loss results in higher iron- and heme-related gene expression and lower H2O2 production. Altogether, the data are consistent with a role in nucleoside import and show that SPD_0739 does not import heme. Instead, it indirectly influences iron and heme metabolism, linking nucleosides and iron status in S. pneumoniae. IMPORTANCE S. pneumoniae obtains growth essential iron from hemoglobin and other host hemoproteins. Still, the bacterial mechanisms involved are only partially understood, and there are inconsistent reports regarding the function of several transporters implicated in iron uptake. In this study, we clarified the role of PnrA/Spbhp-37, a ligand-binding protein previously linked to nucleoside or heme by different studies. We present data supporting a role in nucleoside scavenging rather than heme import and reveal that PnrA/Spbhp-37 modulates iron and heme uptake, likely by influencing the nucleoside cellular pool. Hence, this work provides a new understanding of a process critical to the pathophysiology of a significant human pathogen. Moreover, PnrA/Spbhp-37 is an abundant and immunogenic surface protein that is highly conserved. Hence, this study also clarifies the function of a promising vaccine target.
Collapse
Affiliation(s)
- Edroyal Womack
- Department of Biology,
Georgia State University,
Atlanta, Georgia, USA
| | - Melina Antone
- Department of Biology,
Georgia State University,
Atlanta, Georgia, USA
| | - Zehava Eichenbaum
- Department of Biology,
Georgia State University,
Atlanta, Georgia, USA
| |
Collapse
|
2
|
Fu K, Cheung AHK, Wong CC, Liu W, Zhou Y, Wang F, Huang P, Yuan K, Coker OO, Pan Y, Chen D, Lam NM, Gao M, Zhang X, Huang H, To KF, Sung JJY, Yu J. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell 2024; 187:882-896.e17. [PMID: 38295787 DOI: 10.1016/j.cell.2024.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.
Collapse
Affiliation(s)
- Kaili Fu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feixue Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pingmei Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Yuan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nga Man Lam
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Brautigam CA, Deka RK, Tso SC, Liu WZ, Norgard MV. Biophysical and biochemical studies support TP0094 as a phosphotransacetylase in an acetogenic energy-conservation pathway in Treponema pallidum. PLoS One 2023; 18:e0283952. [PMID: 37200262 PMCID: PMC10194888 DOI: 10.1371/journal.pone.0283952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023] Open
Abstract
The mechanisms of energy generation and carbon-source utilization in the syphilis spirochete Treponema pallidum have remained enigmatic despite complete genomic sequence information. Whereas the bacterium harbors enzymes for glycolysis, the apparatus for more efficient use of glucose catabolites, namely the citric-acid cycle, is apparently not present. Yet, the organism's energy needs likely exceed the modest output from glycolysis alone. Recently, building on our structure-function studies of T. pallidum lipoproteins, we proposed a "flavin-centric" metabolic lifestyle for the organism that partially resolves this conundrum. As a part of the hypothesis, we have proposed that T. pallidum contains an acetogenic energy-conservation pathway that catabolizes D-lactate, yielding acetate, reducing equivalents for the generation and maintenance of chemiosmotic potential, and ATP. We already have confirmed the D-lactate dehydrogenase activity in T. pallidum necessary for this pathway to operate. In the current study, we focused on another enzyme ostensibly involved in treponemal acetogenesis, phosphotransacetylase (Pta). This enzyme is putatively identified as TP0094 and, in this study, we determined a high-resolution (1.95 Å) X-ray crystal structure of the protein, finding that its fold comports with other known Pta enzymes. Further studies on its solution behavior and enzyme activity confirmed that it has the properties of a Pta. These results are consistent with the proposed acetogenesis pathway in T. pallidum, and we propose that the protein be referred to henceforth as TpPta.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ranjit K. Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shih-Chia Tso
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei Z. Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael V. Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Deciphering Cellodextrin and Glucose Uptake in Clostridium thermocellum. mBio 2022; 13:e0147622. [PMID: 36069444 PMCID: PMC9601137 DOI: 10.1128/mbio.01476-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugar uptake is of great significance in industrially relevant microorganisms. Clostridium thermocellum has extensive potential in lignocellulose biorefineries as an environmentally prominent, thermophilic, cellulolytic bacterium. The bacterium employs five putative ATP-binding cassette transporters which purportedly take up cellulose hydrolysates. Here, we first applied combined genetic manipulations and biophysical titration experiments to decipher the key glucose and cellodextrin transporters. In vivo gene inactivation of each transporter and in vitro calorimetric and nuclear magnetic resonance (NMR) titration of each putative sugar-binding protein with various saccharides supported the conclusion that only transporters A and B play the roles of glucose and cellodextrin transport, respectively. To gain insight into the structural mechanism of the transporter specificities, 11 crystal structures, both alone and in complex with appropriate saccharides, were solved for all 5 putative sugar-binding proteins, thus providing detailed specific interactions between the proteins and the corresponding saccharides. Considering the importance of transporter B as the major cellodextrin transporter, we further identified its cryptic, hitherto unknown ATPase-encoding gene as clo1313_2554, which is located outside the transporter B gene cluster. The crystal structure of the ATPase was solved, showing that it represents a typical nucleotide-binding domain of the ATP-binding cassette (ABC) transporter. Moreover, we determined that the inducing effect of cellobiose (G2) and cellulose on cellulosome production could be eliminated by deletion of transporter B genes, suggesting the coupling of sugar transport and regulation of cellulosome components. This study provides key basic information on the sugar uptake mechanism of C. thermocellum and will promote rational engineering of the bacterium for industrial application.
