1
|
Katalinić J, Richards M, Auyang A, Millett JH, Kogenaru M, Windbichler N. Do the Shuffle: Expanding the Synthetic Biology Toolkit for Shufflon-like Recombination Systems. ACS Synth Biol 2025. [PMID: 39869770 DOI: 10.1021/acssynbio.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) Rci from plasmid R64, recognizing asymmetric sfx sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs. We identified 14 previously untested SI genes and their sfx sites in public databases. We established an assay based on single-molecule sequencing that allows the quantification of the inversion rates of these enzymes and determined cross-recognition to identify orthogonal SI/sfx pairs. We describe SI enzymes with substantially improved shuffling rates when expressed in an inducible manner in E. coli. Our findings will facilitate the use of SIs in engineering biology where synthetic shufflons enable the generation of millions of sequence variants in vivo for applications such as barcoding or experimental selection.
Collapse
Affiliation(s)
- Jan Katalinić
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Morgan Richards
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Alex Auyang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - James H Millett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | | | | |
Collapse
|
2
|
Allard N, Collette A, Paquette J, Rodrigue S, Côté JP. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun Biol 2023; 6:1172. [PMID: 37973843 PMCID: PMC10654706 DOI: 10.1038/s42003-023-05534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial conjugation is a major horizontal gene transfer mechanism. While the functions encoded by many conjugative plasmids have been intensively studied, the contribution of recipient chromosome-encoded genes remains largely unknown. Here, we analyzed the genetic requirement of recipient cells for conjugation of IncI2 plasmid TP114, which was recently shown to transfer at high rates in the gut microbiota. We performed transfer assays with ~4,000 single-gene deletion mutants of Escherichia coli. When conjugation occurs on a solid medium, we observed that recipient genes impairing transfer rates were not associated with a specific cellular function. Conversely, transfer assays performed in broth were largely dependent on the lipopolysaccharide biosynthesis pathway. We further identified specific structures in lipopolysaccharides used as recipient cell surface receptors by PilV adhesins associated with the type IVb accessory pilus of TP114. Our strategy is applicable to study other mobile genetic elements and understand important host cell factors for their dissemination.
Collapse
Affiliation(s)
- Nancy Allard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Arianne Collette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Josianne Paquette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - Jean-Philippe Côté
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
3
|
Allard N, Neil K, Grenier F, Rodrigue S. The Type IV Pilus of Plasmid TP114 Displays Adhesins Conferring Conjugation Specificity and Is Important for DNA Transfer in the Mouse Gut Microbiota. Microbiol Spectr 2022; 10:e0230321. [PMID: 35293798 PMCID: PMC9045228 DOI: 10.1128/spectrum.02303-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support. The PilV-coding sequence is part of a shufflon and can bear different C-terminal domains. The shufflon is a multiple DNA inversion system containing many DNA cassettes flanked by recombination sites that are recognized by a shufflon-specific tyrosine recombinase (shufflase) promoting the recombination between DNA segments. The different PilV variants act as adhesins that can modify the affinity for different recipient bacteria. Eight PilV variants were identified in TP114, including one that has not been described in other shufflons. All PilV variants allowed conjugative transfer with different recipient Escherichia coli strains. We conclude that the T4P carried by TP114 plays a major role in mating pair stabilization in broth as well as in the gut microbiota and that the shufflon acts as a biological switch modifying the conjugative host range specificity. IMPORTANCE Conjugative plasmids are involved in horizontal gene transfer in the gut microbiota, which constitutes an important antibiotic resistance gene reservoir. However, the molecular mechanisms used by conjugative plasmids to select recipient bacteria and transfer at high rates in the mouse gut microbiota remain poorly characterized. We studied the type IV pilus carried by TP114 and demonstrated that the minor pilin PilV acts as an adhesin that can efficiently select target cells for conjugative transfer. Moreover, the pilV gene can be rapidly modified by a shufflon, hence modulating the nature of the recipient bacteria during conjugation. Our study highlights the role of mating pair stabilization for conjugation in broth as well as in the gut microbiome and explains how the host spectrum of a plasmid can be expanded simply by remodeling the PilV adhesin.
