1
|
Maitra N, Hammer S, Kjerfve C, Bankaitis VA, Polymenis M. Translational control of lipogenesis links protein synthesis and phosphoinositide signaling with nuclear division in Saccharomyces cerevisiae. Genetics 2022; 220:iyab171. [PMID: 34849864 PMCID: PMC8733439 DOI: 10.1093/genetics/iyab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Continuously dividing cells coordinate their growth and division. How fast cells grow in mass determines how fast they will multiply. Yet, there are few, if any, examples of a metabolic pathway that actively drives a cell cycle event instead of just being required for it. Here, we show that translational upregulation of lipogenic enzymes in Saccharomyces cerevisiae increased the abundance of lipids and promoted nuclear elongation and division. Derepressing translation of acetyl-CoA carboxylase and fatty acid synthase also suppressed cell cycle-related phenotypes, including delayed nuclear division, associated with Sec14p phosphatidylinositol transfer protein deficiencies, and the irregular nuclear morphologies of mutants defective in phosphatidylinositol 4-OH kinase activities. Our results show that increased lipogenesis drives a critical cell cycle landmark and report a phosphoinositide signaling axis in control of nuclear division. The broad conservation of these lipid metabolic and signaling pathways raises the possibility these activities similarly govern nuclear division in other eukaryotes.
Collapse
Affiliation(s)
- Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Staci Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Clara Kjerfve
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans. mSphere 2017; 2:mSphere00167-17. [PMID: 28808688 PMCID: PMC5549176 DOI: 10.1128/msphere.00167-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
Regulated erroneous protein translation (adaptive mistranslation) increases proteome diversity and produces advantageous phenotypic variability in the human pathogen Candida albicans. It also increases fitness in the presence of fluconazole, but the underlying molecular mechanism is not understood. To address this question, we evolved hypermistranslating and wild-type strains in the absence and presence of fluconazole and compared their fluconazole tolerance and resistance trajectories during evolution. The data show that mistranslation increases tolerance and accelerates the acquisition of resistance to fluconazole. Genome sequencing, array-based comparative genome analysis, and gene expression profiling revealed that during the course of evolution in fluconazole, the range of mutational and gene deregulation differences was distinctively different and broader in the hypermistranslating strain, including multiple chromosome duplications, partial chromosome deletions, and polyploidy. Especially, the increased accumulation of loss-of-heterozygosity events, aneuploidy, translational and cell surface modifications, and differences in drug efflux seem to mediate more rapid drug resistance acquisition under mistranslation. Our observations support a pivotal role for adaptive mistranslation in the evolution of drug resistance in C. albicans. IMPORTANCE Infectious diseases caused by drug-resistant fungi are an increasing threat to public health because of the high mortality rates and high costs associated with treatment. Thus, understanding of the molecular mechanisms of drug resistance is of crucial interest for the medical community. Here we investigated the role of regulated protein mistranslation, a characteristic mechanism used by C. albicans to diversify its proteome, in the evolution of fluconazole resistance. Such codon ambiguity is usually considered highly deleterious, yet recent studies found that mistranslation can boost adaptation in stressful environments. Our data reveal that CUG ambiguity diversifies the genome in multiple ways and that the full spectrum of drug resistance mechanisms in C. albicans goes beyond the traditional pathways that either regulate drug efflux or alter the interactions of drugs with their targets. The present work opens new avenues to understand the molecular and genetic basis of microbial drug resistance.
Collapse
|
3
|
Silva RC, Sattlegger E, Castilho BA. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. J Cell Sci 2016; 129:4521-4533. [DOI: 10.1242/jcs.194738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Genetic and pharmacological interventions in yeast and mammalian cells have suggested a cross-talk between the actin cytoskeleton and protein synthesis. Regulation of the activity of the translation initiation factor 2 (eIF2) is a paramount mechanism for cells to rapidly adjust the rate of protein synthesis and to trigger reprogramming of gene expression to adapt in response to internal and external cues. Here we show that disruption of F-actin in mammalian cells inhibits translation in a GCN2-dependent manner, correlating with increased levels of uncharged tRNA. GCN2 activation increased phosphorylation of its substrate eIF2α and the induction of the integrated stress response master regulator, ATF4. GCN2 activation by latrunculin is dependent on GCN1 and inhibited by IMPACT. Our data suggest that GCN2 occurs in two different complexes, GCN2-eEF1A and GCN2-GCN1. Depolymerization of F-actin shifts GCN2 to favor the complex with GCN1, concomitant with GCN1 being released from its binding to IMPACT, which is sequestered by G-actin. These events may further contribute to GCN2 activation. Our findings indicate that GCN2 is an important sensor of the state of the actin cytoskeleton.
