1
|
Danialifar TF, Chumpitazi BP, Mehta DI, Di Lorenzo C. Genetic and acquired sucrase-isomaltase deficiency: A clinical review. J Pediatr Gastroenterol Nutr 2024; 78:774-782. [PMID: 38327254 DOI: 10.1002/jpn3.12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Genetic sucrase-isomaltase deficiency (GSID) is an inherited deficiency in the ability to digest sucrose and potentially starch due to mutations in the sucrase-isomaltase (SI) gene. Congenital sucrase-isomaltase deficiency is historically considered to be a rare condition affecting infants with chronic diarrhea as exposure to dietary sucrose begins. Growing evidence suggests that individuals with SI variants may present later in life, with symptoms overlapping with those of irritable bowel syndrome. The presence of SI genetic variants may, either alone or in combination, affect enzyme activity and lead to symptoms of different severity. As such, a more appropriate term for this inherited condition is GSID, with a recognition of a spectrum of severity and onset of presentation. Currently, disaccharidase assay on duodenal mucosal tissue homogenates is the gold standard in diagnosing SI deficiency. A deficiency in the SI enzyme can be present at birth (genetic) or acquired later, often in association with damage to the enteric brush-border membrane. Other noninvasive diagnostic alternatives such as sucrose breath tests may be useful but require further validation. Management of GSID is based on sucrose and potentially starch restriction tailored to the individual patients' tolerance and symptoms. As this approach may be challenging, additional treatment with commercially available sacrosidase is available. However, some patients may require continued starch restriction. Further research is needed to clarify the true prevalence of SI deficiency, the pathobiology of single SI heterozygous mutations, and to define optimal diagnostic and treatment algorithms in the pediatric population.
Collapse
Affiliation(s)
- Tanaz Farzan Danialifar
- Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Bruno P Chumpitazi
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Devendra I Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Carlo Di Lorenzo
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
2
|
Senftleber NK, Ramne S, Moltke I, Jørgensen ME, Albrechtsen A, Hansen T, Andersen MK. Genetic Loss of Sucrase-Isomaltase Function: Mechanisms, Implications, and Future Perspectives. Appl Clin Genet 2023; 16:31-39. [PMID: 36994449 PMCID: PMC10041990 DOI: 10.2147/tacg.s401712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic variants causing loss of sucrase-isomaltase (SI) function result in malabsorption of sucrose and starch components and the condition congenital sucrase-isomaltase deficiency (CSID). The identified genetic variants causing CSID are very rare in all surveyed populations around the globe, except the Arctic-specific c.273_274delAG loss-of-function (LoF) variant, which is common in the Greenlandic Inuit and other Arctic populations. In these populations, it is, therefore, possible to study people with loss of SI function in an unbiased way to elucidate the physiological function of SI, and investigate both short-term and long-term health effects of reduced small intestinal digestion of sucrose and starch. Importantly, a recent study of the LoF variant in Greenlanders reported that adult homozygous carriers have a markedly healthier metabolic profile. These findings indicate that SI inhibition could potentially improve metabolic health also in individuals not carrying the LoF variant, which is of great interest considering the massive number of individuals with obesity and type 2 diabetes worldwide. Therefore, the objectives of this review, are 1) to describe the biological role of SI, 2) to describe the metabolic impact of the Arctic SI LoF variant, 3) to reflect on potential mechanisms linking reduced SI function to metabolic health, and 4) to discuss what knowledge is necessary to properly evaluate whether SI inhibition is a potential therapeutic target for improving cardiometabolic health.