Collapse
Affiliation(s)
- Nancy Allard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Neil
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédéric Grenier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Han P, Ma Y, Fu Z, Guo Z, Xie J, Wu Y, Yuan YJ. A DNA Inversion System in Eukaryotes Established via Laboratory Evolution. ACS Synth Biol 2021; 10:2222-2230. [PMID: 34420293 DOI: 10.1021/acssynbio.1c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA inversion is a type of site-specific recombination system that plays an important role in the generation of genetic diversity and phenotypic adaptation by programmed rearrangements in bacteria. However, no such inversion system exhibiting a strong directionality bias has been identified or developed in eukaryotes yet. Here, using directed evolution of Rci recombinase, a tyrosine recombinase from a bacterial DNA inversion system, we identified a mutant Rci8 with a ratio of inversion/deletion up to ∼4320 in yeast. Based on Rci8 recombinase and sfxa101 sites, we have established a DNA inversion system in yeast and mammalian cells, enabling specificity for DNA inversions between inverted sites over deletions between directly repeated sites. Our results validated that the reversible DNA inversion system can act as an on/off transcriptional switch. Moreover, we demonstrate that the inversion system can also work on linear chromosomes. The eukaryotic DNA inversion system would provide a new tool for fields of genetic circuits, cellular barcoding, and synthetic genomes.
Collapse
Affiliation(s)
- Peiyan Han
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Ma
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zongheng Fu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhou Guo
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiangnan Xie
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying-jin Yuan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Interference of ISEcp1-bla CTX-M-1 with the shufflon rearrangement in IncI1 plasmids. Plasmid 2021; 116:102578. [PMID: 33964314 DOI: 10.1016/j.plasmid.2021.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
IncI1 plasmids are known disseminators of the extended-spectrum cephalosporin resistance (ESC) gene blaCTX-M-1, among species of the Enterobacteriaceae family. In several IncI1 plasmids, this gene was found incorporated into the transposition unit, ISEcp1-blaCTX-M-1-orf477, interrupting a shufflon region, a hallmark of IncI1 conjugative plasmids. The shufflon diversifies pilV gene that encodes the adhesine-type protein found on the tip of the conjugative pilus. To further elucidate the shufflon rearrangement, we examined to what extent the shufflon rearrangement was affected by the transposition-unit insertion. As expected, the interrupted shufflons generated a lower number of shufflon variants and exhibited an altered segment-deletion pattern compared to the non-interrupted shufflon. Interestingly, segment-loss frequency of the interrupted shufflons was distinctive in different plasmid hosts. Finally, the analysis of the 3' end of the pilV gene revealed that shufflon rearrangement favoured segment A to complete pilV partial open reading frame regardless of the shufflon. Thereby, it could be assumed that the A-segment has greater importance during conjugation, however, this remained a hypothesis. Further exploration of shufflon rearrangement and its importance in the plasmid-recipient selection during conjugation would be beneficial as the knowledge could be applied in developing a strategy to limit IncI1 mediated antimicrobial resistance dissemination.
Collapse
|
6
|
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2019; 73:1121-1137. [PMID: 29370371 DOI: 10.1093/jac/dkx488] [Citation(s) in RCA: 556] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution.
Collapse
Affiliation(s)
- M Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M S M Brouwer
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Fischer
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Gonzalez-Zorn
- Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - B Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - D J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions. Plasmid 2019; 102:51-55. [PMID: 30885787 DOI: 10.1016/j.plasmid.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022]
Abstract
One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions, little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate. For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host, indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.
Collapse
|
8
|
Carattoli A, Villa L, Fortini D, García-Fernández A. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid 2018; 118:102392. [PMID: 30529488 DOI: 10.1016/j.plasmid.2018.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
IncI1 has become one of the most common plasmid families in contemporary Enterobacteriaceae from both human and animal sources. In clinical epidemiology, this plasmid type ranks first as the confirmed vehicle of transmission of extended spectrum beta-lactamase and plasmid AmpC genes in isolates from food-producing animals. In this review, we describe the epidemiology and evolution of IncI1 plasmids and closely related IncIγ plasmids. We highlight the emergence of epidemic plasmids circulating among different bacterial hosts in geographically distant countries, and we address the phylogeny of the IncI1 and IncIγ family based on plasmid Multilocus Sequence Typing.
