1
|
Dowling AL, Walbridge S, Ertekin C, Namagiri S, Camacho K, Chowdhury A, Bryant JP, Kohut E, Heiss JD, Brown DA, Kumbar SG, Banasavadi-Siddegowda YK. FKBP38 Regulates Self-Renewal and Survival of GBM Neurospheres. Cells 2023; 12:2562. [PMID: 37947640 PMCID: PMC10647221 DOI: 10.3390/cells12212562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun-PTEN-AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy.
Collapse
Affiliation(s)
- Aimee L. Dowling
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Stuart Walbridge
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Celine Ertekin
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Sriya Namagiri
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Krystal Camacho
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Ashis Chowdhury
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Jean-Paul Bryant
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Eric Kohut
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - John D. Heiss
- Clinical Neurology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Desmond A. Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| |
Collapse
|
2
|
Zuo L, Kuo WT, Cao F, Chanez-Paredes SD, Zeve D, Mannam P, Jean-François L, Day A, Vallen Graham W, Sweat YY, Shashikanth N, Breault DT, Turner JR. Tacrolimus-binding protein FKBP8 directs myosin light chain kinase-dependent barrier regulation and is a potential therapeutic target in Crohn's disease. Gut 2023; 72:870-881. [PMID: 35537812 PMCID: PMC9977574 DOI: 10.1136/gutjnl-2021-326534] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intestinal barrier loss is a Crohn's disease (CD) risk factor. This may be related to increased expression and enzymatic activation of myosin light chain kinase 1 (MLCK1), which increases intestinal paracellular permeability and correlates with CD severity. Moreover, preclinical studies have shown that MLCK1 recruitment to cell junctions is required for tumour necrosis factor (TNF)-induced barrier loss as well as experimental inflammatory bowel disease progression. We sought to define mechanisms of MLCK1 recruitment and to target this process pharmacologically. DESIGN Protein interactions between FK506 binding protein 8 (FKBP8) and MLCK1 were assessed in vitro. Transgenic and knockout intestinal epithelial cell lines, human intestinal organoids, and mice were used as preclinical models. Discoveries were validated in biopsies from patients with CD and control subjects. RESULTS MLCK1 interacted specifically with the tacrolimus-binding FKBP8 PPI domain. Knockout or dominant negative FKBP8 expression prevented TNF-induced MLCK1 recruitment and barrier loss in vitro. MLCK1-FKBP8 binding was blocked by tacrolimus, which reversed TNF-induced MLCK1-FKBP8 interactions, MLCK1 recruitment and barrier loss in vitro and in vivo. Biopsies of patient with CD demonstrated increased numbers of MLCK1-FKBP8 interactions at intercellular junctions relative to control subjects. CONCLUSION Binding to FKBP8, which can be blocked by tacrolimus, is required for MLCK1 recruitment to intercellular junctions and downstream events leading to immune-mediated barrier loss. The observed increases in MLCK1 activity, MLCK1 localisation at cell junctions and perijunctional MLCK1-FKBP8 interactions in CD suggest that targeting this process may be therapeutic in human disease. These new insights into mechanisms of disease-associated barrier loss provide a critical foundation for therapeutic exploitation of FKBP8-MLCK1 interactions.
Collapse
Affiliation(s)
- Li Zuo
- Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wei-Ting Kuo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan
| | - Feng Cao
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Otorhinolaryngology Head and Neck Surgery, Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Sandra D Chanez-Paredes
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Zeve
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Prabhath Mannam
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Léa Jean-François
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne Day
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - W Vallen Graham
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Yan Y Sweat
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nitesh Shashikanth
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David T Breault
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerrold R Turner
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
4
|
Understanding the potency of malarial ligand (D44) in plasmodium FKBP35 and modelled halogen atom (Br, Cl, F) functional groups. J Mol Graph Model 2020; 97:107553. [PMID: 32035313 DOI: 10.1016/j.jmgm.2020.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
The present study clearly depicts the understanding of the D44 in Plasmodium FKBP35 around the hinge region. To analyse the binding stability of D44 ligand and to understand the role of halogen bond, hydrogen bond interaction formed between the hinge region amino acids: Isoleucine (Ile74), Phenylalanine (Phe54), Aspartic acid (Asp55) Phenylalanine (Phe64),Tyrosine (Tyr100), Tryptophan (TRP 77) and ligand D44 was portrayed specifically through interaction energy calculations at HF, M062X, MP2 level of theories for different basis set (6-311G**, 6-31+G*, LANL2DZ). The investigation will provide an apparent picture regarding the non-covalent interaction that hold the contact of ligand and amino acids in the hinge region and the implication of modelled functional groups (Br, Cl, F, OSO and NH2) on ligand, which will help chemist in synthesizing new novel ligands. HOMO, LUMO chart calculated for D44 ligands reveals graphic illustration of orbital's that stimulate for contact. The aim and natural bond orbital analysis identified key contribution of individual hydrogen/halogen bonds that contribute for the binding strength through stabilization energy, ρ and ∇2ρ values. Overall this study finds out that the Stability of D44 in Plasmodium FKBP35 was enhanced by the Halogen atom (Br, Cl, F) functional groups; which provide an innovative pathway for the selection of functional groups that opt for the hinge region side chains on the ligand.
Collapse
|
5
|
Park Y, Koga Y, Su C, Waterbury AL, Johnny CL, Liau BB. Versatile Synthetic Route to Cycloheximide and Analogues That Potently Inhibit Translation Elongation. Angew Chem Int Ed Engl 2019; 58:5387-5391. [PMID: 30802354 DOI: 10.1002/anie.201901386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2019] [Indexed: 02/05/2023]
Abstract
Cycloheximide (CHX) is an inhibitor of eukaryotic translation elongation that has played an essential role in the study of protein synthesis. Despite its ubiquity, few studies have been directed towards accessing synthetic CHX derivatives, even though such efforts may lead to protein synthesis inhibitors with improved or alternate properties. Described here is the total synthesis of CHX and analogues, and the establishment of structure-activity relationships (SAR) responsible for translation inhibition. The SAR studies aided the design of more potent compounds, one of which irreversibly blocks ribosomal elongation, preserves polysome profiles, and may be a broadly useful tool for investigating protein synthesis.