Collapse
Affiliation(s)
- Ninna Karsbæk Senftleber
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marit Eika Jørgensen
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Mette K Andersen, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 8. sal, 2200 København N., Copenhagen, Denmark, Tel +45 35325282, Email
| |
Collapse
|
3
|
Hoter A, Naim HY. The glucose-regulated protein GRP94 interacts avidly in the endoplasmic reticulum with sucrase-isomaltase isoforms that are associated with congenital sucrase-isomaltase deficiency. Int J Biol Macromol 2021; 186:237-243. [PMID: 34242650 DOI: 10.1016/j.ijbiomac.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Zhou J, Zhao Y, Qian X, Cheng Y, Cai H, Chen M, Zhou S. Two Novel Mutations in the SI Gene Associated With Congenital Sucrase-Isomaltase Deficiency: A Case Report in China. Front Pediatr 2021; 9:731716. [PMID: 34926337 PMCID: PMC8675567 DOI: 10.3389/fped.2021.731716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive inherited disease that leads to the maldigestion of disaccharides and is associated with mutation of the sucrase-isomaltase (SI) gene. Cases of CSID are not very prevalent in China or worldwide but are gradually being identified and reported. Case Presentation: We report a case involving a 14-month-old male who presented with failure to thrive that had begun after food diversification and was admitted for chronic diarrhea. We used a whole-exome sequencing (WES) approach to identify mutations in this patient's genome. WES revealed two novel heterozygous mutations in the SI gene, c.2626C > T (p.Q876*) and c.2872C > T (p.R958C), which were confirmed by Sanger DNA sequencing. With a strict sucrose- and starch-restricted diet, the patient's diarrhea was resolved, and he began to gain weight. Conclusions: We report a case of novel variants in the SI gene that caused CSID. This report provides valuable information for the clinical field, especially in China.
Collapse
Affiliation(s)
- Jianli Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yuzhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xia Qian
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yongwei Cheng
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Huabo Cai
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Moxian Chen
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Chumpitazi BP, Lewis J, Cooper D, D’Amato M, Lim J, Gupta S, Miranda A, Terry N, Mehta D, Scheimann A, O’Gorman M, Tipnis N, Davies Y, Friedlander J, Smith H, Punati J, Khlevner J, Setty M, Di Lorenzo C. Hypomorphic SI genetic variants are associated with childhood chronic loose stools. PLoS One 2020; 15:e0231891. [PMID: 32433684 PMCID: PMC7239456 DOI: 10.1371/journal.pone.0231891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/02/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The SI gene encodes the sucrase-isomaltase enzyme, a disaccharidase expressed in the intestinal brush border. Hypomorphic SI variants cause recessive congenital sucrase-isomaltase deficiency (CSID) and related gastrointestinal (GI) symptoms. Among children presenting with chronic, idiopathic loose stools, we assessed the prevalence of CSID-associated SI variants relative to the general population and the relative GI symptom burden associated with SI genotype within the study population. METHODS A prospective study conducted at 18 centers enrolled 308 non-Hispanic white children ≤18 years old who were experiencing chronic, idiopathic, loose stools at least once per week for >4 weeks. Data on demographics, GI symptoms, and genotyping for 37 SI hypomorphic variants were collected. Race/ethnicity-matched SI data from the Exome Aggregation Consortium (ExAC) database was used as the general population reference. RESULTS Compared with the general population, the cumulative prevalence of hypomorphic SI variants was significantly higher in the study population (4.5% vs. 1.3%, P < .01; OR = 3.5 [95% CI: 6.1, 2.0]). Within the study population, children with a hypomorphic SI variant had a more severe GI symptom burden than those without, including: more frequent episodes of loose stools (P < .01), higher overall stool frequency (P < .01), looser stool form (P = .01) and increased flatulence (P = .02). CONCLUSION Non-Hispanic white children with chronic idiopathic loose stools have a higher prevalence of CSID-associated hypomorphic SI variants than the general population. The GI symptom burden was greater among the study subjects with a hypomorphic SI variant than those without hypomorphic SI variants.