Collapse
|
5
|
Gene Silencing through CRISPR Interference in Mycoplasmas. Microorganisms 2022; 10:microorganisms10061159. [PMID: 35744677 PMCID: PMC9229473 DOI: 10.3390/microorganisms10061159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoplasmas are pathogenic, genome-reduced bacteria. The development of such fields of science as system and synthetic biology is closely associated with them. Despite intensive research of different representatives of this genus, genetic manipulations remain challenging in mycoplasmas. Here we demonstrate a single-plasmid transposon-based CRISPRi system for the repression of gene expression in mycoplasmas. We show that selected expression determinants provide a level of dCas9 that does not lead to a significant slow-down of mycoplasma growth. For the first time we describe the proteomic response of genome-reduced bacteria to the expression of exogenous dcas9. The functionality of the resulting vector is confirmed by targeting the three genes coding transcription factors-fur, essential spxA, whiA, and histone-like protein hup1 in Mycoplasma gallisepticum. As a result, the expression level of each gene was decreased tenfold and influenced the mRNA level of predicted targets of transcription factors. To illustrate the versatility of this vector, we performed a knockdown of metabolic genes in a representative member of another cluster of the Mycoplasma genus-Mycoplasma hominis. The developed CRISPRi system is a powerful tool to discover the functioning of genes that are essential, decipher regulatory networks and that can help to identify novel drug targets to control Mycoplasma infections.
Collapse
|
6
|
De Lay BD, Cameron TA, De Lay NR, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLoS Pathog 2021; 17:e1009949. [PMID: 34570834 PMCID: PMC8525777 DOI: 10.1371/journal.ppat.1009949] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Treponema pallidum ssp. pallidum, the causative agent of syphilis, can now be cultured continuously in vitro utilizing a tissue culture system, and the multiplication rates are similar to those obtained in experimental infection of rabbits. In this study, the RNA transcript profiles of the T. pallidum Nichols during in vitro culture and rabbit infection were compared to examine whether gene expression patterns differed in these two environments. To this end, RNA preparations were converted to cDNA and subjected to RNA-seq using high throughput Illumina sequencing; reverse transcriptase quantitative PCR was also performed on selected genes for validation of results. The transcript profiles in the in vivo and in vitro environments were remarkably similar, exhibiting a high degree of concordance overall. However, transcript levels of 94 genes (9%) out of the 1,063 predicted genes in the T. pallidum genome were significantly different during rabbit infection versus in vitro culture, varying by up to 8-fold in the two environments. Genes that exhibited significantly higher transcript levels during rabbit infection included those encoding multiple ribosomal proteins, several prominent membrane proteins, glycolysis-associated enzymes, replication initiator DnaA, rubredoxin, thioredoxin, two putative regulatory proteins, and proteins associated with solute transport. In vitro cultured T. pallidum had higher transcript levels of DNA repair proteins, cofactor synthesis enzymes, and several hypothetical proteins. The overall concordance of the transcript profiles may indicate that these environments are highly similar in terms of their effects on T. pallidum physiology and growth, and may also reflect a relatively low level of transcriptional regulation in this reduced genome organism.
Collapse
Affiliation(s)
- Bridget D. De Lay
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
7
|
Chandravanshi M, Samanta R, Kanaujia SP. Structural and thermodynamic insights into the novel dinucleotide-binding protein of ABC transporter unveils its moonlighting function. FEBS J 2021; 288:4614-4636. [PMID: 33599038 DOI: 10.1111/febs.15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/27/2022]
Abstract
Substrate (or solute)-binding proteins (SBPs) selectively bind the target ligands and deliver them to the ATP-binding cassette (ABC) transport system for their translocation. Irrespective of the different types of ligands, SBPs are structurally conserved. A wealth of structural details of SBPs bound to different types of ligands and the physiological basis of their import are available; however, the uptake mechanism of nucleotides is still deficient. In this study, we elucidated the structural details of an SBP endogenously bound to a novel ligand, a derivative of uridylyl-3'-5'-phospho-guanosine (U3G); thus, we named it a U3G-binding protein (U3GBP). To the best of our knowledge, this is the first report of U3G (and a dinucleotide) binding to the SBP of ABC transport system, and thus, U3GBP is classified as a first member of subcluster D-I SBPs. Thermodynamic data also suggest that U3GBP can bind phospholipid precursor sn-glycerophosphocholine (GPC) at a site other than the active site. Moreover, a combination of mutagenic and structural information reveals that the protein U3GBP follows the well-known 'Venus Fly-trap' mechanism for dinucleotide binding. DATABASES: Structural data are available in RCSB Protein Data Bank under the accession number(s) 7C0F, 7C0K, 7C0L, 7C0O, 7C0R, 7C0S, 7C0T, 7C0U, 7C0V, 7C0W, 7C0X, 7C0Y, 7C0Z, 7C14, 7C15, 7C16, 7C19, and 7C1B.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Reshama Samanta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| |
Collapse
|
8
|
Abdullah MR, Batuecas MT, Jennert F, Voß F, Westhoff P, Kohler TP, Molina R, Hirschmann S, Lalk M, Hermoso JA, Hammerschmidt S. Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. J Mol Biol 2020; 433:166723. [PMID: 33242497 DOI: 10.1016/j.jmb.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Greifswald, Germany
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Franziska Jennert
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Philipp Westhoff
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain; Present Address: Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, Copenhagen, 2200, Denmark
| | - Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Michael Lalk
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain.
