1
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Chiang CY, Ligunas GD, Chin WC, Ni CW. Efficient Nonviral Stable Transgenesis Mediated by Retroviral Integrase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1061-1070. [PMID: 32462054 PMCID: PMC7240061 DOI: 10.1016/j.omtm.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Efficient transgene delivery is critical for genetic manipulation and therapeutic intervention of target cells. Two well-characterized integrative systems have been described that rely on viral and nonviral vectors. However, use of viral vectors for gene therapy has been associated with several safety concerns. Here, we report a virus-free method for stable transgenesis based on the reaction of retroviral integrase. We constructed a gateway cloning compatible vector containing two truncated long terminal repeat (LTR) sequences (dLTR) that flank the transgene cassette. Notably, 5′-ACTG-3′ and blunt-end restriction cutting sites were also embedded at the end of dLTR to be recognized by HIV-1 integrase. When performing coinjection of transgene cassette and integrase mRNA into zebrafish embryos at one cell stage, there were 50% to 55% of injected embryos expressing a marker gene in a desired pattern. When applying our method in mammalian cells, there were 42% of cultured human epithelial cell lines showing stable integration. These results demonstrated that our method can successfully insert an exogenous gene into the host genome with highly efficient integration. Importantly, this system operates without most of the viral components while retaining effective stable transgenesis. We anticipate this method will provide a convenient, safe, and highly efficient way for applications in transgenesis and gene therapy.
Collapse
Affiliation(s)
- Chang-Ying Chiang
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA
| | - Gloria Denise Ligunas
- Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Chih-Wen Ni
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| |
Collapse
|
3
|
Sirous H, Fassihi A, Brogi S, Campiani G, Christ F, Debyser Z, Gemma S, Butini S, Chemi G, Grillo A, Zabihollahi R, Aghasadeghi MR, Saghaie L, Memarian HR. Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Med Chem 2019; 15:755-770. [PMID: 30569867 DOI: 10.2174/1573406415666181219113225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite the progress in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue. OBJECTIVE To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3- hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized. METHODS To provide a significant characterization of the novel compounds, in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity. RESULTS Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in the low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture. CONCLUSION Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.
Collapse
Affiliation(s)
- Hajar Sirous
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy.,Department of Pharmacy, DoE Department of Excellence 2018-2022, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Hamid R Memarian
- Department of Chemistry, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
4
|
Dayer MR. Comparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective. Jundishapur J Microbiol 2016; 9:e29773. [PMID: 27540450 PMCID: PMC4976072 DOI: 10.5812/jjm.29773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 01/24/2023] Open
Abstract
Background Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. Objectives The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Materials and Methods Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Results Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Conclusions Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.
Collapse
Affiliation(s)
- Mohammad Reza Dayer
- Department of Biology, Faculty of Science, Shahid Chamran University, Ahvaz, IR Iran
- Corresponding author: Mohammad Reza Dayer, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, IR Iran. Tel: +98-6113331045, Fax: +98-6113331045, E-mail:
| |
Collapse
|
5
|
Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. Eur J Med Chem 2014; 73:73-82. [DOI: 10.1016/j.ejmech.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022]
|
6
|
Arora R, de Beauchene IC, Polanski J, Laine E, Tchertanov L. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. J Mol Recognit 2013; 26:383-401. [PMID: 23836466 DOI: 10.1002/jmr.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
