1
|
Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KMA, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, Solje E, Tahvanainen E, Pirttimäki T, Kurki M, Paananen J, Rauramaa T, Miettinen P, Mäkinen P, Leinonen V, Soininen H, Airenne K, Tanzi RE, Tanila H, Haapasalo A, Hiltunen M. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol Dis 2015; 85:187-205. [PMID: 26563932 DOI: 10.1016/j.nbd.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/13/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aβ pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aβ40 and Aβ42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aβ accumulation.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa M A Kurkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Juha-Pekka Pursiheimo
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, Turku, Finland
| | - Timo Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jayashree Viswanathan
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eveliina Tahvanainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tiina Pirttimäki
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mitja Kurki
- Neurosurgery sIA Group, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland; Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
| | - Pasi Miettinen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Neurosurgery of NeuroCenter, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Kari Airenne
- The Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
2
|
Takalo M, Haapasalo A, Natunen T, Viswanathan J, Kurkinen KM, Tanzi RE, Soininen H, Hiltunen M. Targeting ubiquilin-1 in Alzheimer's disease. Expert Opin Ther Targets 2013; 17:795-810. [PMID: 23600477 DOI: 10.1517/14728222.2013.791284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a common neurodegenerative disorder affecting an increasing number of people worldwide as the population ages. Currently, there are no drugs available that could prevent AD pathogenesis or slow down its progression. Increasing evidence links ubiquilin-1, an ubiquitin-like protein, into the pathogenic mechanisms of AD and other neurodegenerative diseases. Ubiquilin-1 has been shown to play a key role in the regulation of the levels, subcellular targeting, aggregation and degradation of various neurodegenerative disease-associated proteins. These include the amyloid precursor protein and presenilins that are intimately involved in the mechanisms of AD. AREAS COVERED Here, the properties and diverse functions of ubiquilin-1 protein in the context of the pathogenesis of AD and other neurodegenerative disorders are discussed. This review recapitulates the available knowledge on the involvement of ubiquilin-1 in the genetic and molecular mechanisms in AD. Furthermore, the association of ubiquilin-1 with specific proteins and mechanisms involved in the pathogenesis of neurodegenerative diseases is described and the known ubiquilin-1-interacting proteins summarized. EXPERT OPINION The variety of ubiquilin-1-interacting proteins and its central role in the regulation of protein levels and degradation provides a number of novel candidates and approaches for future research and drug discovery.
Collapse
Affiliation(s)
- Mari Takalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
3
|
González-Pérez P, Lu Y, Chian RJ, Sapp PC, Tanzi RE, Bertram L, McKenna-Yasek D, Gao FB, Brown RH. Association of UBQLN1 mutation with Brown-Vialetto-Van Laere syndrome but not typical ALS. Neurobiol Dis 2012; 48:391-8. [PMID: 22766032 DOI: 10.1016/j.nbd.2012.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Genetic variants in UBQLN1 gene have been linked to neurodegeneration and mutations in UBQLN2 have recently been identified as a rare cause of amyotrophic lateral sclerosis (ALS). OBJECTIVE To test if genetic variants in UBQLN1 are involved in ALS. METHODS 102 and 94 unrelated patients with familial and sporadic forms of ALS were screened for UBQLN1 gene mutations. Single nucleotide variants were further screened in a larger set of sporadic ALS (SALS) patients and unrelated control subjects using high-throughput Taqman genotyping; variants were further assessed for novelty using the 1000Genomes and NHLBI databases. In vitro studies tested the effect of UBQLN1 variants on the ubiquitin-proteasome system (UPS). RESULTS Only two UBQLN1 coding variants were detected in the familial and sporadic ALS DNA set; one, the missense mutation p.E54D, was identified in a single patient with atypical motor neuron disease consistent with Brown-Vialetto-Van Laere syndrome (BVVLS), for whom c20orf54 mutations had been excluded. Functional studies revealed that UBQLN1E54D protein forms cytosolic aggregates that contain mislocalized TDP-43 and impairs degradation of ubiquitinated proteins through the proteasome. CONCLUSIONS Genetic variants in UBQLN1 are not commonly associated with ALS. A novel UBQLN1 mutation (E45D) detected in a patient with BVVLS altered nuclear TDP-43 localization in vitro, suggesting that UPS dysfunction may also underlie the pathogenesis of this condition.