Collapse
Affiliation(s)
- Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Yumi Koga
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Christopher L Johnny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Park Y, Koga Y, Su C, Waterbury AL, Johnny CL, Liau BB. Versatile Synthetic Route to Cycloheximide and Analogues That Potently Inhibit Translation Elongation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongho Park
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Yumi Koga
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Cindy Su
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Amanda L. Waterbury
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Christopher L. Johnny
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Brian B. Liau
- Department of Chemistry and Chemical BiologyHarvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
7
|
Ding L, Nan WH, Zhu XB, Li XM, Zhou LY, Chen HJ, Yu L, Ullah Khan F, Zhong HB, Shi XJ. Rapamycin and FK506 derivative TH2849 could ameliorate neurodegenerative diseases through autophagy with low immunosuppressive effect. CNS Neurosci Ther 2018; 25:452-464. [PMID: 30294901 DOI: 10.1111/cns.13062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an essential cellular process concern with cellular homeostasis down-regulated by mTOR, whose activity can be modulated by rapamycin, a kind of lipophilic macrolide antibiotic, through forming a complex with immunophilin FKBP12 essential for mTOR regulation to induce autophagy. Therefore, rapamycin is normally used as a neuron protective agent. The immunophilin FKBP12 binding ligand FK506 is well known as an immunosuppressive agent by inhibiting the calcineurin expression. In this study, we synthesized a series of modified compounds based on the FKBP12 binding moiety to as same as the binding structure of rapamycin and FK506 particularly. We removed the other binding regions of the complex that has the property of immunosuppression. We found that a novel small molecule named TH2849 from these derivative compounds has a significant binding connection with mTOR by comparing to calcineurin. The effects of TH2849 on calcineurin/NFAT were not as significant as FK506, and weak effects on IL2/p34cdc2 /cyclin signaling pathway were also found. Moreover, TH2849 also shows mitochondrial protective effect through stabilizing the mitochondrial structure and transmembrane potential (ΔΨm) and could rescue dopaminergic neurons in MPTP-treated zebrafishes as well as mice models with less immunosuppressive effect. Our present study shows that TH2849 works as a neuroprotective agent possibly by inducing autophagy and low immunosuppressive effect.
Collapse
Affiliation(s)
- Li Ding
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wen-Hao Nan
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xian-Bing Zhu
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Xiao-Ming Li
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Li-Yan Zhou
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hou-Jie Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Modobiotec CO, Shenzhen, China
| | - Lu Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Modobiotec CO, Shenzhen, China
| | - Fahim Ullah Khan
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Han-Bing Zhong
- Department of Biology, South University of Science and Technology, Shenzhen, China
| | - Xiao-Jun Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
8
|
Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7:34389. [PMID: 29916806 PMCID: PMC6044906 DOI: 10.7554/elife.34389] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seiya Mizuno
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Atsuko Shimada
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Satoru Takahashi
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alex von Kreigsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin. Toxins (Basel) 2018; 10:toxins10050181. [PMID: 29723951 PMCID: PMC5983237 DOI: 10.3390/toxins10050181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.
Collapse
|
10
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
11
|
Posada IM, Lectez B, Sharma M, Oetken-Lindholm C, Yetukuri L, Zhou Y, Aittokallio T, Abankwa D. Rapalogs can promote cancer cell stemness in vitro in a Galectin-1 and H-ras-dependent manner. Oncotarget 2017; 8:44550-44566. [PMID: 28562352 PMCID: PMC5546501 DOI: 10.18632/oncotarget.17819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2017] [Accepted: 04/22/2017] [Indexed: 01/05/2023] Open
Abstract
Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.
Collapse
Affiliation(s)
- Itziar M.D. Posada
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Benoit Lectez
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Mukund Sharma
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | | | - Laxman Yetukuri
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Daniel Abankwa
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| |
Collapse
|
12
|
Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Sci Rep 2017; 7:2724. [PMID: 28578412 PMCID: PMC5457432 DOI: 10.1038/s41598-017-02882-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.
Collapse
|
13
|
Shao G, Wang Y, Guan S, Burlingame AL, Lu F, Knox R, Ferriero DM, Jiang X. Proteomic Analysis of Mouse Cortex Postsynaptic Density following Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2017; 39:66-81. [PMID: 28315865 PMCID: PMC5519436 DOI: 10.1159/000456030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Collapse
Affiliation(s)
- Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Yang X, Hei C, Liu P, Song Y, Thomas T, Tshimanga S, Wang F, Niu J, Sun T, Li PA. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia. Int J Biol Sci 2015; 11:1424-35. [PMID: 26681922 PMCID: PMC4672000 DOI: 10.7150/ijbs.12930] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022] Open
Abstract
The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage.
Collapse
Affiliation(s)
- Xiao Yang
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China ; 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Changhun Hei
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA ; 3. Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 75004, China
| | - Ping Liu
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA ; 4. Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yaozu Song
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Taylor Thomas
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Sylvie Tshimanga
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Feng Wang
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Jianguo Niu
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - Tao Sun
- 1. Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 75004, China
| | - P Andy Li
- 2. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|
16
|
Kasai H, Kawakami K, Yokoe H, Yoshimura K, Matsuda M, Yasumoto J, Maekawa S, Yamashita A, Tanaka T, Ikeda M, Kato N, Okamoto T, Matsuura Y, Sakamoto N, Enomoto N, Takeda S, Fujii H, Tsubuki M, Kusunoki M, Moriishi K. Involvement of FKBP6 in hepatitis C virus replication. Sci Rep 2015; 5:16699. [PMID: 26567527 PMCID: PMC4644952 DOI: 10.1038/srep16699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
The chaperone system is known to be exploited by viruses for their replication. In the present study, we identified the cochaperone FKBP6 as a host factor required for hepatitis C virus (HCV) replication. FKBP6 is a peptidyl prolyl cis-trans isomerase with three domains of the tetratricopeptide repeat (TPR), but lacks FK-506 binding ability. FKBP6 interacted with HCV nonstructural protein 5A (NS5A) and also formed a complex with FKBP6 itself or FKBP8, which is known to be critical for HCV replication. The Val121 of NS5A and TPR domains of FKBP6 were responsible for the interaction between NS5A and FKBP6. FKBP6 was colocalized with NS5A, FKBP8, and double-stranded RNA in HCV-infected cells. HCV replication was completely suppressed in FKBP6-knockout hepatoma cell lines, while the expression of FKBP6 restored HCV replication in FKBP6-knockout cells. A treatment with the FKBP8 inhibitor N-(N′, N′-dimethylcarboxamidomethyl)cycloheximide impaired the formation of a homo- or hetero-complex consisting of FKBP6 and/or FKBP8, and suppressed HCV replication. HCV infection promoted the expression of FKBP6, but not that of FKBP8, in cultured cells and human liver tissue. These results indicate that FKBP6 is an HCV-induced host factor that supports viral replication in cooperation with NS5A.