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
9
|
Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum. mBio 2020; 11:e02249-20. [PMID: 32963009 PMCID: PMC7512555 DOI: 10.1128/mbio.02249-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Z Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael V Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chad A Brautigam
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Luthra A, Montezuma-Rusca JM, La Vake CJ, LeDoyt M, Delgado KN, Davenport TC, Fiel-Gan M, Caimano MJ, Radolf JD, Hawley KL. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog 2020; 16:e1008871. [PMID: 32936831 PMCID: PMC7521688 DOI: 10.1371/journal.ppat.1008871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Deconvolution of syphilis pathogenesis and selection of candidate syphilis vaccinogens requires detailed knowledge of the molecular architecture of the Treponema pallidum outer membrane (OM). The T. pallidum OM contains a low density of integral OM proteins, while the spirochete's many lipoprotein immunogens are periplasmic. TP0751, a lipoprotein with a lipocalin fold, is reportedly a surface-exposed protease/adhesin and protective antigen. The rapid expansion of calycin/lipocalin structures in the RCSB PDB database prompted a comprehensive reassessment of TP0751. Small angle X-ray scattering analysis of full-length protein revealed a bipartite topology consisting of an N-terminal, intrinsically disordered region (IDR) and the previously characterized C-terminal lipocalin domain. A DALI server query using the lipocalin domain yielded 97 hits, 52 belonging to the calycin superfamily, including 15 bacterial lipocalins, but no Gram-negative surface proteins. Surprisingly, Tpp17 (TP0435) was identified as a structural ortholog of TP0751. In silico docking predicted that TP0751 can bind diverse ligands along the rim of its eight-stranded β-barrel; high affinity binding of one predicted ligand, heme, to the lipocalin domain was demonstrated. qRT-PCR and immunoblotting revealed very low expression of TP0751 compared to other T. pallidum lipoproteins. Immunoblot analysis of immune rabbit serum failed to detect TP0751 antibodies, while only one of five patients with secondary syphilis mounted a discernible TP0751-specific antibody response. In opsonophagocytosis assays, neither TP0751 nor Tpp17 antibodies promoted uptake of T. pallidum by rabbit peritoneal macrophages. Rabbits immunized with intact, full-length TP0751 showed no protection against local or disseminated infection following intradermal challenge with T. pallidum. Our data argue that, like other lipoprotein lipocalins in dual-membrane bacteria, TP0751 is periplasmic and binds small molecules, and we propose that its IDR facilitates ligand binding by and offloading from the lipocalin domain. The inability of TP0751 to elicit opsonic or protective antibodies is consistent with a subsurface location.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, UConn Health, Farmington, United States of America
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, United States of America
- Division of Infectious Diseases, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Morgan LeDoyt
- Department of Medicine, UConn Health, Farmington, United States of America
| | | | | | - Mary Fiel-Gan
- Department of Pathology, Hartford Hospital, Hartford, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, United States of America
- Department of Immunology, UConn Health, Farmington, United States of America
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, United States of America
| |
Collapse
|
11
|
Structural and Biomolecular Analyses of Borrelia burgdorferi BmpD Reveal a Substrate-Binding Protein of an ABC-Type Nucleoside Transporter Family. Infect Immun 2020; 88:IAI.00962-19. [PMID: 31988175 PMCID: PMC7093131 DOI: 10.1128/iai.00962-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Nucleosides are essential for bacterial survival in the host organism, and these studies suggest a key role for BmpD in the purine salvage pathway of B. burgdorferi sensu lato. Because B. burgdorferisensu lato lacks the enzymes required for de novo purine synthesis, BmpD may play a vital role in ensuring access to the purines needed to sustain an infection in the host. Furthermore, we show that, although human LB patients develop anti-BmpD antibodies, immunization of mice with BmpD does not confer protection against B. burgdorferi sensu lato infection.
Collapse
|
12
|
Abstract
The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and Immunology, UConn Health, Farmington, CT 06030-3715, USA.
| | - Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, CT 06030-3715, USA
| |
Collapse
|
13
|
Nally JE, Hornsby RL, Alt DP, Whitelegge JP. Phenotypic and proteomic characterization of treponemes associated with bovine digital dermatitis. Vet Microbiol 2019; 235:35-42. [PMID: 31282377 DOI: 10.1016/j.vetmic.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 11/26/2022]
Abstract
Bovine digital dermatitis (BDD) is a multifactorial polymicrobial infectious disease associated with multiple species and phylotypes of treponemes. However, despite the abundance of molecular signatures for treponemes that are identified in bovine lesions, relatively few isolates are cultured, and even fewer have been characterized at the level of protein expression. Here we report the successful isolation and characterization of novel strains of T. brennaborense and T. phagedenis from cases of BDD in Iowa dairy cows, and compare them to a well characterized strain of T. phagedenis, and the type strain of the more recently recognized T. pedis. Propagation of T. brennaborense was only possible at room temperature in Cooked Meat Medium, and not in oral treponeme enrichment medium at 37 °C as used for T. phagedenis and T. pedis. A prominent and rapid motility is observed by T. brennaborense under dark-field microscopy. The highly motile T. brennaborense strain 11-3 has an identical enzymatic profile to that of the only other isolate of T. brennaborense to be cultured from a lesion of BDD. Outer membrane protein profiles of each strain were compared by 2-D gel electrophoresis, and the five most abundant proteins in each strain were identified by mass spectrometry. All identified proteins are predicted to have signal peptides. Results identified outer membrane proteins specific to each strain including predicted membrane lipoproteins, ABC transporters and, as yet, uncharacterized proteins. Collectively, our results provide for the identification and characterization of outer membrane components of multiple phylotypes of treponemes associated with BDD which can facilitate development of vaccines and diagnostics in our efforts to eradicate the disease.
Collapse
Affiliation(s)
- Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| | - Richard L Hornsby
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - David P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Structural and functional analyses of the N-terminal domain of the A subunit of a Bacillus megaterium spore germinant receptor. Proc Natl Acad Sci U S A 2019; 116:11470-11479. [PMID: 31113879 DOI: 10.1073/pnas.1903675116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germination of Bacillus spores is induced by the interaction of specific nutrient molecules with germinant receptors (GRs) localized in the spore's inner membrane. GRs typically consist of three subunits referred to as A, B, and C, although functions of individual subunits are not known. Here we present the crystal structure of the N-terminal domain (NTD) of the A subunit of the Bacillus megaterium GerK3 GR, revealing two distinct globular subdomains bisected by a cleft, a fold with strong homology to substrate-binding proteins in bacterial ABC transporters. Molecular docking, chemical shift perturbation measurement, and mutagenesis coupled with spore germination analyses support a proposed model that the interface between the two subdomains in the NTD of GR A subunits serves as the germinant binding site and plays a critical role in spore germination. Our findings provide a conceptual framework for understanding the germinant recruitment mechanism by which GRs trigger spore germination.