HIV-1 IN is a pertinent target for the development of AIDS chemotherapy. The first IN-specific inhibitor approved for the treatment of HIV/AIDS, RAL, was designed to block the ST reaction. We characterized the structural and conformational features of RAL and its recognition by putative HIV-1 targets - the unbound IN, the vDNA, and the IN•vDNA complex - mimicking the IN states over the integration process. RAL binding to the targets was studied by performing an extensive sampling of the inhibitor conformational landscape and by using four different docking algorithms: Glide, Autodock, VINA, and SurFlex. The obtained data evidenced that: (i) a large binding pocket delineated by the active site and an extended loop in the unbound IN accommodates RAL in distinct conformational states all lacking specific interactions with the target; (ii) a well-defined cavity formed by the active site, the vDNA, and the shortened loop in the IN•vDNA complex provide a more optimized inhibitor binding site in which RAL chelates Mg(2+) cations; (iii) a specific recognition between RAL and the unpaired cytosine of the processed DNA is governed by a pair of strong H-bonds similar to those observed in DNA base pair G-C. The identified RAL pose at the cleaved vDNA shed light on a putative step of RAL inhibition mechanism. This modeling study indicates that the inhibition process may include as a first step RAL recognition by the processed vDNA bound to a transient intermediate IN state, and thus provides a potentially promising route to the design of IN inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Rohit Arora
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliquée (LBPA-CNRS), Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235, Cachan, France
| | | | | | | | | |
Collapse
|
7
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|
8
|
Chakraborty A, Sun GQ, Mustavich L, Huang SH, Li BL. Biochemical interactions between HIV-1 integrase and reverse transcriptase. FEBS Lett 2012; 587:425-9. [DOI: 10.1016/j.febslet.2012.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
9
|
In Silico and In Vitro Comparison of HIV-1 Subtypes B and CRF02_AG Integrases Susceptibility to Integrase Strand Transfer Inhibitors. Adv Virol 2012; 2012:548657. [PMID: 22829822 PMCID: PMC3398581 DOI: 10.1155/2012/548657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/16/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023] Open
Abstract
Most antiretroviral medical treatments were developed and tested principally on HIV-1 B nonrecombinant strain, which represents less than 10% of the worldwide HIV-1-infected population. HIV-1 circulating recombinant form CRF02_AG is prevalent in West Africa and is becoming more frequent in other countries. Previous studies suggested that the HIV-1 polymorphisms might be associated to variable susceptibility to antiretrovirals. This study is pointed to compare the susceptibility to integrase (IN) inhibitors of HIV-1 subtype CRF02_AG IN respectively to HIV-1 B. Structural models of B and CRF02_AG HIV-1 INs as unbound enzymes and in complex with the DNA substrate were built by homology modeling. IN inhibitors—raltegravir (RAL), elvitegravir (ELV) and L731,988—were docked onto the models, and their binding affinity for both HIV-1 B and CRF02_AG INs was compared. CRF02_AG INs were cloned and expressed from plasma of integrase strand transfer inhibitor (INSTI)-naïve infected patients. Our in silico and in vitro studies showed that the sequence variations between the INs of CRF02_AG and B strains did not lead to any notable difference in the structural features of the enzyme and did not impact the susceptibility to the IN inhibitors. The binding modes and affinities of INSTI inhibitors to B and CRF02_AG INs were found to be similar. Although previous studies suggested that several naturally occurring variations of CRF02_AG IN might alter either IN/vDNA interactions or INSTIs binding, our study demonstrate that these variations do affect neither IN activity nor its susceptibility to INSTIs.
Collapse
|
10
|
Anisenko A, Agapkina J, Zatsepin T, Yanvarev D, Gottikh M. A new fluorometric assay for the study of DNA-binding and 3'-processing activities of retroviral integrases and its use for screening of HIV-1 integrase inhibitors. Biochimie 2012; 94:2382-90. [PMID: 22728110 DOI: 10.1016/j.biochi.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 11/24/2022]
Abstract
Fluorometry using a substrate DNA labeled with a single fluorophore (6-carboxyfluorescein) at the 3'-end of the processed strand was shown to be a useful tool for monitoring DNA-binding and 3'-processing activities of HIV-1 and PFV integrases (INs). The DNA binding to either of the INs resulted in a fluorescence signal decrease, which is likely due to the fluorescence quenching by aromatic amino acids located near the 3'-end of the processed strand. The fluorescence deviations upon the 3'-processing strongly depended on the sequence of the fluorescein-labeled terminus of the substrate DNA. In the case of HIV-1 IN, a time-dependent fluorescence decrease was detected. Since it correlated with the rate of 3'-processing resulted in the labeled GT dinucleotide accumulation, it might be explained by the fluorescein quenching by a guanosine residue in the single-stranded dinucleotide. The 3'-processing catalyzed by PFV IN led to the fluorescence enhancement. We ascribed it to the migration of the cleaved AT dinucleotide conjugated with fluorescein away from the amino acids that could quench its fluorescence. The fluorescence-based assay was used for the search of new HIV-1 IN inhibitors. Some bisphosphonate derivatives, which are known to block the phosphorolytic activity of HIV-1 reverse transcriptase, were shown to inhibit HIV-1 IN at micromolar concentrations. This property makes bisphosphonates promising agents for the development of HIV-1 inhibitors affecting two viral enzymes.