Collapse
Affiliation(s)
- Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Kunihiro Kawakami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu-shi, Yamanashi 400-8510, Japan
| | - Hiromasa Yokoe
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Masanori Matsuda
- Department of First Surgery, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Jun Yasumoto
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Masanori Ikeda
- Department of Tumor Virology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Hideki Fujii
- Department of First Surgery, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | - Masayoshi Tsubuki
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masami Kusunoki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu-shi, Yamanashi 400-8510, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| |
Collapse
|
17
|
Bianchin A, Allemand F, Bell A, Chubb AJ, Guichou JF. Two crystal structures of the FK506-binding domain of Plasmodium falciparum FKBP35 in complex with rapamycin at high resolution. ACTA ACUST UNITED AC 2015; 71:1319-27. [PMID: 26057671 DOI: 10.1107/s1399004715006239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2014] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Abstract
Antimalarial chemotherapy continues to be challenging in view of the emergence of drug resistance, especially artemisinin resistance in Southeast Asia. It is critical that novel antimalarial drugs are identified that inhibit new targets with unexplored mechanisms of action. It has been demonstrated that the immunosuppressive drug rapamycin, which is currently in clinical use to prevent organ-transplant rejection, has antimalarial effects. The Plasmodium falciparum target protein is PfFKBP35, a unique immunophilin FK506-binding protein (FKBP). This protein family binds rapamycin, FK506 and other immunosuppressive and non-immunosuppressive macrolactones. Here, two crystallographic structures of rapamycin in complex with the FK506-binding domain of PfFKBP35 at high resolution, in both its oxidized and reduced forms, are reported. In comparison with the human FKBP12-rapamycin complex reported previously, the structures reveal differences in the β4-β6 segment that lines the rapamycin binding site. Structural differences between the Plasmodium protein and human hFKBP12 include the replacement of Cys106 and Ser109 by His87 and Ile90, respectively. The proximity of Cys106 to the bound rapamycin molecule (4-5 Å) suggests possible routes for the rational design of analogues of rapamycin with specific antiparasitic activity. Comparison of the structures with the PfFKBD-FK506 complex shows that both drugs interact with the same binding-site residues. These two new structures highlight the structural differences and the specific interactions that must be kept in consideration for the rational design of rapamycin analogues with antimalarial activity that specifically bind to PfFKBP35 without immunosuppressive effects.
Collapse
Affiliation(s)
- Alessandra Bianchin
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Frederic Allemand
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Angus Bell
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute, Trinity College Dublin, Dublin, Ireland
| | - Anthony J Chubb
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jean François Guichou
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| |
Collapse
|
18
|
Rasch J, Theuerkorn M, Ünal C, Heinsohn N, Tran S, Fischer G, Weiwad M, Steinert M. Novel Cycloheximide Derivatives Targeting the Moonlighting Protein Mip Exhibit Specific Antimicrobial Activity Against Legionella pneumophila. Front Bioeng Biotechnol 2015; 3:41. [PMID: 25870856 PMCID: PMC4376002 DOI: 10.3389/fbioe.2015.00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2014] [Accepted: 03/15/2015] [Indexed: 12/28/2022] Open
Abstract
Macrophage infectivity potentiator (Mip) and Mip-like proteins are virulence factors in a wide range of pathogens including Legionella pneumophila. These proteins belong to the FK506 binding protein (FKBP) family of peptidyl-prolyl-cis/trans-isomerases (PPIases). In L. pneumophila, the PPIase activity of Mip is required for invasion of macrophages, transmigration through an in vitro lung–epithelial barrier, and full virulence in the guinea pig infection model. Additionally, Mip is a moonlighting protein that binds to collagen IV in the extracellular matrix. Here, we describe the development and synthesis of cycloheximide derivatives with adamantyl moieties as novel FKBP ligands, and analyze their effect on the viability of L. pneumophila and other bacteria. All compounds efficiently inhibited PPIase activity of the prototypic human FKBP12 as well as Mip with IC50-values as low as 180 nM and 1.7 μM, respectively. Five of these derivatives inhibited the growth of L. pneumophila at concentrations of 30–40 μM, but exhibited no effect on other tested bacterial species indicating a specific spectrum of antibacterial activity. The derivatives carrying a 3,5-dimethyladamantan-1-[yl]acetamide substitution (MT_30.32), and a 3-ethyladamantan-1-[yl]acetamide substitution (MT_30.51) had the strongest effects in PPIase- and liquid growth assays. MT_30.32 and MT_30.51 were also inhibitory in macrophage infection studies without being cytotoxic. Accordingly, by applying a combinatorial approach, we were able to generate novel, hybrid inhibitors consisting of cycloheximide and adamantane, two known FKBP inhibitors that interact with different parts of the PPIase domain, respectively. Interestingly, despite the proven Mip-inhibitory activity, the viability of a Mip-deficient strain was affected to the same degree as its wild type. Hence, we also propose that cycloheximide derivatives with adamantyl moieties are potent PPIase inhibitors with multiple targets in L. pneumophila.