Collapse
|
15
|
Chandravanshi M, Sharma A, Dasgupta P, Mandal SK, Kanaujia SP. Identification and characterization of ABC transporters for carbohydrate uptake in Thermus thermophilus HB8. Gene 2019; 696:135-148. [DOI: 10.1016/j.gene.2019.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
|
16
|
Buyuktimkin B, Zafar H, Saier MH. Comparative genomics of the transportome of Ten Treponema species. Microb Pathog 2019; 132:87-99. [PMID: 31029716 DOI: 10.1016/j.micpath.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Treponema is a diverse bacterial genus, the species of which can be pathogenic, symbiotic, or free living. These treponemes can cause various diseases in humans and other animals, such as periodontal disease, bovine digital dermatitis and animal skin lesions. However, the most important and well-studied disease of treponemes that affects humans is 'syphilis'. This disease is caused by Treponema pallidum subspecie pallidum with 11-12 million new cases around the globe on an annual basis. In this study we analyze the transportome of ten Treponema species, with emphasis on the types of encoded transport proteins and their substrates. Of the ten species examined, two (T. primitia and T. azonutricium) reside as symbionts in the guts of termites; six (T. pallidum, T. paraluiscuniculi, T. pedis, T. denticola, T. putidum and T. brennaborense) are pathogens of either humans or animals, and T. caldarium and T. succinifaciens are avirulent species, the former being thermophilic. All ten species have a repertoire of transport proteins that assists them in residing in their respective ecological niches. For instance, oral pathogens use transport proteins that take up nutrients uniquely present in their ecosystem; they also encode multiple multidrug/macromolecule exporters that protect against antimicrobials and aid in biofilm formation. Proteins of termite gut symbionts convert cellulose into other sugars that can be metabolized by the host. As often observed for pathogens and symbionts, several of these treponemes have reduced genome sizes, and their small genomes correlate with their dependencies on the host. Overall, the transportomes of T. pallidum and other pathogens have a conglomerate of parasitic lifestyle-assisting proteins. For example, a T. pallidum repeat protein (TprK) mediates immune evasion; outer membrane proteins (OMPs) allow nutrient uptake and end product export, and several ABC transporters catalyze sugar uptake, considered pivotal to parasitic lifestyles. Taken together, the results of this study yield new information that may help open new avenues of treponeme research.
Collapse
Affiliation(s)
- Bora Buyuktimkin
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA; Institute of Microbiology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA.
| |
Collapse
|
17
|
Veith PD, Glew MD, Gorasia DG, Chen D, O’Brien-Simpson NM, Reynolds EC. Localization of Outer Membrane Proteins in Treponema denticola by Quantitative Proteome Analyses of Outer Membrane Vesicles and Cellular Fractions. J Proteome Res 2019; 18:1567-1581. [DOI: 10.1021/acs.jproteome.8b00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Åstrand M, Cuellar J, Hytönen J, Salminen TA. Predicting the ligand-binding properties of Borrelia burgdorferi s.s. Bmp proteins in light of the conserved features of related Borrelia proteins. J Theor Biol 2018; 462:97-108. [PMID: 30419249 DOI: 10.1016/j.jtbi.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
Bacteria of the genus Borrelia cause vector-borne infections like the most important hard tick-borne disease in the northern hemisphere, Lyme borreliosis (LB), and soft tick or louse transmitted relapsing fevers (RF), prevalent in temperate and tropical areas. Borrelia burgdorferi sensu lato (s.l.) includes several genospecies and causes LB in humans. In infected patients, Borrelia burgdorferi sensu stricto (s.s.) expresses the BmpA, BmpB, BmpC and BmpD proteins. The role of these proteins in the pathogenesis of LB remains incompletely characterized, but they are, however, closely related to Treponema pallidum PnrA (Purine nucleoside receptor A), a substrate-binding lipoprotein of the ATP-binding cassette (ABC) transporter family preferentially binding purine nucleosides. Based on 3D homology modeling, the Bmp proteins share the typical fold of the substrate-binding protein family and the ligand-binding properties of BmpA, BmpB and BmpD are highly similar, whereas those of BmpC differ markedly. Nevertheless, these residues are highly conserved within the genus Borrelia and the inferred phylogenetic tree also reveals that the RF Borrelia lack BmpB proteins but has an additional Bmp protein (BmpA2) missing in LB-causing Borrelia burgdorferi s.l. Our results indicate that the Bmp proteins could bind nucleosides, although BmpC might have a different ligand-binding specificity and, therefore, a distinct function. Furthermore, the work provides a means for classifying the Bmp proteins and supports further elucidation of the roles of these proteins.
Collapse
Affiliation(s)
- Mia Åstrand
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, Turku FI-20520, Finland
| | - Julia Cuellar
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Turku Doctoral Programme for Molecular Medicine, University of Turku, Turku, Finland
| | - Jukka Hytönen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, Turku FI-20520, Finland.
| |
Collapse
|
19
|
Deka RK, Liu WZ, Tso SC, Norgard MV, Brautigam CA. Biophysical insights into a highly selective l-arginine-binding lipoprotein of a pathogenic treponeme. Protein Sci 2018; 27:2037-2050. [PMID: 30242931 DOI: 10.1002/pro.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Biophysical and biochemical studies on the lipoproteins and other periplasmic proteins from the spirochetal species Treponema pallidum have yielded numerous insights into the functioning of the organism's peculiar membrane organization, its nutritional requirements, and intermediary metabolism. However, not all T. pallidum proteins have proven to be amenable to biophysical studies. One such recalcitrant protein is Tp0309, a putative polar-amino-acid-binding protein of an ABC transporter system. To gain further information on its possible function, a homolog of the protein from the related species T. vincentii was used as a surrogate. This protein, Tv2483, was crystallized, resulting in the determination of its crystal structure at a resolution of 1.75 Å. The protein has a typical fold for a ligand-binding protein, and a single molecule of l-arginine was bound between its two lobes. Differential scanning fluorimetry and isothermal titration calorimetry experiments confirmed that l-arginine bound to the protein with unusually high selectivity. However, further comparison to Tp0309 showed differences in key amino-acid-binding residues may impart an alternate specificity for the T. pallidum protein.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Wei Z Liu
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Shih-Chia Tso
- Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Michael V Norgard
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Chad A Brautigam
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390.,Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| |
Collapse
|
20
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
21
|
Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1436080. [PMID: 28523273 PMCID: PMC5421087 DOI: 10.1155/2017/1436080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
Abstract
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.