Collapse
Affiliation(s)
- Richard C. Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Evelyn Sattlegger
- Institute of Natural and Mathematical Sciences, Massey University, New Zealand
| | - Beatriz A. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
4
|
Morita YS, Yamaryo-Botte Y, Miyanagi K, Callaghan JM, Patterson JH, Crellin PK, Coppel RL, Billman-Jacobe H, Kinoshita T, McConville MJ. Stress-induced synthesis of phosphatidylinositol 3-phosphate in mycobacteria. J Biol Chem 2010; 285:16643-50. [PMID: 20364020 DOI: 10.1074/jbc.m110.119263] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphoinositides play key roles in regulating membrane dynamics and intracellular signaling in eukaryotic cells. However, comparable lipid-based signaling pathways have not been identified in bacteria. Here we show that Mycobacterium smegmatis and other Actinomycetes bacteria can synthesize the phosphoinositide, phosphatidylinositol 3-phosphate (PI3P). This lipid was transiently labeled with [(3)H]inositol. Sensitivity of the purified lipid to alkaline phosphatase, headgroup analysis by high-pressure liquid chromatography, and mass spectrometry demonstrated that it had the structure 1,2-[tuberculostearoyl, octadecenoyl]-sn-glycero 3-phosphoinositol 3-phosphate. Synthesis of PI3P was elevated by salt stress but not by exposure to high concentrations of non-ionic solutes. Synthesis of PI3P in a cell-free system was stimulated by the synthesis of CDP-diacylglycerol, a lipid substrate for phosphatidylinositol (PI) biosynthesis, suggesting that efficient cell-free PI3P synthesis is dependent on de novo PI synthesis. In vitro experiments further indicated that the rapid turnover of this lipid was mediated, at least in part, by a vanadate-sensitive phosphatase. This is the first example of de novo synthesis of PI3P in bacteria, and the transient synthesis in response to environmental stimuli suggests that some bacteria may have evolved similar lipid-mediated signaling pathways to those observed in eukaryotic cells.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Methylglyoxal activates Gcn2 to phosphorylate eIF2α independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 86:1887-94. [DOI: 10.1007/s00253-009-2411-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/13/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022]
|
6
|
Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Biochem Soc Trans 2009; 37:1115-20. [PMID: 19754463 DOI: 10.1042/bst0371115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding sites of Prs polypeptides. Deletion of one or more of the five PRS genes has far-reaching and unexpected consequences, e.g. impaired cell integrity, temperature-sensitivity and sensitivity to VPA (valproic acid) and LiCl. CTP pools in prs1Delta and prs3Delta are reduced to 12 and 31% of the wild-type respectively, resulting in an imbalance in phospholipid metabolism which may have an impact on the intracellular inositol pool which is affected by the administration of either VPA or LiCl. Overexpression of CTP synthetase in prs1Delta prs3Delta strains partially reverses the VPA-sensitive phenotype. Yeast two-hybrid screening revealed that Prs3 and the yeast orthologue of GSK3 (glycogen synthase kinase 3), Rim11, a serine/threonine kinase involved in several signalling pathways, interact with each other. Furthermore, Prs5, an essential partner of Prs3, which also interacts with GSK3 contains three neighbouring phosphorylation sites, typical of GSK3 activation. These studies on yeast PRPP synthetases bring together and expand the current theories for the mood-stabilizing effects of VPA and LiCl in bipolar disorder.