Collapse
Affiliation(s)
- Janine Rasch
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Martin Theuerkorn
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany ; Türk-Alman Üniversitesi, Fen Fakültesi , Istanbul , Turkey
| | - Natascha Heinsohn
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Stefan Tran
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Gunter Fischer
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany ; Institut für Biochemie und Biotechnologie, Universität Halle-Wittenberg , Halle-Wittenberg , Germany
| | - Matthias Weiwad
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany ; Institut für Biochemie und Biotechnologie, Universität Halle-Wittenberg , Halle-Wittenberg , Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany ; Helmholtz Centre for Infection Research , Braunschweig , Germany
| |
Collapse
|
19
|
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2015; 138:797-808. [PMID: 25754838 DOI: 10.1002/ijc.29509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María F Camisay
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sonia De Leo
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Alejandra G Erlejman
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mario D Galigniana
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina.,Instituto De Biología Y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
20
|
Abstract
Hsp90 functionally interacts with a broad array of client proteins, but in every case examined Hsp90 is accompanied by one or more co-chaperones. One class of co-chaperone contains a tetratricopeptide repeat domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is now clear that the client protein influences, and is influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Naihsuan C Guy
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 79968, El Paso, TX, USA,
| | | | | | | | | |
Collapse
|
21
|
Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M, Schiene-Fischer C, Barth H. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 2014; 427:1224-38. [PMID: 25058685 DOI: 10.1016/j.jmb.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2014] [Revised: 07/03/2014] [Accepted: 07/13/2014] [Indexed: 11/16/2022]
Abstract
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin and Clostridium difficile CDT belong to the family of binary actin ADP-ribosylating toxins and are composed of a binding/translocation component and a separate enzyme component. The enzyme components ADP-ribosylate G-actin in the cytosol of target cells resulting in depolymerization of F-actin, cell rounding and cell death. The binding/translocation components bind to their cell receptors and form complexes with the respective enzyme components. After receptor-mediated endocytosis, the binding/translocation components form pores in membranes of acidified endosomes and the enzyme components translocate through these pores into the cytosol. This step is facilitated by the host cell chaperone heat shock protein 90 and peptidyl-prolyl cis/trans isomerases including cyclophilin A. Here, we demonstrate that a large isoform of cyclophilin A, the multi-domain enzyme cyclophilin 40 (Cyp40), binds to the enzyme components C2I, Ia and CDTa in vitro. Isothermal titration calorimetry revealed a direct binding to C2I with a calculated affinity of 101 nM and to Ia with an affinity of 1.01 μM. Closer investigation for the prototypic C2I revealed that binding to Cyp40 did not depend on its ADP-ribosyltransferase activity but was stronger for unfolded C2I. The interaction of C2I with Cyp40 was also demonstrated in lysates from C2-treated cells by pull-down. Treatment of cells with a non-immunosuppressive cyclosporine A derivative, which still binds to and inhibits the peptidyl-prolyl cis/trans isomerase activity of cyclophilins, protected cells from intoxication with C2, iota and CDT toxins, offering an attractive approach for development of novel therapeutic strategies against binary actin ADP-ribosylating toxins.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Simon Langer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, University of Ulm, 89081 Ulm, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, 75724 Paris, France
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Viktoria Kahlert
- Max Planck Research Unit for Enzymology of Protein Folding Halle, 06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Small molecule Plasmodium FKBP35 inhibitor as a potential antimalaria agent. Sci Rep 2014; 3:2501. [PMID: 23974147 PMCID: PMC3752609 DOI: 10.1038/srep02501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
Malaria parasite strains have emerged to tolerate the therapeutic effects of the prophylactics and drugs presently available. This resistance now poses a serious challenge to researchers in the bid to overcome malaria parasitic infection. Recent studies have shown that FK520 and its analogs inhibit malaria parasites growth by binding to FK506 binding proteins (FKBPs) of the parasites. Structure based drug screening efforts based on three-dimensional structural information of FKBPs from Plasmodium falciparum led us to identify new chemical entities that bind to the parasite FKBP35 and inhibit its growth. Our experimental results verify that this novel compound (D44) modulate the PPIase activity of Plasmodium FKBP35 and demonstrate the stage-specific growth inhibition of Plasmodium falciparum strains. Here, we present the X-ray crystallographic structures of FK506 binding domains (FKBDs) of PfFKBP35 and PvFKBP35 in complex with the newly identified inhibitor providing molecular insights into its mode of action.
Collapse
|
23
|
Abstract
FKBP38 is involved in various cellular processes through association with Bcl-2 and Hsp90. Ca2+/S100 proteins directly bind to FKBP38 and inhibit the association of FKBP38 with Bcl-2 and Hsp90. Our findings demonstrate that S100 proteins are novel Ca2+-dependent regulators of FKBP38.
Collapse
|
24
|
In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants. Int J Mol Sci 2014; 15:1040-67. [PMID: 24434619 PMCID: PMC3907855 DOI: 10.3390/ijms15011040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/17/2022] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN.
Collapse
|
25
|
Rajan S, Austin D, Harikishore A, Nguyen QT, Baek K, Yoon HS. Crystal structure of Plasmodium vivax
FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity. Proteins 2013; 82:1235-44. [DOI: 10.1002/prot.24487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sreekanth Rajan
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - David Austin
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Amaravadhi Harikishore
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Quoc Toan Nguyen
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| |
Collapse
|
26
|
Harikishore A, Leow ML, Niang M, Rajan S, Pasunooti KK, Preiser PR, Liu X, Yoon HS. Adamantyl derivative as a potent inhibitor of Plasmodium FK506 binding protein 35. ACS Med Chem Lett 2013; 4:1097-101. [PMID: 24900611 DOI: 10.1021/ml400306r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
FKBP35, FK506 binding protein family member, in Plasmodium species displays a canonical peptidyl-prolyl isomerase (PPIase) activity and is intricately involved in the protein folding process. Inhibition of PfFKBP35 by FK506 or its analogues were shown to interfere with the in vitro growth of Plasmodium falciparum. In this study, we have synthesized adamantyl derivatives, Supradamal (SRA/4a) and its analogues SRA1/4b and SRA2/4c, which demonstrate submicromolar inhibition of Plasmodium falciparum FK506 binding domain 35 (FKBD35) PPIase activity. SRA and its analogues not only inhibit the in vitro growth of Plasmodium falciparum 3D7 strain but also show stage specific activity by inhibiting the trophozoite stage of the parasite. SRA/4a also inhibits the Plasmodium vivax FKBD35 PPIase activity and our crystal structure of PvFKBD35 in complex with the SRA provides structural insights in achieving selective inhibition against Plasmodium FKBPs.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Min Li Leow
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Makhtar Niang
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Sreekanth Rajan
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Kalyan Kumar Pasunooti
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Peter Rainer Preiser
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Xuewei Liu
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Ho Sup Yoon
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| |
Collapse
|
27
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
28
|
Kang C, Ye H, Chia J, Choi BH, Dhe-Paganon S, Simon B, Schütz U, Sattler M, Yoon HS. Functional role of the flexible N-terminal extension of FKBP38 in catalysis. Sci Rep 2013; 3:2985. [PMID: 24145868 PMCID: PMC3804861 DOI: 10.1038/srep02985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2013] [Accepted: 09/30/2013] [Indexed: 11/09/2022] Open
Abstract
FKBP38 regulates apoptosis through unique interactions with multiple regulators including Bcl-2. Interestingly, the peptidylprolyl isomerase activity of FKBP38 is only detectable when it binds to calcium-saturated calmodulin (CaM/Ca2+). This, in turn, permits the formation of a complex with Bcl-2. FKBP38 thereby provides an important link between isomerase activity and apoptotic pathways. Here, we show that the N-terminal extension (residues 1-32) preceding the catalytic domain of FKBP38 has an autoinhibitory activity. The core isomerase activity of FKBP38 is inhibited by transient interactions involving the flexible N-terminal extension that precedes the catalytic domain. Notably, CaM/Ca2+ binds to this N-terminal extension and thereby releases the autoinhibitory contacts between the N-terminal extension and the catalytic domain, thus potentiating the isomerase activity of FKBP38. Our data demonstrate how CaM/Ca2+ modulates the catalytic activity of FKBP38.