Collapse
Affiliation(s)
- Andrey Anisenko
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical and Chemical Biology, Leninskie gory 1/40, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
11
|
Korolev S, Knyazhanskaya E, Anisenko A, Tashlitskii V, Zatsepin TS, Gottikh M, Agapkina J. Modulation of HIV-1 integrase activity by single-stranded oligonucleotides and their conjugates with eosin. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:651-66. [PMID: 21888554 DOI: 10.1080/15257770.2011.592890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Integration of the DNA copy of the genomic RNA into an infected cell genome is one of the key steps of the replication cycle of all retroviruses. It is catalyzed by the viral enzyme, integrase. We have shown that conjugates of short single-stranded oligonucleotides with eosin efficiently inhibit the catalytic activity of the HIV-1 integrase. In this article, we have found that the dependence of the integrase catalytic activity on the concentration of oligonucleotides has a bell-shaped pattern. The modulation of HIV-1 integrase activity correlated with the oligonucleotide length and was not associated with specific sequences. Moreover, a similar mode of the oligonucleotide action was found for integrase from the prototype foamy virus. This dual effect of the oligonucleotide and their conjugates with eosin might be explained by their binding with retroviral integrase in two different sites; the oligodeoxynucleotide binding in the first site results in integrase activation, whereas interactions with another one lead to inhibition of the enzyme activity. Eosin coupling to oligonucleotides did not change the mode of their action but enhanced their affinity to both binding sites. The affinity increase was found to be much more important for the site responsible for the integrase inhibition, thus explaining the high inhibitory potency of oligonucleotide-eosin conjugates.
Collapse
Affiliation(s)
- Sergey Korolev
- Department of Chemistry, Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
12
|
Xue W, Liu H, Yao X. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: A molecular modeling perspective. J Comput Chem 2011; 33:527-36. [DOI: 10.1002/jcc.22887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/25/2011] [Accepted: 10/20/2011] [Indexed: 01/03/2023]
|
13
|
Rafiee MA, Partoee T. Investigation of the Binding Affinity between Styrylquinoline Inhibitors and HIV Integrase Using Calculated Nuclear Quadrupole Coupling Constant (NQCC) Parameters (A Theoretical ab initio Study). B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.1.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element. PLoS One 2010; 5:e16001. [PMID: 21209864 PMCID: PMC3012736 DOI: 10.1371/journal.pone.0016001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (5 CITEP, for instance), significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity.