Collapse
Affiliation(s)
| | - Jeffery Lewis
- Children’s Center for Digestive Health Care, Atlanta, GA, United States of America
| | - Derick Cooper
- QOL Medical, LLC, Vero Beach, FL, United States of America
| | - Mauro D’Amato
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Joel Lim
- Children's Mercy Hospital, Kansas City, MO, United States of America
| | - Sandeep Gupta
- Sacramento Pediatric Gastroenterology, Sacramento, CA, United States of America
| | - Adrian Miranda
- Children’s Hospital of Wisconsin, Milwaukee, WI, United States of America
| | - Natalie Terry
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Devendra Mehta
- Arnold Palmer Children's Hospital, Orlando, FL, United States of America
| | - Ann Scheimann
- Johns Hopkins University, Baltimore, MD, United States of America
| | - Molly O’Gorman
- Primary Children's Medical Center, Salt Lake City, UT, United States of America
| | - Neelesh Tipnis
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Yinka Davies
- Sacramento Pediatric Gastroenterology, Sacramento, CA, United States of America
| | - Joel Friedlander
- Children’s Hospital Colorado, Digestive Health Institute, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heather Smith
- QOL Medical, LLC, Vero Beach, FL, United States of America
| | - Jaya Punati
- Children’s Hospital of Los Angeles, Los Angeles, CA, United States of America
| | - Julie Khlevner
- Columbia University Medical Center, New York, NY, United States of America
| | - Mala Setty
- UCSF Benioff Children’s Hospital Oakland, Oakland, CA, United States of America
| | - Carlo Di Lorenzo
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
6
|
Heterozygotes Are a Potential New Entity among Homozygotes and Compound Heterozygotes in Congenital Sucrase-Isomaltase Deficiency. Nutrients 2019; 11:nu11102290. [PMID: 31557950 PMCID: PMC6835860 DOI: 10.3390/nu11102290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive disorder of carbohydrate maldigestion and malabsorption caused by mutations in the sucrase-isomaltase (SI) gene. SI, together with maltase-glucoamylase (MGAM), belongs to the enzyme family of disaccharidases required for breakdown of α-glycosidic linkages in the small intestine. The effects of homozygote and compound heterozygote inheritance trait of SI mutations in CSID patients have been well described in former studies. Here we propose the inclusion of heterozygote mutation carriers as a new entity in CSID, possibly presenting with milder symptoms. The hypothesis is supported by recent observations of heterozygote mutation carriers among patients suffering from CSID or patients diagnosed with functional gastrointestinal disorders. Recent studies implicate significant phenotypic heterogeneity depending on the character of the mutation and call for more research regarding the correlation of genetics, function at the cellular and molecular level and clinical presentation. The increased importance of SI gene variants in irritable bowel syndrome (IBS) or other functional gastrointestinal disorders FGIDs and their available symptom relief diets like fermentable oligo-, di-, mono-saccharides and polyols FODMAPs suggest that the heterozygote mutants may affect the disease development and treatment.
Collapse
|
7
|
Abstract
The final step of carbohydrate digestion in the intestine is performed by 2 major α-glucosidases of the intestinal mucosa, sucrase-isomaltase (SI) and maltase-glucoamylase. Both of these enzymes are type II membrane glycoproteins, which share a significant level of homology in gene and protein structures and yet have differences in the posttranslational processing, substrate specificity and functional capacity. Insufficient activity of these disaccharidases particularly SI as a result of genetic mutations or secondary intestinal pathologies is associated with carbohydrate maldigestion and gastrointestinal intolerances. This review will discuss the maturation profiles of SI and maltase-glucoamylase relative to their functional capacities and deficiencies.
Collapse
|
8
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
9
|
Gericke B, Schecker N, Amiri M, Naim HY. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity. J Biol Chem 2017. [DOI: 10.1074/jbc.m117.791939 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Gericke B, Schecker N, Amiri M, Naim HY. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity. J Biol Chem 2017; 292:11070-11078. [PMID: 28522605 DOI: 10.1074/jbc.m117.791939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Sucrase-isomaltase (SI) is an intestinal membrane-associated α-glucosidase that breaks down di- and oligosaccharides to absorbable monosaccharides. SI has two homologous functional subunits (sucrase and isomaltase) that both belong to the glycoside hydrolase family 31 (GH31) and differ in substrate specificity. All GH31 enzymes share a consensus sequence harboring an aspartic acid residue as a catalytic nucleophile. Moreover, crystallographic structural analysis of isomaltase predicts that another aspartic acid residue functions as a proton donor in hydrolysis. Here, we mutagenized the predicted proton donor residues and the nucleophilic catalyst residues in each SI subunit. We expressed these SI variants in COS-1 cells and analyzed their structural, transport, and functional characteristics. All of the mutants revealed expression levels and maturation rates comparable with those of the wild-type species and the corresponding nonmutated subunits were functionally active. Thereby we determined rate and substrate specificity for each single subunit without influence from the other subunit. This approach provides a model for functional analysis of the single subunits within a multidomain protein, achieved without the necessity to express the individual subunits separately. Of note, we also found that glucose product inhibition regulates the activities of both SI subunits. We experimentally confirmed the catalytic function of the predicted proton donor residues, and sequence analysis suggested that these residues are located in a consensus region in many GH31 family members. In summary, these findings reveal the kinetic features specific for each human SI subunit and demonstrate that the activities of these subunits are regulated via product inhibition.