Collapse
Affiliation(s)
- Alessandra Carattoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela Fortini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Aurora García-Fernández
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
9
|
Sekizuka T, Kawanishi M, Ohnishi M, Shima A, Kato K, Yamashita A, Matsui M, Suzuki S, Kuroda M. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids. Sci Rep 2017; 7:928. [PMID: 28424528 PMCID: PMC5430464 DOI: 10.1038/s41598-017-01082-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A multiple DNA inversion system, the shufflon, exists in incompatibility (Inc) I1 and I2 plasmids. The shufflon generates variants of the PilV protein, a minor component of the thin pilus. The shufflon is one of the most difficult regions for de novo genome assembly because of its structural diversity even in an isolated bacterial clone. We determined complete genome sequences, including those of IncI2 plasmids carrying mcr-1, of three Escherichia coli strains using single-molecule, real-time (SMRT) sequencing and Illumina sequencing. The sequences assembled using only SMRT sequencing contained misassembled regions in the shufflon. A hybrid analysis using SMRT and Illumina sequencing resolved the misassembled region and revealed that the three IncI2 plasmids, excluding the shufflon region, were highly conserved. Moreover, the abundance ratio of whole-shufflon structures could be determined by quantitative structural variation analysis of the SMRT data, suggesting that a remarkable heterogeneity of whole-shufflon structural variations exists in IncI2 plasmids. These findings indicate that remarkable rearrangement regions should be validated using both long-read and short-read sequencing data and that the structural variation of PilV in the shufflon might be closely related to phenotypic heterogeneity of plasmid-mediated transconjugation involved in horizontal gene transfer even in bacterial clonal populations.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan.
| | - Michiko Kawanishi
- Assay Division II, Bacterial Assay Section, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji-shi, 185-8511, Tokyo, Japan
| | - Mamoru Ohnishi
- Ohnishi Laboratory of Veterinary Microbiology, 10-3-3 Nishirokujyouminami, Shibetsugunnakashibetsu-cho, 086-1106, Hokkaido, Japan
| | - Ayaka Shima
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Satowa Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
10
|
Farrugia DN, Elbourne LDH, Mabbutt BC, Paulsen IT. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene. Nucleic Acids Res 2015; 43:4547-57. [PMID: 25883135 PMCID: PMC4482086 DOI: 10.1093/nar/gkv337] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature.
Collapse
Affiliation(s)
- Daniel N Farrugia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bridget C Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, Siu LK. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother 2013; 69:628-31. [PMID: 24123430 DOI: 10.1093/jac/dkt409] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Two plasmids carrying bla(KPC-2) isolated from carbapenem-resistant Escherichia coli (CR-EC) and carbapenem-resistant Klebsiella pneumoniae (CR-KP), respectively, were completely sequenced. The CR-KP strain was selected from an outbreak in 2012, and the CR-EC strain was the first blaKPC-2-carrying E. coli identified in the same carbapenem resistance monitoring programme in Taiwan. METHODS Antimicrobial susceptibility tests, multilocus sequence typing (MLST) and the conjugal transfer of plasmids were performed. Complete sequencing of the plasmids was performed using a shotgun approach. RESULTS The CR-EC and CR-KP strains in this study were determined to be ST410 and ST11, respectively, by MLST. From CR-EC, we identified a 145 kb conjugative plasmid that carries bla(KPC-2), bla(CMY-2), bla(CTX-M-3) and bla(TEM-1). The plasmid is a chimera composed of three regions related to IncI, IncN and RepFIC replicons. From CR-KP, we identified an 86.5 kb plasmid, pKPC-LK30, which carries bla(KPC-2) and bla(SHV-11). The plasmid is very similar to two bla(KPC-2)-carrying IncFII(K) plasmids, but lacks one of the replication origins and cannot conjugate. CONCLUSIONS The differences in cross-species transferability of the two plasmids can be explained by genetic differences between their backbones and could have resulted in the confined bla(KPC-2)-carrying CR-KP outbreak in Taiwan. Plasmid pKPC-LKEc is the first bla(KPC-2)-carrying plasmid identified from CR-EC in Taiwan. With relatively high transferability it should be closely monitored.
Collapse
Affiliation(s)
- Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid 2010; 64:92-103. [DOI: 10.1016/j.plasmid.2010.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
|