Collapse
|
22
|
Brautigam CA, Deka RK, Liu WZ, Tomchick DR, Norgard MV. Functional clues from the crystal structure of an orphan periplasmic ligand-binding protein from Treponema pallidum. Protein Sci 2017; 26:847-856. [PMID: 28168761 DOI: 10.1002/pro.3133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The spirochete Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of major global importance. Other closely related subspecies of Treponema also are the etiological agents of the endemic treponematoses, such as yaws, pinta, and bejel. The inability of T. pallidum and its close relatives to be cultured in vitro has prompted efforts to characterize T. pallidum's proteins structurally and biophysically, particularly those potentially relevant to treponemal membrane biology, with the goal of possibly revealing the functions of those proteins. This report describes the structure of the treponemal protein Tp0737; this polypeptide has a fold characteristic of a class of periplasmic ligand-binding proteins associated with ABC-type transporters. Although no ligand for the protein was observed in electron-density maps, and thus the nature of the native ligand remains obscure, the structural data described herein provide a foundation for further efforts to elucidate the ligand and thus the function of this protein in T. pallidum.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Wei Z Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Diana R Tomchick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
23
|
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 2016; 14:744-759. [PMID: 27721440 DOI: 10.1038/nrmicro.2016.141] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Genetics and Genomic Science, Molecular Biology and Biophysics, and Immunology, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
24
|
Brautigam CA, Deka RK, Liu WZ, Norgard MV. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology. PLoS One 2016; 11:e0161022. [PMID: 27536942 PMCID: PMC4990184 DOI: 10.1371/journal.pone.0161022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Ranjit K. Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Wei Z. Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael V. Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| |
Collapse
|
25
|
Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein. mBio 2015; 6:e00519-15. [PMID: 25944861 PMCID: PMC4436053 DOI: 10.1128/mbio.00519-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. Treponema pallidum, the syphilis spirochete, exploits its periplasmic lipoproteins for a number of essential physiologic processes. One of these, flavin-trafficking protein (Ftp), not only exploits its catalytic center to mediate posttranslational flavinylation of proteins (to create flavoproteins) but also likely maintains the periplasmic flavin pool via its unique ability to hydrolyze FAD. This functional diversity within a single lipoprotein is quite remarkable and reflects the enzymatic versatility of the treponemal lipoproteins, as well as molecular parsimony in an organism with a limited genome. Ftp-mediated protein flavinylation in the periplasm also likely is a key aspect of a predicted flavin-dependent Rnf-based redox homeostasis system at the cytoplasmic membrane of T. pallidum. In addition to its importance in T. pallidum physiology, Ftp homologs exist in other bacteria, thereby expanding our understanding of the bacterial periplasm as a metabolically active subcellular compartment for flavoprotein biogenesis as well as flavin homeostasis.
Collapse
|
26
|
Karlskås IL, Eijsink VGH, Saleihan Z, Holo H, Mathiesen G. EF0176 and EF0177 from Enterococcus faecalis V583 are substrate-binding lipoproteins involved in ABC transporter mediated ribonucleoside uptake. Microbiology (Reading) 2015; 161:754-64. [DOI: 10.1099/mic.0.000045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
|
27
|
Saxena S, Khan N, Dehinwal R, Kumar A, Sehgal D. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS One 2015; 10:e0118154. [PMID: 25689507 PMCID: PMC4331430 DOI: 10.1371/journal.pone.0118154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.
Collapse
Affiliation(s)
- Sneha Saxena
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ruchika Dehinwal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
28
|
Li F, Liang J, Wang W, Zhou X, Deng Z, Wang Z. Two nucleoside receptors from Streptomyces coelicolor: expression of the genes and characterization of the recombinant proteins. Protein Expr Purif 2015; 109:40-6. [PMID: 25680770 DOI: 10.1016/j.pep.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/06/2015] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
Streptomyces coelicolor is a soil-dwelling bacterium that undergoes an intricate, saprophytic lifecycle. The bacterium takes up exogenous nucleosides for nucleic acid synthesis or use as carbon and energy sources. However, nucleosides must pass through the membrane with the help of transporters. In the present work, the SCO4884 and SCO4885 genes were cloned into pCOLADuet-1 and overexpressed in Escherichia coli BL21. Each protein was monomeric. Using isothermal titration calorimetry, we determined that SCO4884 and SCO4885 are likely nucleoside receptors with affinity for adenosine and pyrimidine nucleosides. On the basis of bioinformatics analysis and the transporter classification system, we speculate that SCO4884-SCO4888 is an ABC-like transporter responsible for the uptake of adenosine and pyrimidine nucleosides.