Collapse
Affiliation(s)
- Birthe Gericke
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Natalie Schecker
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Mahdi Amiri
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Hassan Y Naim
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| |
Collapse
|
11
|
Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:817-826. [PMID: 28062276 DOI: 10.1016/j.bbadis.2016.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase deficiency (CSID) is a genetic disorder associated with mutations in the sucrase-isomaltase (SI) gene. The diagnosis of congenital diarrheal disorders like CSID is difficult due to unspecific symptoms and usually requires invasive biopsy sampling of the intestine. Sequencing of the SI gene and molecular analysis of the resulting potentially pathogenic SI protein variants may facilitate a diagnosis in the future. This study aimed to categorize SI mutations based on their functional consequences. METHODS cDNAs encoding 13 SI mutants were expressed in COS-1 cells. The molecular pathogenicity of the resulting SI mutants was defined by analyzing their biosynthesis, cellular localization, structure and enzymatic functions. RESULTS Three biosynthetic phenotypes for the novel SI mutations were identified. The first biosynthetic phenotype was defined by mutants that are intracellularly transported in a fashion similar to wild type SI and with normal, but varying, levels of enzymatic activity. The second biosynthetic phenotype was defined by mutants with delayed maturation and trafficking kinetics and reduced activity. The third group of mutants is entirely transport incompetent and functionally inactive. CONCLUSIONS The current study unraveled CSID as a multifaceted malabsorption disorder that comprises three major classes of functional and trafficking mutants of SI and established a gradient of mild to severe functional deficits in the enzymatic functions of the enzyme. GENERAL SIGNIFICANCE This novel concept and the existence of mild consequences in a number of SI mutants strongly propose that CSID is an underdiagnosed and a more common intestinal disease than currently known.
Collapse
|
12
|
Amiri M, Naim HY. Long term differential consequences of miglustat therapy on intestinal disaccharidases. J Inherit Metab Dis 2014; 37:929-37. [PMID: 24863482 DOI: 10.1007/s10545-014-9725-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 01/30/2023]
Abstract
Miglustat is an oral medication for treatment of lysosomal storage diseases such as Gaucher disease type I and Niemann Pick disease type C. In many cases application of Miglustat is associated with symptoms similar to those observed in intestinal carbohydrate malabsorption. Previously, we have demonstrated that intestinal disaccharidases are inhibited immediately by Miglustat in the intestinal lumen. Nevertheless, the multiple functions of Miglustat hypothesize long term effects of Miglustat on intracellular mechanisms, including glycosylation, maturation and trafficking of the intestinal disaccharidases. Our data show that a major long term effect of Miglustat is its interference with N-glycosylation of the proteins in the ER leading to a delay in the trafficking of sucrase-isomaltase. Also association with lipid rafts and plausibly apical targeting of this protein is partly affected in the presence of Miglustat. More drastic is the effect of Miglustat on lactase-phlorizin hydrolase which is partially blocked intracellularly. The de novo synthesized SI and LPH in the presence of Miglustat show reduced functional efficiencies according to altered posttranslational processing of these proteins. However, at physiological concentrations of Miglustat (≤50 μM) a major part of the activity of these disaccharidases is found to be still preserved, which puts the charge of the observed carbohydrate maldigestion mostly on the direct inhibition of disaccharidases in the intestinal lumen by Miglustat as the immediate side effect.
Collapse
Affiliation(s)
- Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | | |
Collapse
|
13
|
Thuenauer R, Rodriguez-Boulan E, Römer W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 2014; 139:3206-18. [PMID: 24668405 PMCID: PMC4286366 DOI: 10.1039/c4an00056k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers.