Collapse
Affiliation(s)
- Paloma González-Pérez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Viswanathan J, Haapasalo A, Böttcher C, Miettinen R, Kurkinen KMA, Lu A, Thomas A, Maynard CJ, Romano D, Hyman BT, Berezovska O, Bertram L, Soininen H, Dantuma NP, Tanzi RE, Hiltunen M. Alzheimer's disease-associated ubiquilin-1 regulates presenilin-1 accumulation and aggresome formation. Traffic 2011; 12:330-48. [PMID: 21143716 DOI: 10.1111/j.1600-0854.2010.01149.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Alzheimer's disease (AD)-associated ubiquilin-1 regulates proteasomal degradation of proteins, including presenilin (PS). PS-dependent γ-secretase generates β-amyloid (Aβ) peptides, which excessively accumulate in AD brain. Here, we have characterized the effects of naturally occurring ubiquilin-1 transcript variants (TVs) on the levels and subcellular localization of PS1 and other γ-secretase complex components and subsequent γ-secretase function in human embryonic kidney 293, human neuroblastoma SH-SY5Y and mouse primary cortical cells. Full-length ubiquilin-1 TV1 and TV3 that lacks the proteasome-interaction domain increased full-length PS1 levels as well as induced accumulation of high-molecular-weight PS1 and aggresome formation. Accumulated PS1 colocalized with TV1 or TV3 in the aggresomes. Electron microscopy indicated that aggresomes containing TV1 or TV3 were targeted to autophagosomes. TV1- and TV3-expressing cells did not accumulate other unrelated proteasome substrates, suggesting that the increase in PS1 levels was not because of a general impairment of the ubiquitin-proteasome system. Furthermore, PS1 accumulation and aggresome formation coincided with alterations in Aβ levels, particularly in cells overexpressing TV3. These effects were not related to altered γ-secretase activity or PS1 binding to TV3. Collectively, our results indicate that specific ubiquilin-1 TVs can cause PS1 accumulation and aggresome formation, which may impact AD pathogenesis or susceptibility.
Collapse
Affiliation(s)
- Jayashree Viswanathan
- Institute of Clinical Medicine-Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bao J, Zhang J, Zheng H, Xu C, Yan W. UBQLN1 interacts with SPEM1 and participates in spermiogenesis. Mol Cell Endocrinol 2010; 327:89-97. [PMID: 20558241 PMCID: PMC2950875 DOI: 10.1016/j.mce.2010.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Spermiogenesis represents the process through which haploid male germ cells differentiate from round spermatids into elongated spermatids and eventually the male gametes called spermatozoa. Haploid cell differentiation is unique to male germ cell development and many unique genes/proteins essential for this process have been discovered. SPEM1 is one of these spermiogenesis-essential proteins encoded by a testis-specific gene exclusively expressed in the developing spermatids. Inactivation of Spem1 in mice results in deformed spermatozoa characterized by "head-bent-back" abnormalities with 100% penetrance. Using yeast two-hybrid screening assays, we identified UBQLN1 as one of the SPEM1-interacting partners. UBQLN1 and SPEM1 were colocalized to the manchette of elongating spermatids. Since UBQLN1 functions through binding and directing poly-ubiquitinated proteins to the proteasome for degradation, interactions between UBQLN1 and SPEM1 suggest a role in the regulation of protein ubiquitination during spermiogenesis.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Embryology and Histology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jie Zhang
- Department of Biochemistry, China Medical University, Shenyang, China
| | - Huili Zheng
- Department of Embryology and Histology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Xu
- Department of Embryology and Histology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
- Corresponding author: Wei Yan MD, PhD Associate Professor Department of Physiology and Cell Biology University of Nevada School of Medicine Anderson Biomedical Science Building 105C/111 1664 North Virginia Street, MS 352 Reno, NV 89557 Tel: 775 784 7765 (Office) 775 784 4688 (Lab) Fax: 775 784 6903 URL: http://www.medicine.nevada.edu/physio/facyan.html
| |
Collapse
|
6
|
Larionov S, Wielgat P, Wang Y, Thal DR, Neumann H. Spatially pathogenic forms of tau detected in Alzheimer's disease brain tissue by fluorescence lifetime-based Förster resonance energy transfer. J Neurosci Methods 2010; 192:127-37. [PMID: 20655329 DOI: 10.1016/j.jneumeth.2010.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 01/07/2023]
Abstract
In tauopathies including Alzheimer's disease (AD) tau molecules have lost their normal spatial distance to each other and appear in oligomeric or aggregated forms. Conventional immunostaining methods allow detection of abnormally phosphorylated or conformationally altered aggregated tau proteins, but fail to visualize oligomeric forms of tau. Here we show that tau molecules that lost their normal spatial localization can be detected on a subcellular level in postmortem central nervous system (CNS) tissue sections of AD patients by fluorescence lifetime-based Förster resonance energy transfer (FRET). Paraffin sections were co-immunostained with two tau-specific monoclonal antibodies recognizing the same epitope, but labeled with distinct fluorescence dyes suitable for spatial resolution at a nanometer scale by lifetime-based FRET. A FRET signal was detected in neuritic plaques and neurofibrillary tangles of CNS tissue sections of AD patients, showing associated tau proteins typically reflecting either fibrillary, oligomeric or aggregated tau. The 'pretangle-like' structures within the neuronal perikarya did not contain spatially pathogenic forms of tau accordingly to this method. Data demonstrate that fluorescence lifetime-based FRET can be applied to human brain tissue sections to detect pathogenic forms of tau molecules that lost their normal spatial distance.