Collapse
Affiliation(s)
- Fuhou Li
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China; School of Marine Science and Technology, Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, Jiangsu Province 222005, People's Republic of China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Weixia Wang
- School of Marine Science and Technology, Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, Jiangsu Province 222005, People's Republic of China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| |
Collapse
|
29
|
Abiko Y, Nagano K, Yoshida Y, Yoshimura F. Characterization of Treponema denticola mutants defective in the major antigenic proteins, Msp and TmpC. PLoS One 2014; 9:e113565. [PMID: 25401769 PMCID: PMC4234677 DOI: 10.1371/journal.pone.0113565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/27/2014] [Indexed: 12/28/2022] Open
Abstract
Treponema denticola, a gram-negative and anaerobic spirochete, is associated with advancing severity of chronic periodontitis. In this study, we confirmed that two major antigenic proteinswere Msp and TmpC, and examined their physiological and pathological roles using gene-deletion mutants. Msp formed a large complex that localized to the outer membrane, while TmpC existed as a monomer and largely localized to the inner membrane. However, TmpC was also detected in the outer membrane fraction, but its cell-surface exposure was not detected. Msp defects increased cell-surface hydrophobicity and secretion of TNF-α from macrophage-like cells, whereas TmpC defects decreased autoagglutination and chymotrypsin-like protease activities. Both mutants adhered to gingival epithelial cells similarly to the wild-type and showed slightly decreased motility. In addition, in Msp-defective mutants, the TDE1072 protein, which is a major membrane protein, was abolished; therefore, phenotypic changes in the mutant can be, at least in part, attributed to the loss of the TDE1072 protein. Thus, the major antigenic proteins, Msp and TmpC, have significant and diverse impacts on the characteristics of T. denticola, especially cell surface properties.
Collapse
Affiliation(s)
- Yuki Abiko
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| |
Collapse
|
30
|
Brautigam CA, Deka RK, Liu WZ, Norgard MV. Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci 2014; 24:11-9. [PMID: 25287511 DOI: 10.1002/pro.2576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
Abstract
The sexually transmitted disease syphilis is caused by the bacterial spirochete Treponema pallidum. This microorganism is genetically intractable, accounting for the large number of putative and undercharacterized members of the pathogen's proteome. In an effort to ascribe a function(s) to the TP0435 (Tp17) lipoprotein, we engineered a soluble variant of the protein (rTP0435) and determined its crystal structure at a resolution of 2.42 Å. The structure is characterized by an eight-stranded β-barrel protein with a shallow "basin" at one end of the barrel and an α-helix stacked on the opposite end. Furthermore, there is a disulfide-linked dimer of the protein in the asymmetric unit of the crystals. Solution hydrodynamic experiments established that purified rTP0435 is monomeric, but specifically forms the disulfide-stabilized dimer observed in the crystal structure. The data herein, when considered with previous work on TP0435, imply plausible roles for the protein in either ligand binding, treponemal membrane architecture, and/or pathogenesis.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
31
|
Brautigam CA, Ouyang Z, Deka RK, Norgard MV. Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 2013; 23:200-12. [PMID: 24318969 DOI: 10.1002/pro.2406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC-type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand-binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high-resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate-binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215-0218 function as a phosphate transporter for B. burgdorferi.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
32
|
Brautigam CA, Deka RK, Norgard MV. Purification, crystallization and preliminary X-ray analysis of TP0435 (Tp17) from the syphilis spirochete Treponema pallidum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:453-5. [PMID: 23545658 PMCID: PMC3614177 DOI: 10.1107/s1744309113006246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/04/2013] [Indexed: 11/11/2022]
Abstract
Syphilis, caused by the bacterial spirochete Treponema pallidum, remains a prominent sexually transmitted infection worldwide. Despite sequencing of the genome of this obligate human pathogen 15 years ago, the functions of a large number of the gene products of T. pallidum are still unknown, particularly with respect to those of the organism's periplasmic lipoproteins. To better understand their functions, a structural biology approach has been pursued. To this end, the soluble portion of the T. pallidum TP0435 lipoprotein (also known as Tp17) was cloned, hyper-expressed in Escherichia coli and purified to apparent homogeneity. The protein crystals obtained from this preparation diffracted to 2.4 Å resolution and had the symmetry of space group R3. In the hexagonal setting, the unit-cell parameters were a = b = 85.7, c = 85.4 Å.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
33
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 2013; 288:11106-21. [PMID: 23447540 DOI: 10.1074/jbc.m113.449975] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treponema pallidum, an obligate parasite of humans and the causative agent of syphilis, has evolved the capacity to exploit host-derived metabolites for its survival. Flavin-containing compounds are essential cofactors that are required for metabolic processes in all living organisms, and riboflavin is a direct precursor of the cofactors FMN and FAD. Unlike many pathogenic bacteria, Treponema pallidum cannot synthesize riboflavin; we recently described a flavin-uptake mechanism composed of an ABC-type transporter. However, there is a paucity of information about flavin utilization in bacterial periplasms. Using a discovery-driven approach, we have identified the TP0796 lipoprotein as a previously uncharacterized Mg(2+)-dependent FAD pyrophosphatase within the ApbE superfamily. TP0796 probably plays a central role in flavin turnover by hydrolyzing exogenously acquired FAD, yielding AMP and FMN. Biochemical and structural investigations revealed that the enzyme has a unique bimetal Mg(2+) catalytic center. Furthermore, the pyrophosphatase activity is product-inhibited by AMP, indicating a possible role for this molecule in modulating FMN and FAD levels in the treponemal periplasm. The ApbE superfamily was previously thought to be involved in thiamine biosynthesis, but our characterization of TP0796 prompts a renaming of this superfamily as a periplasmic flavin-trafficking protein (Ftp). TP0796 is the first structurally and biochemically characterized FAD pyrophosphate enzyme in bacteria. This new paradigm for a bacterial flavin utilization pathway may prove to be useful for future inhibitor design.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host. Syphilis remains a public health problem, but very little is known about the causative bacterium. This is because Treponema pallidum still cannot be cultured in the laboratory. Rather, T. pallidum must be cultivated in laboratory rabbits, a restriction that poses many insurmountable experimental obstacles. Approaches to learn more about the structure and function of T. pallidum’s cell envelope, which is both the physical and functional interface between T. pallidum and its human host, are severely limited. One approach for elucidating T. pallidum’s cell envelope has been to determine the three-dimensional structures of its membrane lipoproteins, molecules that serve many critical survival functions. Herein, we describe a previously unknown transport system that T. pallidum uses to import riboflavin, an essential nutrient for the organism’s survival. Moreover, we found that this transport system is present in other pathogenic spirochetes. This is the first description of this new type of bacterial riboflavin transport system.
