1
|
Olvera-Sánchez S, Esparza-Perusquía M, Flores-Herrera O, Urban-Sosa VA, Martínez F. Aspectos generales del transporte de colesterol en la esteroidogénesis de la placenta humana. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La placenta humana requiere de colesterol para sintetizar la progesterona que mantiene la relación entre el feto y la madre, lo que le permite concluir de manera exitosa el embarazo. La placenta incorpora el colesterol principalmente a través de las lipoproteínas de baja densidad (LDL) que se obtienen del torrente circulatorio materno por un mecanismo de endocitosis. A los endosomas que se generan en este proceso se les unen varias proteínas conformando los endosomas tardíos, que degradan las LDL y liberan el colesterol a las mitocondrias del sinciciotrofoblasto que lo transforman en pregnenolona y posteriormente en progesterona. Las proteínas de fusión de membranas denominados complejos SNARE participan en la liberación del colesterol en sitios de contacto específicos en donde se localizan las proteínas mitocondriales responsables de la esteroidogénesis.
Collapse
|
2
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
3
|
Pienimaeki-Roemer A, Fischer A, Tafelmeier M, Orsó E, Konovalova T, Böttcher A, Liebisch G, Reidel A, Schmitz G. High-density lipoprotein 3 and apolipoprotein A-I alleviate platelet storage lesion and release of platelet extracellular vesicles. Transfusion 2014; 54:2301-14. [PMID: 24912423 DOI: 10.1111/trf.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stored platelet (PLT) concentrates (PLCs) for transfusion develop a PLT storage lesion (PSL), decreasing PLT viability and function with profound lipidomic changes and PLT extracellular vesicle (PL-EV) release. High-density lipoprotein 3 (HDL3 ) improves PLT homeostasis through silencing effects on PLT activation in vivo. This prompted us to investigate HDL3 and apolipoprotein A-I (apoA-I) as PSL-antagonizing agents. STUDY DESIGN AND METHODS Healthy donor PLCs were split into low-volume standard PLC storage bags and incubated with native (n)HDL3 or apoA-I from plasma ethanol fractionation (precipitate IV) for 5 days under standard blood banking conditions. Flow cytometry, Born aggregometry, and lipid mass spectrometry were carried out to analyze PL-EV release, PLT aggregation, agonist-induced PLT surface marker expression, and PLT and plasma lipid compositions. RESULTS Compared to control, added nHDL3 and apoA-I significantly reduced PL-EV release by up to -62% during 5 days, correlating with the added apoA-I concentration. At the lipid level, nHDL3 and apoA-I antagonized PLT lipid loss (+12%) and decreased cholesteryl ester (CE)/free cholesterol (FC) ratios (-69%), whereas in plasma polyunsaturated/saturated CE ratios increased (+3%) and CE 16:0/20:4 ratios decreased (-5%). Administration of nHDL3 increased PLT bis(monoacylglycero)phosphate/phosphatidylglycerol (+102%) and phosphatidic acid/lysophosphatidic acid (+255%) ratios and improved thrombin receptor-activating peptide 6-induced PLT aggregation (+5%). CONCLUSION nHDL3 and apoA-I improve PLT membrane homeostasis and intracellular lipid processing and increase CE efflux, antagonizing PSL-related reduction in PLT viability and function and PL-EV release. We suggest uptake and catabolism of nHDL3 into the PLT open canalicular system. As supplement in PLCs, nHDL3 or apoA-I from Fraction IV of plasma ethanol fractionation have the potential to improve PLC quality to prolong storage.
Collapse
|
4
|
Srisen K, Röhrl C, Meisslitzer-Ruppitsch C, Ranftler C, Ellinger A, Pavelka M, Neumüller J. Human endothelial progenitor cells internalize high-density lipoprotein. PLoS One 2013; 8:e83189. [PMID: 24386159 PMCID: PMC3875452 DOI: 10.1371/journal.pone.0083189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular pathway and accumulated prominently in all parts of the Golgi apparatus and in lipid droplets. Subsequently, also the RER and mitochondria were involved. These studies demonstrated the different intracellular pathway of HDL-derived bodipy-cholesterol and HDL-derived bodipy-cholesteryl oleate by EPCs, with concomitant.