Collapse
Affiliation(s)
- Sergey Larionov
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, University Bonn and Hertie Foundation, University Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
7
|
Emerging role of Alzheimer's disease-associated ubiquilin-1 in protein aggregation. Biochem Soc Trans 2010; 38:150-5. [PMID: 20074050 DOI: 10.1042/bst0380150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin-proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Abeta (amyloid beta-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration.
Collapse
|
8
|
Seripa D, Panza F, Franceschi M, D'Onofrio G, Solfrizzi V, Dallapiccola B, Pilotto A. Non-apolipoprotein E and apolipoprotein E genetics of sporadic Alzheimer's disease. Ageing Res Rev 2009; 8:214-36. [PMID: 19496238 DOI: 10.1016/j.arr.2008.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genetic epidemiology of sporadic Alzheimer's disease (SAD) remains a very active area of research,making it one of the most prolifically published areas in medicine and biology. Numerous putative candidate genes have been proposed. However, with the exception of apolipoprotein E (APOE), the only confirmed genetic risk factor for SAD, all the other data appear to be not consistent. Nevertheless, the genetic risk for SAD attributable to the APOE gene in the general population is 20-0%, providing a strong evidence for the existence of additional genetic risk factors. The first part of the present article was dedicated to non-APOE genetics of SAD, reviewing chromosomes-by-chromosomes the available data concerning the major candidate genes. The second part of this article focused on some recently discovered aspects of the APOE polymorphism and their implications for SAD. An attempt to identify the future directions for non-APOE genetic research in SAD was also discussed.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Fluorescence lifetime imaging of quantum dot labeled DNA microarrays. Int J Mol Sci 2009; 10:1930-1941. [PMID: 19468347 PMCID: PMC2680655 DOI: 10.3390/ijms10041930] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 11/16/2022] Open
Abstract
Quantum dot (QD) labeling combined with fluorescence lifetime imaging microscopy is proposed as a powerful transduction technique for the detection of DNA hybridization events. Fluorescence lifetime analysis of DNA microarray spots of hybridized QD labeled target indicated a characteristic lifetime value of 18.8 ns, compared to 13.3 ns obtained for spots of free QD solution, revealing that QD labels are sensitive to the spot microenvironment. Additionally, time gated detection was shown to improve the microarray image contrast ratio by 1.8, achieving femtomolar target sensitivity. Finally, lifetime multiplexing based on Qdot525 and Alexa430 was demonstrated using a single excitation-detection readout channel.
Collapse
|
10
|
Effects of Ubiquilin 1 on the Unfolded Protein Response. J Mol Neurosci 2008; 38:19-30. [DOI: 10.1007/s12031-008-9155-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/06/2008] [Indexed: 01/01/2023]
|
11
|
Thomas AV, Berezovska O, Hyman BT, von Arnim CAF. Visualizing interaction of proteins relevant to Alzheimer's disease in intact cells. Methods 2008; 44:299-303. [PMID: 18374273 DOI: 10.1016/j.ymeth.2007.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/27/2022] Open
Abstract
To understand normal function of memory studying models of pathological memory decline is essential. The most common form of dementia leading to memory decline is Alzheimer's disease (AD), which is characterized by the presence of neurofibrillary tangles and amyloid plaques in the affected brain regions. Altered production of amyloid beta (Abeta) through sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases seems to be a central event in the molecular pathogenesis of the disease. Thus, the study of the complex interplay of proteins that are involved in or modify Abeta production is very important to gain insight into the pathogenesis of AD. Here, we describe the use of Fluorescence lifetime imaging microscopy (FLIM), a Fluorescence resonance energy transfer (FRET)-based method, to visualize protein-protein-interaction in intact cells, which has proven to be a valuable method in AD research.