Collapse
|
35
|
Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol 2012; 194:6771-81. [PMID: 23042995 DOI: 10.1128/jb.01494-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn(2+), which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni(2+), Co(2+), Cu(2+), and Zn(2+)) readily induce the dimerization of Tp34; Cu(2+) (50% effective concentration [EC(50)] = 1.7 μM) and Zn(2+) (EC(50) = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum.
Collapse
|
36
|
Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV. Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 2012; 420:70-86. [PMID: 22504226 DOI: 10.1016/j.jmb.2012.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/27/2023]
Abstract
Tripartite ATP-independent periplasmic transporters (TRAP-Ts) are bacterial transport systems that have been implicated in the import of small molecules into the cytoplasm. A newly discovered subfamily of TRAP-Ts [tetratricopeptide repeat-protein associated TRAP transporters (TPATs)] has four components. Three are common to both TRAP-Ts and TPATs: the P component, a ligand-binding protein, and a transmembrane symporter apparatus comprising the M and Q components (M and Q are sometimes fused to form a single polypeptide). TPATs are distinguished from TRAP-Ts by the presence of a unique protein called the "T component". In Treponema pallidum, this protein (TatT) is a water-soluble trimer whose protomers are each perforated by a pore. Its respective P component (TatP(T)) interacts with the TatT in vitro and in vivo. In this work, we further characterized this interaction. Co-crystal structures of two complexes between the two proteins confirm that up to three monomers of TatP(T) can bind to the TatT trimer. A putative ligand-binding cleft of TatP(T) aligns with the pore of TatT, strongly suggesting ligand transfer between T and P(T). We used a combination of site-directed mutagenesis and analytical ultracentrifugation to derive thermodynamic parameters for the interactions. These observations confirm that the observed crystallographic interface is recapitulated in solution. These results prompt a hypothesis of the molecular mechanism(s) of hydrophobic ligand transport by the TPATs.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
37
|
Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 2012; 416:678-96. [PMID: 22306465 DOI: 10.1016/j.jmb.2012.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/22/2023]
Abstract
Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of "tetratricopeptide repeat" (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
38
|
Okugawa S, Moayeri M, Pomerantsev AP, Sastalla I, Crown D, Gupta PK, Leppla SH. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis. Mol Microbiol 2012; 83:96-109. [PMID: 22103323 PMCID: PMC3245379 DOI: 10.1111/j.1365-2958.2011.07915.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial lipoproteins play a crucial role in virulence in some gram-positive bacteria. However, the role of lipoprotein biosynthesis in Bacillus anthracis is unknown. We created a B. anthracis mutant strain altered in lipoproteins by deleting the lgt gene encoding the enzyme prolipoprotein diacylglyceryl transferase, which attaches the lipid anchor to prolipoproteins. (14)C-palmitate labelling confirmed that the mutant strain lacked lipoproteins, and hydrocarbon partitioning showed it to have decreased surface hydrophobicity. The anthrax toxin proteins were secreted from the mutant strain at nearly the same levels as from the wild-type strain. The TLR2-dependent TNF-α response of macrophages to heat-killed lgt mutant bacteria was reduced. Spores of the lgt mutant germinated inefficiently in vitro and in mouse skin. As a result, in a murine subcutaneous infection model, lgt mutant spores had markedly attenuated virulence. In contrast, vegetative cells of the lgt mutant were as virulent as those of the wild-type strain. Thus, lipoprotein biosynthesis in B. anthracis is required for full virulence in a murine infection model.
Collapse
Affiliation(s)
- Shu Okugawa
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
CodY is a global transcriptional regulator known to control expression of more than 100 genes and operons in Bacillus subtilis. Some of the most strongly repressed targets of CodY, the nupNOPQ (formerly, yufNOPQ) genes, were found to encode a guanosine transporter. Using DNase I footprinting experiments, we identified two high-affinity CodY-binding sites in the regulatory region of the nupN gene. The two sites are located 50 bp upstream and 163 bp downstream of the transcription start site. The downstream site was responsible for 6- to 8-fold nupN repression in the absence of the upstream site. When the upstream site was intact, however, only a minor contribution of the downstream site to nupN regulation could be detected under the conditions tested. Both sites contained 15-bp CodY-binding motifs with two mismatches each with respect to the consensus sequence, AATTTTCWGTTTTAA. However, the experimentally determined binding sites included additional sequences flanking the 15-bp CodY-binding motifs. An additional version of the 15-bp CodY-binding motif, with 5 mismatches with respect to the consensus but essential for efficient regulation by CodY, was found within the upstream site. The presence of multiple 15-bp motifs may be a common feature of CodY-binding sites.
Collapse
|
40
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
42
|
Schulze RJ, Chen S, Kumru OS, Zückert WR. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 2010; 76:1266-78. [PMID: 20398211 DOI: 10.1111/j.1365-2958.2010.07172.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease characterized by widespread tissue dissemination and chronic infection. In this study, we analyzed the proteome of T. pallidum by the isoelectric focusing (IEF) and nonequilibrating pH gel electrophoresis (NEPHGE) forms of two-dimensional gel electrophoresis (2DGE), coupled with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis. We determined the identity of 148 T. pallidum protein spots, representing 88 T. pallidum polypeptides; 63 of these polypeptides had not been identified previously at the protein level. To examine which of these proteins are important in the antibody response to syphilis, we performed immunoblot analysis using infected rabbit sera or human sera from patients at different stages of syphilis infection. Twenty-nine previously described antigens (predominantly lipoproteins) were detected, as were a number of previously unidentified antigens. The reactivity patterns obtained with sera from infected rabbits and humans were similar; these patterns included a subset of antigens reactive with all serum samples tested, including CfpA, MglB-2, TmpA, TmpB, flagellins, and the 47-kDa, 17-kDa, and 15-kDa lipoproteins. A unique group of antigens specifically reactive with infected human serum was also identified and included the previously described antigen TpF1 and the hypothetical proteins TP0584, TP0608, and TP0965. This combined proteomic and serologic analysis further delineates the antigens potentially useful as vaccine candidates or diagnostic markers and may provide insight into the host-pathogen interactions that occur during T. pallidum infection.