Collapse
Affiliation(s)
- Congbao Kang
- 1] School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore [2] [3]
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in basic processes such as protein-protein interactions, signal transduction cascades, cell differentiation, cell cycle progression, metabolic activity, apoptosis mechanisms, microorganisms infection, cancer, neurotrophism and neuroprotection, among several other physiological and pathophysiological processes. Due to all these emerging features, the development of specific ligands for immunophilins appears to have promising perspectives, in particular in the fields of cancer biology and neuroregeneration fields. We review the emerging role of immunophilins in protein transport, transcription regulation, malignancies development and neurotrophic action, in addition to a number of biological properties that transform these proteins in potential targets for novel therapeutic strategies.
Collapse
|
30
|
|
31
|
Linnert M, Lin YJ, Manns A, Haupt K, Paschke AK, Fischer G, Weiwad M, Lücke C. The FKBP-type domain of the human aryl hydrocarbon receptor-interacting protein reveals an unusual Hsp90 interaction. Biochemistry 2013; 52:2097-107. [PMID: 23418784 DOI: 10.1021/bi301649m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor-interacting protein (AIP) has been predicted to consist of an N-terminal FKBP-type peptidyl-prolyl cis/trans isomerase (PPIase) domain and a C-terminal tetratricopeptide repeat (TPR) domain, as typically found in FK506-binding immunophilins. AIP, however, exhibited no inherent FK506 binding or PPIase activity. Alignment with the prototypic FKBP12 showed a high sequence homology but indicated inconsistencies with regard to the secondary structure prediction derived from chemical shift analysis of AIP(2-166). NMR-based structure determination of AIP(2-166) now revealed a typical FKBP fold with five antiparallel β-strands forming a half β-barrel wrapped around a central α-helix, thus permitting AIP to be also named FKBP37.7 according to FKBP nomenclature. This PPIase domain, however, features two structure elements that are unusual for FKBPs: (i) an N-terminal α-helix, which additionally stabilizes the domain, and (ii) a rather long insert, which connects the last two β-strands and covers the putative active site. Diminution of the latter insert did not generate PPIase activity or FK506 binding capability, indicating that the lack of catalytic activity in AIP is the result of structural differences within the PPIase domain. Compared to active FKBPs, a diverging conformation of the loop connecting β-strand C' and the central α-helix apparently is responsible for this inherent lack of catalytic activity in AIP. Moreover, Hsp90 was identified as potential physiological interaction partner of AIP, which revealed binding contacts not only at the TPR domain but uncommonly also at the PPIase domain.
Collapse
Affiliation(s)
- Miriam Linnert
- Max Planck Research Unit for Enzymology of Protein Folding , Weinbergweg 22, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmidt W, Schäfer F, Striggow V, Fröhlich K, Striggow F. Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience 2012; 227:313-26. [PMID: 23069763 DOI: 10.1016/j.neuroscience.2012.09.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2012] [Revised: 09/24/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
The endocannabinoid system is crucially involved in the regulation of brain activity and inflammation. We have investigated the localization of cannabinoid CB1 and CB2 receptors in adult rat brains before and after focal cerebral ischemia due to endothelin-induced transient occlusion of the middle cerebral artery (eMCAO). Using immunohistochemistry, both receptor subtypes were identified in cortical neurons. After eMCAO, neuronal cell death was accompanied by reduced neuronal CB1 and CB2 receptor-linked immunofluorescence. In parallel, CB1 receptor was found in activated microglia/macrophages 3 days post eMCAO and in astroglia cells at days 3 and 7. CB2 receptor labeling was identified in activated microglia/macrophages or astroglia 3 and 7d ays post ischemia, respectively. In addition, immune competent CD45-positive cells were characterized by pronounced CB2 receptor staining 3 and 7 days post eMCAO. KN38-72717, a potent and selective CB1 and CB2 receptor agonist, revealed a significant, dose-dependent and long-lasting reduction of cortical lesion sizes due to eMCAO, when applied consecutively before, during and after eMCAO. In addition, severe motor deficits of animals suffering from eMCAO were significantly improved by KN38-7271. KN38-7271 remained effective, even if its application was delayed up to 6h post eMCAO. Finally, we show that the endocannabinoid system assembles a comprehensive machinery to defend the brain against the devastating consequences of cerebral ischemia. In summary, this study underlines the therapeutic potential of CB1 and/or CB2 receptor agonists against neurodegenerative diseases or injuries involving acute or chronic imbalances of cerebral blood flow and energy consumption.