Collapse
|
15
|
Korolev SP, Tashlitsky VN, Smolov MA, Gromyko AV, Zhuze AL, Agapkina YY, Gottikh MB. HIV-1 integrase inhibition by dimeric bisbenzimidazoles with different spacer structures. Mol Biol 2010. [DOI: 10.1134/s0026893310040199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Carayon K, Leh H, Henry E, Simon F, Mouscadet JF, Deprez E. A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Res 2010; 38:3692-708. [PMID: 20164093 PMCID: PMC2887959 DOI: 10.1093/nar/gkq087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 integrase catalyzes the insertion of the viral genome into chromosomal DNA. We characterized the structural determinants of the 3′-processing reaction specificity—the first reaction of the integration process—at the DNA-binding level. We found that the integrase N-terminal domain, containing a pseudo zinc-finger motif, plays a key role, at least indirectly, in the formation of specific integrase–DNA contacts. This motif mediates a cooperative DNA binding of integrase that occurs only with the cognate/viral DNA sequence and the physiologically relevant Mg2+ cofactor. The DNA-binding was essentially non-cooperative with Mn2+ or using non-specific/random sequences, regardless of the metallic cofactor. 2,2′-Dithiobisbenzamide-1 induced zinc ejection from integrase by covalently targeting the zinc-finger motif, and significantly decreased the Hill coefficient of the Mg2+-mediated integrase–DNA interaction, without affecting the overall affinity. Concomitantly, 2,2′-dithiobisbenzamide-1 severely impaired 3′-processing (IC50 = 11–15 nM), suggesting that zinc ejection primarily perturbs the nature of the active integrase oligomer. A less specific and weaker catalytic effect of 2,2′-dithiobisbenzamide-1 is mediated by Cys 56 in the catalytic core and, notably, accounts for the weaker inhibition of the non-cooperative Mn2+-dependent 3′-processing. Our data show that the cooperative DNA-binding mode is strongly related to the sequence-specific DNA-binding, and depends on the simultaneous presence of the Mg2+ cofactor and the zinc effector.
Collapse
Affiliation(s)
- Kevin Carayon
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, 61 av. du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | |
Collapse
|
17
|
Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix. Nucleic Acids Res 2010; 37:7691-700. [PMID: 19808934 PMCID: PMC2794180 DOI: 10.1093/nar/gkp824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
HIV-1 integrase integrates retroviral DNA through 3′-processing and strand transfer reactions in the presence of a divalent cation (Mg2+ or Mn2+). The α4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the α4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg2+. Circular dichroism, fluorescence and NMR experiments confirmed the implication of the α4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends—i.e. an unaltered 3′-processing site CA↓GT3′—and is reinforced by Mg2+ (Kd decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3′ steps of the 3′-processing site. With deletion of GT3′, only persists non-specific binding (Kd of 100 μM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the α4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure.
Collapse
Affiliation(s)
- Zeina Hobaika
- Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Mouscadet JF, Arora R, André J, Lambry JC, Delelis O, Malet I, Marcelin AG, Calvez V, Tchertanov L. HIV-1 IN alternative molecular recognition of DNA induced by raltegravir resistance mutations. J Mol Recognit 2010; 22:480-94. [PMID: 19623602 DOI: 10.1002/jmr.970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Virologic failure during treatment with raltegravir, the first effective drug targeting HIV integrase, is associated with two exclusive pathways involving either Q148H/R/K, G140S/A or N155H mutations. We carried out a detailed analysis of the molecular and structural effects of these mutations. We observed no topological change in the integrase core domain, with conservation of a newly identified Omega-shaped hairpin containing the Q148 residue, in particular. In contrast, the mutations greatly altered the specificity of DNA recognition by integrase. The native residues displayed a clear preference for adenine, whereas the mutant residues strongly favored pyrimidines. Raltegravir may bind to N155 and/or Q148 residues as an adenine bioisoster. This may account for the selected mutations impairing raltegravir binding while allowing alternative DNA recognition by integrase. This study opens up new opportunities for the design of integrase inhibitors active against raltegravir-resistant viruses.
Collapse
Affiliation(s)
- Jean-François Mouscadet
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Delelis O, Thierry S, Subra F, Simon F, Malet I, Alloui C, Sayon S, Calvez V, Deprez E, Marcelin AG, Tchertanov L, Mouscadet JF. Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrob Agents Chemother 2010; 54:491-501. [PMID: 19901095 PMCID: PMC2798554 DOI: 10.1128/aac.01075-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/10/2009] [Accepted: 10/28/2009] [Indexed: 11/20/2022] Open
Abstract
Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC(50)) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.