Collapse
|
44
|
Verma A, Brissette CA, Bowman A, Stevenson B. Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 2009; 77:4940-6. [PMID: 19703983 PMCID: PMC2772523 DOI: 10.1128/iai.01420-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/02/2009] [Accepted: 08/16/2009] [Indexed: 11/20/2022] Open
Abstract
The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease.
Collapse
Affiliation(s)
- Ashutosh Verma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Catherine A. Brissette
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Amy Bowman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
45
|
Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 2009; 191:7566-80. [PMID: 19820083 DOI: 10.1128/jb.01031-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.
Collapse
|
46
|
Xu QS, Ankoudinova I, Lou Y, Yokota H, Kim R, Kim SH. Crystal structure of a transcriptional activator of comK gene from Bacillus halodurans. Proteins 2009; 69:409-14. [PMID: 17636568 DOI: 10.1002/prot.21292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Steven Xu
- Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley Structural Genomics Center, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol 2008; 17:13-21. [PMID: 19059780 DOI: 10.1016/j.tim.2008.10.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Gram-positive bacterial lipoproteins are a functionally diverse and important class of peripheral membrane proteins. Recent advances in molecular biology and the availability of whole genome sequence data have overturned many long-held assumptions about the export and processing of these proteins, most notably the recent discovery that not all lipoproteins are exported as unfolded substrates through the general secretion pathway. Here, we review recent discoveries concerning the export and processing of these proteins, their role in virulence in Gram-positive bacteria and their potential as vaccine candidates or targets for new antimicrobials.
Collapse
Affiliation(s)
- Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | |
Collapse
|
48
|
Titz B, Rajagopala SV, Goll J, Häuser R, McKevitt MT, Palzkill T, Uetz P. The binary protein interactome of Treponema pallidum--the syphilis spirochete. PLoS One 2008; 3:e2292. [PMID: 18509523 PMCID: PMC2386257 DOI: 10.1371/journal.pone.0002292] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/14/2008] [Indexed: 11/19/2022] Open
Abstract
Protein interaction networks shed light on the global organization of proteomes but can also place individual proteins into a functional context. If we know the function of bacterial proteins we will be able to understand how these species have adapted to diverse environments including many extreme habitats. Here we present the protein interaction network for the syphilis spirochete Treponema pallidum which encodes 1,039 proteins, 726 (or 70%) of which interact via 3,649 interactions as revealed by systematic yeast two-hybrid screens. A high-confidence subset of 991 interactions links 576 proteins. To derive further biological insights from our data, we constructed an integrated network of proteins involved in DNA metabolism. Combining our data with additional evidences, we provide improved annotations for at least 18 proteins (including TP0004, TP0050, and TP0183 which are suggested to be involved in DNA metabolism). We estimate that this "minimal" bacterium contains on the order of 3,000 protein interactions. Profiles of functional interconnections indicate that bacterial proteins interact more promiscuously than eukaryotic proteins, reflecting the non-compartmentalized structure of the bacterial cell. Using our high-confidence interactions, we also predict 417,329 homologous interactions ("interologs") for 372 completely sequenced genomes and provide evidence that at least one third of them can be experimentally confirmed.
Collapse
Affiliation(s)
- Björn Titz
- Institute of Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | - Seesandra V. Rajagopala
- Institute of Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
- The Institute of Genomic Research (TIGR) and J Craig Venter Institute (JCVI), Rockville, Maryland, United States of America
| | - Johannes Goll
- Institute of Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | - Roman Häuser
- Institute of Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | - Matthew T. McKevitt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, Houston, United States of America
| | - Timothy Palzkill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, Houston, United States of America
| | - Peter Uetz
- Institute of Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
- The Institute of Genomic Research (TIGR) and J Craig Venter Institute (JCVI), Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV. Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 2007; 373:681-94. [PMID: 17868688 PMCID: PMC2094014 DOI: 10.1016/j.jmb.2007.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/03/2007] [Accepted: 08/09/2007] [Indexed: 11/18/2022]
Abstract
Tp0655 of Treponema pallidum, the causative agent of syphilis, is predicted to be a 40 kDa membrane lipoprotein. Previous sequence analysis of Tp0655 noted its homology to polyamine-binding proteins of the bacterial PotD family, which serve as periplasmic ligand-binding proteins of ATP-binding-cassette (ABC) transport systems. Here, the 1.8 A crystal structure of Tp0655 demonstrated structural homology to Escherichia coli PotD and PotF. The latter two proteins preferentially bind spermidine and putrescine, respectively. All of these proteins contain two domains that sandwich the ligand between them. The ligand-binding site of Tp0655 can be occupied by 2-(N-morpholino)ethanesulfanoic acid, a component of the crystallization medium. To discern the polyamine binding preferences of Tp0655, the protein was subjected to isothermal titration calorimetric experiments. The titrations established that Tp0655 binds polyamines avidly, with a marked preference for putrescine (Kd=10 nM) over spermidine (Kd=430 nM), but the related compounds cadaverine and spermine did not bind. Structural comparisons and structure-based sequence analyses provide insights into how polyamine-binding proteins recognize their ligands. In particular, these comparisons allow the derivation of rules that may be used to predict the function of other members of the PotD family. The sequential, structural, and functional homology of Tp0655 to PotD and PotF prompt the conclusion that the former likely is the polyamine-binding component of an ABC-type polyamine transport system in T. pallidum. We thus rename Tp0655 as TpPotD. The ramifications of TpPotD as a polyamine-binding protein to the parasitic strategy of T. pallidum are discussed.
Collapse
Affiliation(s)
- Mischa Machius
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|