Collapse
Affiliation(s)
- Anne V Thomas
- Department of Neurology, University of Cologne, Germany
| | | | | | | |
Collapse
|
12
|
Golan MP, Melquist S, Safranow K, Styczyńska M, Słowik A, Kobryś M, Zekanowski C, Barcikowska M. Analysis of UBQLN1 variants in a Polish Alzheimer's disease patient: control series. Dement Geriatr Cogn Disord 2008; 25:366-71. [PMID: 18340109 DOI: 10.1159/000121006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 11/19/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common neurodegenerative disorder, and has a complex etiology. Recently an intronic polymorphism in the ubiquilin 1 gene (UBQLN1) and a particular haplotype was reported to be associated with LOAD. We investigated whether variants in UBQLN1 confer a risk for the disease in 407 Polish LOAD patients and 407 controls. We observed a weak association with the rs2781002 polymorphism, however, contrary to the initial reports, in our group the association was with the A allele. Risk estimation for AA versus GG genotypes showed that the AA genotype is a weak risk factor for AD (OR = 1.8, 95% CI = 1.1-3.1, p = 0.025). This effect was stronger in a group of LOAD patients without APOE4 allele. Haplotype analyses indicate that there is an increase of haplotypes with an A allele in the case group. Also, the specific haplotypes with the A allele that increase AD risk differ between the APOE4-positive and APOE4-negative pools. However, the association observed seems to be driven mostly by rare (<5%) haplotypes. Results suggest a need for additional association studies and in silico analysis of the UBQLN1 locus.
Collapse
Affiliation(s)
- Maciej P Golan
- Department of Neurodegenerative Disorders, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.
Collapse
Affiliation(s)
- Michael E Boulton
- Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
14
|
Ganguly A, Feldman RR, Guo M. ubiquilin antagonizes presenilin and promotes neurodegeneration in Drosophila. Hum Mol Genet 2007; 17:293-302. [DOI: 10.1093/hmg/ddm305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Ford DL, Monteiro MJ. Studies of the role of ubiquitination in the interaction of ubiquilin with the loop and carboxyl terminal regions of presenilin-2. Biochemistry 2007; 46:8827-37. [PMID: 17614368 PMCID: PMC2547082 DOI: 10.1021/bi700604q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquilin was originally identified as a presenilin-interacting protein. We previously reported that ubiquilin interacts with both the loop and carboxyl terminus of presenilin proteins and that the ubiquitin-associated (UBA) domain of ubiquilin, which binds poly ubiquitin chains, is important for mediating this interaction. In the present study, we examined whether ubiquitination of presenilin-2 (PS2) is required for interaction with ubiquilin-1 by mutating lysine residues that may be targets for ubiquitination in the presenilin loop and carboxyl terminus regions. Mutation of two lysine residues in the PS2-loop region suggested that ubiquitination is not required for interaction with ubiquilin-1 and may, in fact, even negatively regulate the interaction. Similarly, we found that ubiquitination of the PS2 carboxyl terminus (PS2-C-terminus) is not required for interaction with ubiquilin-1, although our results suggest that it could play some role. Instead, we found that the mutation of either one of the two lysine residues in the carboxyl terminus of PS2 or the proline residues in the highly conserved PALP motif in this region results in destabilization of the mutant PS2 polypeptides because of increased degradation by the proteasome. Furthermore, by GST-pull-down assays we found that the mutant polypeptides were unable to bind ubiquilin, suggesting that loss of ubiquilin interaction leads to destabilization of presenilin polypeptides. Paradoxically, however, knockdown of ubiquilin expression by RNA interference did not alter the rate of turnover of PS2 proteins in cells. Instead, we found that PS2 synthesis was reduced, and PS2 fragment production was increased, suggesting that ubiquilin expression modulates biogenesis and endoproteolysis of presenilin proteins.