Collapse
Affiliation(s)
- Olivier Delelis
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Sylvain Thierry
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Frédéric Subra
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Françoise Simon
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Isabelle Malet
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Chakib Alloui
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Sophie Sayon
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Vincent Calvez
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Eric Deprez
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Anne-Geneviève Marcelin
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Luba Tchertanov
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| | - Jean-François Mouscadet
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France, Université Pierre et Marie Curie—Paris, UMR S-943, Paris, France, INSERM, U943, Paris, France, AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France, Service de Bactériologie, Virologie-Hygiène, Hôpital Avicennes EA 3406, AP-HP, Université Paris 13, Bobigny, Paris, France
| |
Collapse
|
20
|
Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. HIV-1 Integrase-DNA Recognition Mechanisms. Viruses 2009; 1:713-36. [PMID: 21994566 PMCID: PMC3185514 DOI: 10.3390/v1030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/24/2023] Open
Abstract
Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (J.J.K.); (C.J.M.); (J.O.E.), (N.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
21
|
Michel F, Crucifix C, Granger F, Eiler S, Mouscadet JF, Korolev S, Agapkina J, Ziganshin R, Gottikh M, Nazabal A, Emiliani S, Benarous R, Moras D, Schultz P, Ruff M. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J 2009; 28:980-91. [PMID: 19229293 DOI: 10.1038/emboj.2009.41] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/26/2009] [Indexed: 12/28/2022] Open
Abstract
Integration of the human immunodeficiency virus (HIV-1) cDNA into the human genome is catalysed by integrase. Several studies have shown the importance of the interaction of cellular cofactors with integrase for viral integration and infectivity. In this study, we produced a stable and functional complex between the wild-type full-length integrase (IN) and the cellular cofactor LEDGF/p75 that shows enhanced in vitro integration activity compared with the integrase alone. Mass spectrometry analysis and the fitting of known atomic structures in cryo negatively stain electron microscopy (EM) maps revealed that the functional unit comprises two asymmetric integrase dimers and two LEDGF/p75 molecules. In the presence of DNA, EM revealed the DNA-binding sites and indicated that, in each asymmetric dimer, one integrase molecule performs the catalytic reaction, whereas the other one positions the viral DNA in the active site of the opposite dimer. The positions of the target and viral DNAs for the 3' processing and integration reaction shed light on the integration mechanism, a process with wide implications for the understanding of viral-induced pathologies.
Collapse
Affiliation(s)
- Fabrice Michel
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et de Génomique Structurales, UDS, CNRS, INSERM, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Delelis O, Malet I, Na L, Tchertanov L, Calvez V, Marcelin AG, Subra F, Deprez E, Mouscadet JF. The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res 2009; 37:1193-201. [PMID: 19129221 PMCID: PMC2651800 DOI: 10.1093/nar/gkn1050] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Raltegravir (MK-0518) is the first integrase (IN) inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses resistant to other antiretroviral compounds. Virological failure of Raltegravir treatment is associated with mutations in the IN gene following two main distinct genetic pathways involving either the N155 or Q148 residue. Importantly, in most cases, an additional mutation at the position G140 is associated with the Q148 pathway. Here, we investigated the viral DNA kinetics for mutants identified in Raltegravir-resistant patients. We found that (i) integration is impaired for Q148H when compared with the wild-type, G140S and G140S/Q148H mutants; and (ii) the N155H and G140S mutations confer lower levels of resistance than the Q148H mutation. We also characterized the corresponding recombinant INs properties. Enzymatic performances closely parallel ex vivo studies. The Q148H mutation ‘freezes’ IN into a catalytically inactive state. By contrast, the conformational transition converting the inactive form into an active form is rescued by the G140S/Q148H double mutation. In conclusion, the Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G140S/Q148H context. Altogether, these results account for the predominance of G140S/Q148H mutants in clinical trials using Raltegravir.
Collapse
Affiliation(s)
- Olivier Delelis
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, 94235 Cachan, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 2008; 5:114. [PMID: 19091057 PMCID: PMC2615046 DOI: 10.1186/1742-4690-5-114] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/17/2008] [Indexed: 01/12/2023] Open
Abstract
Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1). This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.