Collapse
Affiliation(s)
- W Schmidt
- KeyNeurotek Pharmaceuticals AG, ZENIT Technology Park, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Rajan S, Saw KQ, Nguyen QT, Baek K, Yoon HS. High-resolution crystal structure of FKBP12 from Aedes aegypti. Protein Sci 2012; 21:1080-4. [PMID: 22517662 DOI: 10.1002/pro.2079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 11/09/2022]
Abstract
Dengue is one of the most infectious viral diseases prevalent mainly in tropical countries. The virus is transmitted by Aedes species of mosquito, primarily Aedes aegypti. Dengue remains a challenging drug target for years as the virus eludes the immune responses. Currently, no vaccines or antiviral drugs are available for dengue prevention. Previous studies suggested that the immunosuppressive drug FK506 shows antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in the Plasmodium parasite. Likewise, a FKBP family protein has been identified in A. aegypti (AaFKBP12) in which AaFKBP12 is assumed to play a similar role in its life cycle. FKBPs belong to a highly conserved class of proteins and are considered as an attractive pharmacological target. Herein, we present a high-resolution crystal structure of AaFKBP12 at 1.3 Å resolution and discuss its structural features throwing light in facilitating the design of potential antagonists against the dengue-transmitting mosquito.
Collapse
Affiliation(s)
- Sreekanth Rajan
- Division of Structural Biology and Biochemistry, School of Biological Science, Nanyang Technological University, Singapore 637551
| | | | | | | | | |
Collapse
|
34
|
Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 2012; 14:1193-205. [PMID: 22420783 DOI: 10.1111/j.1462-5822.2012.01788.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.
Collapse
Affiliation(s)
- Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J Biol Chem 2012; 287:21914-25. [PMID: 22474283 DOI: 10.1074/jbc.m112.339788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Sinnamon JR, Waddell CB, Nik S, Chen EI, Czaplinski K. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation. RNA (NEW YORK, N.Y.) 2012; 18:704-19. [PMID: 22332140 PMCID: PMC3312558 DOI: 10.1261/rna.030742.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab(-/-) neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab(-/-) neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage.
Collapse
Affiliation(s)
- John R. Sinnamon
- Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794, USA
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Catherine B. Waddell
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sara Nik
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Emily I. Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
- Stony Brook University Proteomics Center, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kevin Czaplinski
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-mail .
| |
Collapse
|
37
|
Zak M, Bress A, Pfister M, Blin N. Temporal expression pattern of Fkbp8 in rodent cochlea. Cell Physiol Biochem 2011; 28:1023-30. [PMID: 22178952 DOI: 10.1159/000335789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FKBP8 is a multifunctional protein involved in many distinct processes like formation of central nervous system, viral RNA replication and inhibition of apoptosis. Fkbp8 expression was reported in different tissues, various cell lines and malignancies, in the latter displaying changes during carcinogenesis. Loss of Fkbp8 leads to substantial neurodegenerations during regular mouse development, thus hearing onset in mice could also potentially depend on Fkbp8 expression. Since Fkbp8 is crucial for patterning of neuronal function, we studied its expression during maturation of the rodent auditory function. METHODS Fkbp8 gene expression in rodent cochlear samples was studied by RT-PCR, qPCR, and western blot. Localization of Fkbp8 transcripts and protein was analyzed by in-situ hybridization and immunohistochemistry. RESULTS Studies of auditory organ demonstrate that Fkbp8 gene activity is increasing just before hearing onset and gradually decreasing after onset of hearing. Western blot analysis suggests substantial levels of Fkbp8 protein before hearing onset, and slow degradation after onset of hearing. The Fkbp8 mRNA is localized in spiral ganglion of cochlea but its distribution changes over time to the stria vascularis, a finding supported by immunohistochemistry staining. Additionally, in pre-hearing time Fkbp8-specific signal was also observed in the tectorial membrane, whose α- and β-Tectorin components show similar time-dependent expression of mRNA as Fkbp8. CONCLUSION These results indicate a temporal shift in expression of Fkbp8 which correlates with cochlear maturation, strongly suggesting a contribution of Fkbp8 to the onset of the rodent hearing processes.
Collapse
Affiliation(s)
- Magdalena Zak
- University of Tübingen, Institute of Human Genetics, Tübingen, Germany.
| | | | | | | |
Collapse
|
38
|
Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang X. FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J Biol Chem 2011; 286:43071-80. [PMID: 22030396 DOI: 10.1074/jbc.m111.269993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
FK506-binding protein 38 (FKBP38), a membrane-anchored, tetratricopeptide repeat (TPR)-containing immunophilin, associates with nascent plasma membrane ion channels in the endoplasmic reticulum (ER). It promotes the maturation of the human ether-à-go-go-related gene (HERG) potassium channel and maintains the steady state level of the cystic fibrosis transmembrane conductance regulator (CFTR), but the underlying mechanisms remain unclear. Using a combination of steady state and pulse-chase analyses, we show that FKBP38 knockdown increases protein synthesis but inhibits the post-translational folding of CFTR, leading to reduced steady state levels of CFTR in the ER, decreased processing, and impaired cell surface functional expression in Calu-3 human airway epithelial cells. The membrane anchorage of FKBP38 is necessary for the inhibition of protein synthesis but not for CFTR post-translational folding. In contrast, the peptidylprolyl cis/trans isomerase active site is utilized to promote CFTR post-translational folding but is not important for regulation of protein synthesis. Uncoupling FKBP38 from Hsp90 by substituting a conserved lysine in the TPR domain modestly enhances CFTR maturation and further reduces its synthesis. Removing the N-terminal glutamate-rich domain (ERD) slightly enhances CFTR synthesis but reduces its maturation, suggesting that the ERD contributes to FKBP38 biological activities. Our data support a dual role for FKBP38 in regulating CFTR synthesis and post-translational folding. In contrast to earlier prediction but consistent with in vitro enzymological studies, FKBP38 peptidylprolyl cis/trans isomerase plays an important role in membrane protein biogenesis on the cytoplasmic side of the ER membrane, whose activity is negatively regulated by Hsp90 through the TPR domain.