Collapse
Affiliation(s)
- Kaemisa Srisen
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Claudia Meisslitzer-Ruppitsch
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | - Carmen Ranftler
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | - Margit Pavelka
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | - Josef Neumüller
- Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Uda S, Spolitu S, Angius F, Collu M, Accossu S, Banni S, Murru E, Sanna F, Batetta B. Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages. J Lipid Res 2013; 54:3158-69. [PMID: 23956443 DOI: 10.1194/jlr.m042663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion. These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells.
Collapse
Affiliation(s)
- Sabrina Uda
- Experimental Medicine Unit, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Uda S, Accossu S, Spolitu S, Collu M, Angius F, Sanna F, Banni S, Vacca C, Murru E, Mulas C, Diaz G, Batetta B. A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumour Biol 2011; 33:443-53. [PMID: 22161086 DOI: 10.1007/s13277-011-0270-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
Tumour are characterised by a high content of cholesteryl esters (CEs) stored in lipid droplets purported to be due to a high rate of intracellular esterification of cholesterol. To verify whether and which pathways involved in CE accumulation are essential in tumour proliferation, the effect of CE deprivation, from both exogenous and endogenous sources, on CEM-CCRF cells was investigated. Cholesterol synthesis, esterification and content, low-density lipoprotein (LDL) binding and high-density lipoprotein (HDL)-CE uptake were evaluated in cultured in both conventional and delipidated bovine serum with or without oleic or linoleic acids, cholesteryl oleate, LDL and HDL. High content of CEs in lipid droplets in this cell line was due to esterification of both newly synthesised cholesterol and that obtained from hydrolysis of LDL; moreover, a significant amount of CE was derived from HDL-CE uptake. Cell proliferation was slightly affected by either acute or chronic treatment up to 400 μM with Sz-58035, an acyl-cholesteryl cholesterol esterification inhibitor (ACAT); although when the enzyme activity was continuously inhibited, CE content in lipid droplets was significantly higher than those in control cells. In these cells, analysis of intracellular and medium CEs revealed a profile reflecting the characteristics of bovine serum, suggesting a plasma origin of CE molecules. Cell proliferation arrest in delipidated medium was almost completely prevented in the first 72 h by LDL or HDL, although in subsequent cultures with LDL, it manifested an increasing mortality rate. This study suggests that high content of CEs in CEM-CCRF is mainly derived from plasma lipoproteins and that part of CEs stored in lipid droplets are obtained after being taken up from HDL. This route appears to be up-regulated according to cell requirements and involved in low levels of c-HDL during cancer. Moreover, the dependence of tumour cells on a source of lipoprotein provides a novel impetus in developing therapeutic strategies for use in the treatment of some tumours.
Collapse
Affiliation(s)
- Sabrina Uda
- Department of Science and Biomedical Technologies, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Robichaud JC, van der Veen JN, Yao Z, Trigatti B, Vance DE. Hepatic uptake and metabolism of phosphatidylcholine associated with high density lipoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:538-51. [PMID: 19250958 DOI: 10.1016/j.bbagen.2009.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND Phosphatidylcholine (PC) is the predominant phospholipid associated with high density lipoproteins (HDL). Although the hepatic uptake of cholesteryl esters from HDL is well characterized, much less is known about the fate of PC associated with HDL. Thus, we investigated the uptake and subsequent metabolism of HDL-PC in primary mouse hepatocytes. METHODS AND RESULTS The absence of scavenger receptor-BI resulted in a 30% decrease in cellular incorporation of [(3)H]PC whereas [(3)H]cholesteryl ether uptake was almost completely abolished. Although endocytosis is not involved in the uptake of cholesteryl esters from HDL, we demonstrate that HDL internalization accounts for 40% of HDL-PC uptake. Extracellular remodeling of HDL by secretory phospholipase A(2) significantly enhances HDL lipid uptake. HDL-PC taken up by hepatocytes is partially converted to triacylglycerols via PC-phospholipase C-mediated hydrolysis of PC and incorporation of diacylglycerol into triacylglycerol. The formation of triacylglycerol is independent of scavenger receptor-BI and occurs in extralysosomal compartments. CONCLUSIONS AND GENERAL SIGNIFICANCE These findings indicate that HDL-associated PC is incorporated into primary hepatocytes via a pathway that differs significantly from that of HDL-cholesteryl ester, and shows that HDL-PC is more than a framework molecule, as evidenced by its partial conversion to hepatic triacylglycerol.
Collapse
Affiliation(s)
- Julie C Robichaud
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|