Collapse
|
24
|
Dolan J, Chen A, Weber IT, Harrison RW, Leis J. Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 2008; 385:568-79. [PMID: 19014951 DOI: 10.1016/j.jmb.2008.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
Collapse
Affiliation(s)
- James Dolan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
25
|
Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, Mouscadet JF, Deprez E. Insight into the integrase-DNA recognition mechanism. A specific DNA-binding mode revealed by an enzymatically labeled integrase. J Biol Chem 2008; 283:27838-27849. [PMID: 18697740 DOI: 10.1074/jbc.m803257200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.
Collapse
Affiliation(s)
- Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Kevin Carayon
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Elvire Guiot
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Hervé Leh
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Patrick Tauc
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Jean-Claude Brochon
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Jean-François Mouscadet
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Superieure Cachan, Institut d'Alembert, 61 Ave. du Président Wilson, 94235 Cachan, France.
| |
Collapse
|
26
|
Barbe S, Le Bret M. Ab initiodetermination of the flexibility of 2′-aminoribonucleosides and 2′-aminoarabinonucleosides inserted in duplexes. J Comput Chem 2008; 29:1353-63. [DOI: 10.1002/jcc.20890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Dicker IB, Samanta HK, Li Z, Hong Y, Tian Y, Banville J, Remillard RR, Walker MA, Langley DR, Krystal M. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J Biol Chem 2007; 282:31186-96. [PMID: 17715137 DOI: 10.1074/jbc.m704935200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) integrase enzyme is required for the integration of viral DNA into the host cell chromosome. Integrase complex assembly and subsequent strand transfer catalysis are mediated by specific interactions between integrase and bases at the end of the viral long terminal repeat (LTR). The strand transfer reaction can be blocked by the action of small molecule inhibitors, thought to bind in the vicinity of the viral LTR termini. This study examines the contributions of the terminal four bases of the nonprocessed strand (G(2)T(1)C(-1)A(-2)) of the HIV LTR on complex assembly, specific strand transfer activity, and inhibitor binding. Base substitutions and abasic replacements at the LTR terminus provided a means to probe the importance of each nucleotide on the different functions. An approach is described wherein the specific strand transfer activity for each integrase/LTR variant is derived by normalizing strand transfer activity to the concentration of active sites. The key findings of this study are as follows. 1) The G(2):C(2) base pair is necessary for efficient assembly of the complex and for maintenance of an active site architecture, which has high affinity for strand transfer inhibitors. 2) Inhibitor-resistant enzymes exhibit greatly increased sensitivity to LTR changes. 3) The strand transfer and inhibitor binding defects of a Q148R mutant are due to a decreased affinity of the complex for magnesium. 4) Gln(148) interacts with G(2), T(1), and C(-1) at the 5' end of the viral LTR, with these four determinants playing important and overlapping roles in assembly, strand transfer catalysis and high affinity inhibitor binding.
Collapse
Affiliation(s)
- Ira B Dicker
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Delelis O, Parissi V, Leh H, Mbemba G, Petit C, Sonigo P, Deprez E, Mouscadet JF. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase. PLoS One 2007; 2:e608. [PMID: 17622353 PMCID: PMC1905944 DOI: 10.1371/journal.pone.0000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/12/2007] [Indexed: 01/16/2023] Open
Abstract
Background HIV-1 integrase (IN) catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. Methodology/Principal Findings We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles—a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3′-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3′-processing was efficiently catalysed by a dimer. Conclusions/Significance Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage.
Collapse
Affiliation(s)
- Olivier Delelis
- LBPA, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
HIV-1 integrase, which catalyzes the joining of viral DNA to the host cell DNA, has attracted considerable attention as a target for the design and screening of novel anti-HIV drugs as it is essential for virus replication and the establishment of persistent infection. Progress in the identification of different classes of compounds that block integrase activity has been summarized recently in several excellent reviews. Here, we present a brief overview of integrase inhibition, highlighting some of the unusual properties of this protein and important considerations in searching for potential new inhibitors and their evaluation.