Collapse
Affiliation(s)
- Diana L. Ford
- Medical Biotechnology Center, Program in Neurodegenerative Diseases, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
- Biochemistry and Molecular Biology Graduate Program, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Mervyn J. Monteiro
- Medical Biotechnology Center, Program in Neurodegenerative Diseases, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
- Biochemistry and Molecular Biology Graduate Program, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
- Corresponding author: Mervyn J. Monteiro, Medical Biotechnology Center, Room N352, 725 West Lombard Street, Baltimore, MD 21201, Tel: 410-706-8132, Fax: 410-706-8184,
| |
Collapse
|
16
|
Wang H, Monteiro MJ. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity. Exp Cell Res 2007; 313:2810-20. [PMID: 17490645 PMCID: PMC2002572 DOI: 10.1016/j.yexcr.2007.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/11/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.
Collapse
Affiliation(s)
- Hongmin Wang
- Medical Biotechnology Center, Institute for Neurodegenerative Diseases, University of Maryland Biotechnology Institute, Room N352, Baltimore, MD 21201, USA
| | | |
Collapse
|
17
|
Chen G, Wang X, Yu J, Varambally S, Yu J, Thomas DG, Lin MY, Vishnu P, Wang Z, Wang R, Fielhauer J, Ghosh D, Giordano TJ, Giacherio D, Chang AC, Orringer MB, El-Hefnawy T, Bigbee WL, Beer DG, Chinnaiyan AM. Autoantibody Profiles Reveal Ubiquilin 1 as a Humoral Immune Response Target in Lung Adenocarcinoma. Cancer Res 2007; 67:3461-7. [PMID: 17409457 DOI: 10.1158/0008-5472.can-06-4475] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is considerable evidence that the presence of cancer can elicit a humoral immune response to specific proteins in the host, and these resulting autoantibodies may have potential as noninvasive biomarkers. To characterize the autoantibody repertoire present in the sera of patients with lung adenocarcinoma, we developed a high-density peptide microarray derived from biopanning a lung cancer phage display library. Using a 2,304-element microarray, we interrogated a total of 250 sera from Michigan lung cancer patients and noncancer controls to develop an "autoantibody profile" of lung adenocarcinoma. A set of 22 discriminating peptides derived from a training set of 125 serum samples from lung adenocarcinoma patients and control subjects was found to predict cancer status with 85% sensitivity and 86% specificity in an independent test set of 125 sera. Sequencing of the immunoreactive phage-peptide clones identified candidate humoral immune response targets in lung adenocarcinoma, including ubiquilin 1, a protein that regulates the degradation of several ubiquitin-dependent proteasome substrates. An independent validation set of 122 serum samples from Pittsburgh was examined using two overlapping clones of ubiquilin 1 that showed 0.79 and 0.74 of the area under the receiver operating characteristics curve, respectively. Significantly increased levels of both ubiquilin 1 mRNA and protein, as well as reduced levels of the phosphorylated form of this protein, were detected in lung tumors. Immunofluorescence using anti-ubiquilin 1 antibodies confirmed intracellular expression within tumors cells. These studies indicate that autoantibody profiles, as well as individual candidates, may be useful for the noninvasive detection of lung adenocarcinoma.
Collapse
Affiliation(s)
- Guoan Chen
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Parks AL, Curtis D. Presenilin diversifies its portfolio. Trends Genet 2007; 23:140-50. [PMID: 17280736 DOI: 10.1016/j.tig.2007.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/14/2006] [Accepted: 01/23/2007] [Indexed: 12/13/2022]
Abstract
Presenilin, the catalytic member of the gamma-secretase proteolytic complex, was discovered through its roles in generating Alzheimer's-disease-associated amyloid-beta peptides from the amyloid-beta precursor protein and in releasing the transcriptionally active domain of the receptor Notch. Recent work has revealed many additional cleavage substrates and interacting proteins, suggesting a diversity of roles for presenilin during development and adult life, some of which might contribute to Alzheimer's disease progression. Although many of these functions depend on the proteolytic activity of gamma-secretase, others are independent of its role as a protease. Here, we review recent data on candidate functions for presenilin and its interactors and on their potential significance in disease.
Collapse
Affiliation(s)
- Annette L Parks
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|