Collapse
|
7
|
Brice SE, Alford CW, Cowart LA. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J Biol Chem 2009; 284:7588-96. [PMID: 19139096 DOI: 10.1074/jbc.m808325200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids and phosphoinositides both play signaling roles in Saccharomyces cerevisiae. Although previous data indicate independent functions for these two classes of lipids, recent genetic studies have suggested interactions between phosphatidylinositol (PtdIns) phosphate effectors and sphingolipid biosynthetic enzymes. The present study was undertaken to further define the effects of phosphatidylinositol 4-phosphate (PtdIns(4)P) metabolism on cell sphingolipid metabolism. The data presented indicate that deletion of SAC1, a gene encoding a PtdIns(4)P phosphatase, increased levels of most sphingolipid species, including sphingoid bases, sphingoid base phosphates, and phytoceramide. In contrast, sac1Delta dramatically reduced inositol phosphosphingolipids, which result from the addition of a PtdIns-derived phosphoinositol head group to ceramides through Aur1p. Deletion of SAC1 decreased PtdIns dramatically in both steady-state and pulse labeling studies, suggesting that the observed effects on sphingolipids may result from modulation of the availability of PtdIns as a substrate for Aur1p. Supporting this hypothesis, acute attenuation of PtdIns(4)P production through Stt4p immediately increased PtdIns and subsequently reduced sphingoid bases. This reduction was overcome by the inhibition of Aur1p. Moreover, modulation of sphingoid bases through perturbation of PtdIns(4)P metabolism initiated sphingolipid-dependent biological effects, supporting the biological relevance for this route of regulating sphingolipids. These findings suggest that, in addition to potential signaling effects of PtdInsP effectors on sphingolipid metabolism, PtdIns kinases may exert substantial effects on cell sphingolipid profiles at a metabolic level through modulation of PtdIns available as a substrate for complex sphingolipid synthesis.
Collapse
Affiliation(s)
- Sarah E Brice
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
8
|
Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 2008; 19:4785-803. [PMID: 18753406 DOI: 10.1091/mbc.e08-04-0426] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1(ts)) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Delta) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is required for proper trans-Golgi network (TGN)/endosomal dynamics in yeast. Paradoxically, combinatorial depletion of Sec14 and Tlg2 activities elicits trafficking defects from the endoplasmic reticulum, and these defects are accompanied by compromise of the unfolded protein response (UPR). UPR failure occurs downstream of Hac1 mRNA splicing, and it is further accompanied by defects in TOR signaling. The data link TGN/endosomal dynamics with ceramide homeostasis, UPR activity, and TOR signaling in yeast, and they identify the Sit4 protein phosphatase as a primary conduit through which ceramides link to the UPR. We suggest combinatorial Sec14/Tlg2 dysfunction evokes inappropriate turnover of complex sphingolipids in endosomes. One result of this turnover is potentiation of ceramide-activated phosphatase-mediated down-regulation of the UPR. These results provide new insight into Sec14 function, and they emphasize the TGN/endosomal system as a central hub for homeostatic regulation in eukaryotes.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
De Filippi L, Fournier M, Cameroni E, Linder P, De Virgilio C, Foti M, Deloche O. Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 2007; 52:171-85. [PMID: 17710403 DOI: 10.1007/s00294-007-0151-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
Chlorpromazine (CPZ) is a small permeable cationic amphiphilic molecule that inserts into membrane bilayers and binds to anionic lipids such as poly-phosphoinositides (PIs). Since PIs play important roles in many cellular processes, including signaling and membrane trafficking pathways, it has been proposed that CPZ affects cellular growth functions by preventing the recruitment of proteins with specific PI-binding domains. In this study, we have investigated the biological effects of CPZ in the yeast Saccharomyces cerevisiae. We screened a collection of approximately 4,800 gene knockout mutants, and found that mutants defective in membrane trafficking between the late-Golgi and endosomal compartments are highly sensitive to CPZ. Microscopy and transport analyses revealed that CPZ affects membrane structure of organelles, blocks membrane transport and activates the unfolded protein response (UPR). In addition, CPZ-treatment induces phosphorylation of the translation initiation factor (eIF2alpha), which reduces the general rate of protein synthesis and stimulates the production of Gcn4p, a major transcription factor that is activated in response to environmental stresses. Altogether, our results reveal that membrane stress within the cells rapidly activates an important gene expression program, which is followed by a general inhibition of protein synthesis. Remarkably, the increase of phosphorylated eIF2alpha and protein synthesis inhibition were also detected in CPZ-treated NIH-3T3 fibroblasts, suggesting the existence of a conserved mechanism of translational regulation that operates during a membrane stress.
Collapse
Affiliation(s)
- Loic De Filippi
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|