Collapse
Affiliation(s)
- Joseph Ramcharan
- Locus Pharmaceuticals Inc., 4 Valley Square, 512 East Township Line Road, Blue Bell, PA 19422, USA
| | - Anna Marie Skalka
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA 19111, USA
| |
Collapse
|
30
|
Johnson AA, Sayer JM, Yagi H, Patil SS, Debart F, Maier MA, Corey DR, Vasseur JJ, Burke TR, Marquez VE, Jerina DM, Pommier Y. Effect of DNA modifications on DNA processing by HIV-1 integrase and inhibitor binding: role of DNA backbone flexibility and an open catalytic site. J Biol Chem 2006; 281:32428-38. [PMID: 16943199 DOI: 10.1074/jbc.m605101200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration of the viral cDNA into host chromosomes is required for viral replication. Human immunodeficiency virus integrase catalyzes two sequential reactions, 3'-processing (3'-P) and strand transfer (ST). The first integrase inhibitors are undergoing clinical trial, but interactions of inhibitors with integrase and DNA are not well understood in the absence of a co-crystal structure. To increase our understanding of integrase interactions with DNA, we examined integrase catalysis with oligonucleotides containing DNA backbone, base, and groove modifications placed at unique positions surrounding the 3'-processing site. 3'-Processing was blocked with substrates containing constrained sugars and alpha-anomeric residues, suggesting that integrase requires flexibility of the phosphodiester backbone at the 3'-P site. Of several benzo[a]pyrene 7,8-diol 9,10-epoxide (BaP DE) adducts tested, only the adduct in the minor groove at the 3'-P site inhibited 3'-P, suggesting the importance of the minor groove contacts for 3'-P. ST occurred in the presence of bulky BaP DE DNA adducts attached to the end of the viral DNA suggesting opening of the active site for ST. Position-specific effects of these BaP DE DNA adducts were found for inhibition of integrase by diketo acids. Together, these results demonstrate the importance of DNA structure and specific contacts with the viral DNA processing site for inhibition by integrase inhibitors.
Collapse
Affiliation(s)
- Allison A Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health/DHHS, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, Gottikh M, Mouscadet JF, Brochon JC, Deprez E. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem 2006; 281:22707-19. [PMID: 16774912 DOI: 10.1074/jbc.m602198200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 3'-processing of the extremities of viral DNA is the first of two reactions catalyzed by HIV-1 integrase (IN). High order IN multimers (tetramers) are required for complete integration, but it remains unclear which oligomer is responsible for the 3'-processing reaction. Moreover, IN tends to aggregate, and it is unknown whether the polymerization or aggregation of this enzyme on DNA is detrimental or beneficial for activity. We have developed a fluorescence assay based on anisotropy for monitoring release of the terminal dinucleotide product in real-time. Because the initial anisotropy value obtained after DNA binding and before catalysis depends on the fractional saturation of DNA sites and the size of IN.DNA complexes, this approach can be used to study the relationship between activity and binding/multimerization parameters in the same assay. By increasing the IN:DNA ratio, we found that the anisotropy increased but the 3'-processing activity displayed a characteristic bell-shaped behavior. The anisotropy values obtained in the first phase were predictive of subsequent activity and accounted for the number of complexes. Interestingly, activity peaked and then decreased in the second phase, whereas anisotropy continued to increase. Time-resolved fluorescence anisotropy studies showed that the most competent form for catalysis corresponds to a dimer bound to one viral DNA end, whereas higher order complexes such as aggregates predominate during the second phase when activity drops off. We conclude that a single IN dimer at each extremity of viral DNA molecules is required for 3'-processing, with a dimer of dimers responsible for the subsequent full integration.
Collapse
Affiliation(s)
- Elvire Guiot
- Laboratoire de Biotechnologie et Pharmacologie Genetique Appliquee, CNRS, UMR8113, Ecole Normale Supérieure de Cachan, 61 av du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|