Collapse
|
39
|
Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buée L, Debyser Z, Baekelandt V, Gerard M. Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation. J Biol Chem 2011; 286:26687-701. [PMID: 21652707 PMCID: PMC3143632 DOI: 10.1074/jbc.m110.182303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2010] [Revised: 05/28/2011] [Indexed: 11/06/2022] Open
Abstract
FK506-binding proteins (FKBPs) are members of the immunophilins, enzymes that assist protein folding with their peptidyl-prolyl isomerase (PPIase) activity. Some non-immunosuppressive inhibitors of these enzymes have neuroregenerative and neuroprotective properties with an unknown mechanism of action. We have previously shown that FKBPs accelerate the aggregation of α-synuclein (α-SYN) in vitro and in a neuronal cell culture model for synucleinopathy. In this study we investigated whether acceleration of α-SYN aggregation is specific for the FKBP or even the PPIase family. Therefore, we studied the effect of several physiologically relevant PPIases, namely FKBP12, FKBP38, FKBP52, FKBP65, Pin1, and cyclophilin A, on α-SYN aggregation in vitro and in neuronal cell culture. Among all PPIases tested in vitro, FKBP12 accelerated α-SYN aggregation the most. Furthermore, only FKBP12 accelerated α-SYN fibril formation at subnanomolar concentrations, pointing toward an enzymatic effect. Although stable overexpression of various FKBPs enhanced the aggregation of α-SYN and cell death in cell culture, they were less potent than FKBP12. When FKBP38, FKBP52, and FKBP65 were overexpressed in a stable FKBP12 knockdown cell line, they could not fully restore the number of α-SYN inclusion-positive cells. Both in vitro and cell culture data provide strong evidence that FKBP12 is the most important PPIase modulating α-SYN aggregation and validate the protein as an interesting drug target for Parkinson disease.
Collapse
Affiliation(s)
- Angélique Deleersnijder
- From the Laboratory of Biochemistry and
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Anne-Sophie Van Rompuy
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | - Hans Pottel
- the Laboratory of Biophysics, K. U. Leuven-Kortrijk, Etienne Sabbelaan 53, B-8500 Kortrijk, Flanders, Belgium
| | - Luc Buée
- INSERM, U837, rue Polonovski, F-59000 Lille, France
- Université Lille-Nord de France, UDSL, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Université Lille 2, Place de Verdun, F-59045 Lille, France, and
- CHRU, F-59037 Lille Cedex, France
| | - Zeger Debyser
- From the Laboratory of Biochemistry and
- the Laboratory for Molecular Virology and Gene Therapy and
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Melanie Gerard
- From the Laboratory of Biochemistry and
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| |
Collapse
|
40
|
Targeting FKBP isoforms with small-molecule ligands. Curr Opin Pharmacol 2011; 11:365-71. [PMID: 21803654 DOI: 10.1016/j.coph.2011.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022]
Abstract
The FK506 binding protein (FKBP) family of proteins provide an interesting series of drug targets since different isoforms modulate diverse cellular pathways. There are therapeutic opportunities in the fields of cancer therapy, neurodegenerative conditions and psychiatric disorders. X-ray crystallographic or NMR data are available for eight of fourteen human FKBPs covering ten of the twenty-two different FKBP domains. We have made a detailed sequence and structural comparison of human FKBP domains. These data show that the chemical scaffolds common to the immunosuppressive inhibitors FK506 and rapamycin bind to the most conserved region of the binding site. This observation opens the way to the design of isoform specific inhibitors.
Collapse
|
41
|
FKBP38-Bcl-2 interaction: a novel link to chemoresistance. Curr Opin Pharmacol 2011; 11:354-9. [PMID: 21571591 DOI: 10.1016/j.coph.2011.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2011] [Revised: 04/02/2011] [Accepted: 04/27/2011] [Indexed: 12/31/2022]
Abstract
FKBP38, a noncanonical member of the immunosuppressive drug FK506 binding protein (FKBP) family members, possesses an inducible rotamase. FKBP38 interacts with several proteins and regulates multiple signaling pathways such as cell survival, apoptosis, proliferation, and metastasis. Deregulation of apoptosis is associated with chemoresistance and tumor relapse. The antiapoptotic protein Bcl-2 is a key player for increasing the apoptotic threshold in response to various cytotoxic drugs. The molecular interaction of Bcl-2 with FKBP38 potentiates the biological function of Bcl-2 and contributes to tumorigenesis and chemoresistance. Here, we discuss recent advances in the role of FKBP38 in connection with Bcl-2 and its possible link to chemotherapeutic resistance.
Collapse
|
42
|
Gerard M, Deleersnijder A, Demeulemeester J, Debyser Z, Baekelandt V. Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration. Mol Neurobiol 2011; 44:13-27. [PMID: 21553017 DOI: 10.1007/s12035-011-8184-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2010] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Immunophilins are a family of highly conserved proteins with a peptidyl-prolyl isomerase activity that binds immunosuppressive drugs such as FK506, cyclosporin A, and rapamycin. Immunophilins can be divided into two subfamilies, the cyclophilins, and the FK506 binding proteins (FKBPs). Next to the immunophilins, a third group of peptidyl-prolyl isomerases exist, the parvulins, which do not influence the immune system. The beneficial role of immunophilin ligands in neurodegenerative disease models has been known for more than a decade but remains largely unexplained in terms of molecular mechanisms. In this review, we summarize reported effects of parvulins, immunophilins, and their ligands in the context of neurodegeneration. We focus on the role of FKBP12 in Parkinson's disease and propose it as a novel drug target for therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Melanie Gerard
- Laboratory of Biochemistry, IRC, K.U. Leuven-Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Flanders, Belgium
| | | | | | | | | |
Collapse
|
43
|
Koren J, Jinwal UK, Davey Z, Kiray J, Arulselvam K, Dickey CA. Bending tau into shape: the emerging role of peptidyl-prolyl isomerases in tauopathies. Mol Neurobiol 2011; 44:65-70. [PMID: 21523562 DOI: 10.1007/s12035-011-8182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2011] [Accepted: 04/12/2011] [Indexed: 01/21/2023]
Abstract
The Hsp90-associated cis-trans peptidyl-prolyl isomerase--FK506 binding protein 51 (FKBP51)--was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer's disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.