Collapse
Affiliation(s)
- Roland Thuenauer
- Institute of Biology II, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
14
|
|
15
|
Rodríguez D, Ramsay AJ, Quesada V, Garabaya C, Campo E, Freije JMP, López-Otín C. Functional analysis of sucrase–isomaltase mutations from chronic lymphocytic leukemia patients. Hum Mol Genet 2013; 22:2273-82. [DOI: 10.1093/hmg/ddt078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Four mutations in the SI gene are responsible for the majority of clinical symptoms of CSID. J Pediatr Gastroenterol Nutr 2012; 55 Suppl 2:S34-5. [PMID: 23103650 DOI: 10.1097/01.mpg.0000421408.65257.b5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
17
|
Investigations of the structures and inhibitory properties of intestinal maltase glucoamylase and sucrase isomaltase. J Pediatr Gastroenterol Nutr 2012; 55 Suppl 2:S20-4. [PMID: 23103645 DOI: 10.1097/01.mpg.0000421403.34763.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
18
|
Congenital sucrase-isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. J Pediatr Gastroenterol Nutr 2012; 55 Suppl 2:S13-20. [PMID: 23103643 DOI: 10.1097/01.mpg.0000421402.57633.4b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
19
|
Lee SH, Yu SY, Nakayama J, Khoo KH, Stone EL, Fukuda MN, Marth JD, Fukuda M. Core2 O-glycan structure is essential for the cell surface expression of sucrase isomaltase and dipeptidyl peptidase-IV during intestinal cell differentiation. J Biol Chem 2010; 285:37683-92. [PMID: 20841351 DOI: 10.1074/jbc.m110.162735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 β1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1-3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.
Collapse
Affiliation(s)
- Seung Ho Lee
- Glycobiology Unit, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mochizuki K, Igawa-Tada M, Takase S, Goda T. Feeding rats a high fat/carbohydrate ratio diet reduces jejunal S/I activity ratio and unsialylated galactose on glycosylated chain of S–I complex. Life Sci 2010; 86:524-31. [DOI: 10.1016/j.lfs.2010.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 12/28/2009] [Accepted: 02/06/2010] [Indexed: 11/17/2022]
|
21
|
Behrendt M, Keiser M, Hoch M, Naim HY. Impaired trafficking and subcellular localization of a mutant lactase associated with congenital lactase deficiency. Gastroenterology 2009; 136:2295-303. [PMID: 19208354 DOI: 10.1053/j.gastro.2009.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Congenital lactase deficiency (CLD) is a cause of disaccharide intolerance and malabsorption characterized by watery diarrhea in infants fed breast milk or lactose-containing formulas. The molecular basis of CLD is unknown. Mutations in the coding region of the brush border enzyme lactase phlorizin hydrolase (LPH) were found to cause CLD in a study of 19 Finnish families. We analyzed the effects of one of these mutations, G1363S, on LPH folding, trafficking, and function. METHODS We introduced a mutation into the LPH complementary DNA that resulted in the amino acid substitution G1363S. The mutant gene was transiently expressed in COS-1 cells, and the effects were assessed at the protein, structural, and subcellular levels. RESULTS The mutant protein LPH-G1363S was misfolded and could not exit the endoplasmic reticulum. Interestingly, the mutation creates an additional N-glycosylation site that is characteristic of a temperature-sensitive protein. The intracellular transport and enzymatic activity, but not correct folding, of LPH-G1363S were partially restored by expression at 20 degrees C. However, a form of LPH that contains the mutations G1363S and N1361A, which eliminates the N-glycosylation site, did not restore the features of wild-type LPH. Thus, the additional glycosyl group is not required for the LPH-G1363S defects. CONCLUSIONS This is the first characterization, at the molecular and subcellular levels, of a mutant form of LPH that is involved in the pathogenesis of CLD. Mutant LPH accumulates predominantly in the endoplasmic reticulum but can partially mature at a permissive temperature; these features are unique for a protein involved in a carbohydrate malabsorption defect implicating LPH.
Collapse
Affiliation(s)
- Marc Behrendt
- Department of Physiological Chemistry, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|
22
|
Alfalah M, Keiser M, Leeb T, Zimmer KP, Naim HY. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency. Gastroenterology 2009; 136:883-92. [PMID: 19121318 DOI: 10.1053/j.gastro.2008.11.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 10/31/2008] [Accepted: 11/13/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|
23
|
Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 2008; 9:833-45. [PMID: 18946473 DOI: 10.1038/nrm2525] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polarized distribution of functions in polarized cells requires the coordinated interaction of three machineries that modify the basic mechanisms of intracellular protein trafficking and distribution. First, intrinsic protein-sorting signals and cellular decoding machineries regulate protein trafficking to plasma membrane domains; second, intracellular signalling complexes define the plasma membrane domains to which proteins are delivered; and third, proteins that are involved in cell-cell and cell-substrate adhesion orientate the three-dimensional distribution of intracellular signalling complexes and, accordingly, the direction of membrane traffic. The integration of these mechanisms into a complex and dynamic network is crucial for normal tissue function and is often defective in disease states.
Collapse
|