Collapse
Affiliation(s)
- John Koren
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
44
|
From cell death to viral replication: the diverse functions of the membrane-associated FKBP38. Curr Opin Pharmacol 2011; 11:348-53. [PMID: 21514222 DOI: 10.1016/j.coph.2011.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2011] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
Abstract
FKBP38 is in many ways an exceptional member of the FK506-binding proteins. The calmodulin-regulated activity of FKBP38 for instance is unique within this protein family. The activated FKBP38 participates in apoptosis signaling by inhibiting the anti-apoptotic Bcl-2. Beyond this role in programmed cell death, FKBP38 seems to be involved in very different cellular processes that do not necessarily depend on the FKBP domain. These functions involve regulation of the kinase mTOR, regulation of neural tube formation, regulation of cellular hypoxia response, but also Hepatitis C virus replication. Pharmacological targeting of FKBP38 might therefore prove a successful strategy for intervention in different FKBP38-dependent processes, including programmed cell death in cancer or neurodegenerative diseases.
Collapse
|
45
|
Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Philips MR. FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol Cell 2011; 41:173-85. [PMID: 21255728 DOI: 10.1016/j.molcel.2011.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2010] [Revised: 09/07/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022]
Abstract
A cycle of palmitoylation/depalmitoylation of H-Ras mediates bidirectional trafficking between the Golgi apparatus and the plasma membrane, but nothing is known about how this cycle is regulated. We show that the prolyl isomerase (PI) FKBP12 binds to H-Ras in a palmitoylation-dependent fashion and promotes depalmitoylation. A variety of inhibitors of the PI activity of FKBP12, including FK506, rapamycin, and cycloheximide, increase steady-state palmitoylation. FK506 inhibits retrograde trafficking of H-Ras from the plasma membrane to the Golgi in a proline 179-dependent fashion, augments early GTP loading of Ras in response to growth factors, and promotes H-Ras-dependent neurite outgrowth from PC12 cells. These data demonstrate that FKBP12 regulates H-Ras trafficking by promoting depalmitoylation through cis-trans isomerization of a peptidyl-prolyl bond in proximity to the palmitoylated cysteines.
Collapse
Affiliation(s)
- Ian M Ahearn
- Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA. 0016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
47
|
Maestre-Martínez M, Haupt K, Edlich F, Jahreis G, Jarczowski F, Erdmann F, Fischer G, Lücke C. New structural aspects of FKBP38 activation. Biol Chem 2010; 391:1157-67. [DOI: 10.1515/bc.2010.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
The human FK506-binding protein 38 (FKBP38) regulates Bcl-2 in neuronal apoptosis. To control Bcl-2 activity, FKBP38 requires a prior interaction with the Ca2+-sensor calmodulin (CaM). The resulting FKBP38/CaM complex is unique within the FKBP family. Here, we present novel insights into the structural arrangement of this complex. Chemical shift perturbation analyses of the individual protein domains revealed two separate interaction sites between FKBP38 and CaM. On the one hand, residues Glu303, Tyr307 and Leu311, belonging to the predicted CaM-binding site at the C-terminal end of FKBP38, become embedded in the hydrophobic target protein-binding cleft of the C-terminal CaM lobe. On the other hand, in a second binding interaction, the N-terminal end of the catalytic FKBP38 domain shows surface contacts to the AB and CD loops of CaM as well as the adjacent helices. Furthermore, a Glu-rich region at the non-structured FKBP38 N-terminus features additional contacts to CaM helix A. In combination with previous results, we thus conclude that the FKBP38/CaM complex is constituted by (i) a Ca2+-dependent interaction of the CaM-binding motif at the C-terminal end of FKBP38 with the C-terminal CaM lobe and (ii) a Ca2+-independent interaction between the N-terminal CaM lobe and the N-terminal region of the catalytic FKBP38 domain.
Collapse
|
48
|
Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson's disease-like pathology. J Neurosci 2010; 30:2454-63. [PMID: 20164329 DOI: 10.1523/jneurosci.5983-09.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
alpha-Synuclein (alpha-SYN) is a key player in the pathogenesis of Parkinson's disease (PD). In pathological conditions, the protein is present in a fibrillar, aggregated form inside cytoplasmic inclusions called Lewy bodies. Members of the FK506 binding protein (FKBP) family are peptidyl-prolyl isomerases that were shown recently to accelerate the aggregation of alpha-SYN in vitro. We now established a neuronal cell culture model for synucleinopathy based on oxidative stress-induced alpha-SYN aggregation and apoptosis. Using high-content analysis, we examined the role of FKBPs in aggregation and apoptotic cell death. FK506, a specific inhibitor of this family of proteins, inhibited alpha-SYN aggregation and neuronal cell death in this synucleinopathy model dose dependently. Knockdown of FKBP12 or FKBP52 reduced the number of alpha-SYN aggregates and protected against cell death, whereas overexpression of FKBP12 or FKBP52 accelerated both aggregation of alpha-SYN and cell death. Thus, FK506 likely targets FKBP members in the cell culture model. Furthermore, oral administration of FK506 after viral vector-mediated overexpression of alpha-SYN in adult mouse brain significantly reduced alpha-SYN aggregate formation and neuronal cell death. Our data explain previously described neuroregenerative and neuroprotective effects of immunophilin ligands and validate FKBPs as a novel drug target for the causative treatment of PD.
Collapse
|
49
|
Maestre-Martínez M, Haupt K, Edlich F, Neumann P, Parthier C, Stubbs MT, Fischer G, Lücke C. A charge-sensitive loop in the FKBP38 catalytic domain modulates Bcl-2 binding. J Mol Recognit 2010; 24:23-34. [DOI: 10.1002/jmr.1020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
|
50
|
Abstract
Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated, in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffering from loose definitions, poorly-defined models, and appropriate dissection kits. Here, rather than presenting a comprehensive review of the subject, we aim to present a critique of key concepts that have emerged over the years so as to stimulate new thoughts in the field by identifying apparent shortcomings. This article will draw on experience and knowledge derived from studies of the neural actions of other steroid hormones, in particular estrogens, not only because there are many parallels but also because 'learning from differences' can be a fruitful approach. The core purpose of this review is to consider the mechanisms through which corticosteroids might act rapidly to alter neural signaling.
Collapse
Affiliation(s)
- Therese Riedemann
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Alexandre V Patchev
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Osborne FX Almeida
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| |
Collapse
|