1
|
Solares MJ, Kelly DF. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. Int J Mol Sci 2022; 23:ijms232315267. [PMID: 36499604 PMCID: PMC9740296 DOI: 10.3390/ijms232315267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in tumor suppressor genes often lead to cancerous phenotypes. Current treatments leverage signaling pathways that are often compromised by disease-derived deficiencies in tumor suppressors. P53 falls into this category as genetic mutations lead to physical changes in the protein that impact multiple cellular pathways. Here, we show the first complete structural models of mutated p53 to reveal how hotspot mutations physically deviate from the wild-type protein. We employed a recently determined structure for the p53 monomer to map seven frequent clinical mutations using computational modeling approaches. Results showed that missense mutations often changed the conformational structure of p53 in the DNA-binding site along with its electrostatic surface charges. We posit these changes may amplify the toxic effects of these hotspot mutations by destabilizing an important zinc ion coordination region in p53 to impede proper DNA interactions. These results highlight the imperative need for new studies on patient-derived proteins that may assist in redesigning structure-informed targeted therapies.
Collapse
Affiliation(s)
- Maria J. Solares
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Correspondence:
| |
Collapse
|
2
|
Hidden electrostatic energy contributions define dynamic allosteric communications within p53 during molecular recognition. Biophys J 2021; 120:4512-4524. [PMID: 34478701 DOI: 10.1016/j.bpj.2021.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/03/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Molecular recognition is fundamental to transcription regulation. As a transcription factor, the tumor suppressor p53 has to recognize either specific DNA sequences or repressor protein partners. However, the molecular mechanism underlying the p53 conformational switch from the DNA-bound to repressor-bound states is not fully characterized. The highly charged nature of these interacting molecules prompted us to explore the nonbonded energy contributions behind molecular recognition of either a DNA or the repressor protein iASPP by p53 DNA binding domain (p53DBD), using molecular dynamics simulation followed by rigorous analyses of energy terms. Our results illuminate the allosteric pathway by which iASPP binding to p53 diminishes binding affinity between p53 and DNA. Even though the p53DBD uses a common framework of residues for recognizing both DNA and iASPP, a comparison of the electrostatics in the two p53DBD complexes revealed significant differences in residue-wise contributions to the electrostatic energy. We found that an electrostatic allosteric communication path exists in the presence of both substrates. It consists of evolutionarily conserved residues, from residue K120 of the binding loop L1 to a distal residue R213 of p53DBD. K120 is near the DNA in the p53DBD-DNA complex, whereas iASPP binding moves it away from its DNA binding position in the p53DBD-iASPP complex. The "energy hubs" (the residues show a higher degree of connectivity with other residues in the electrostatic networks) determined from the electrostatic network analysis established that this conformational change in K120 completely rewires the electrostatic network from K120 to R213, thereby impeding DNA binding. Furthermore, we found shifting populations of hydrogen bonds and salt bridges reduce pairwise electrostatic energies within p53DBD in its DNA-bound state.
Collapse
|
3
|
Nucera S, Fazio G, Piazza R, Rigamonti S, Fontana D, Gambacorti Passerini C, Maitz S, Rovelli A, Biondi A, Cazzaniga G, Balduzzi A. Germ-Line TP53 Mutation in an Adolescent With CMML/Atypical CML and Familiar Cancer Predisposition. Hemasphere 2020; 4:e460. [PMID: 33163904 PMCID: PMC7643904 DOI: 10.1097/hs9.0000000000000460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022] Open
Abstract
Supplemental Digital Content is available in the text.
Collapse
Affiliation(s)
- Silvia Nucera
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Grazia Fazio
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Rocco Piazza
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Silvia Rigamonti
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Diletta Fontana
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Carlo Gambacorti Passerini
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Silvia Maitz
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Attilio Rovelli
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Giovauni Cazzaniga
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| |
Collapse
|
4
|
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2020; 28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thierry Soussi
- Sorbonne Université, UPMC University Paris 06, 75005 Paris, France; Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden; INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, Paris, France
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teng-Kuei Hsu
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Ding Y, Xue H, Ding X, Zhao Y, Zhao Z, Wang D, Wu J. On the complexity measures of mutation hotspots in human TP53 protein. CHAOS (WOODBURY, N.Y.) 2020; 30:073118. [PMID: 32752620 DOI: 10.1063/1.5143584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The role of sequence complexity in 23 051 somatic missense mutations including 73 well-known mutation hotspots across 22 major cancers was studied in human TP53 proteins. A role for sequence complexity in TP53 protein mutations is suggested since (i) the mutation rate significantly increases in low amino acid pair bias complexity; (ii) probability distribution complexity increases following single point substitution mutations and strikingly increases after mutation at the mutation hotspots including six detectable hotspot mutations (R175, G245, R248, R249, R273, and R282); and (iii) the degree of increase in distribution complexity is significantly correlated with the frequency of missense mutations (r = -0.5758, P < 0.0001) across 20 major types of solid tumors. These results are consistent with the hypothesis that amino acid pair bias and distribution probability may be used as novel measures for protein sequence complexity, and the degree of complexity is related to its susceptibility to mutation, as such, it may be used as a predictor for modeling protein mutations in human cancers.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hongsheng Xue
- Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xinjia Ding
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yuqing Zhao
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhilong Zhao
- Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dazhi Wang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jianlin Wu
- Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
6
|
Tanaka T, Hozumi Y, Martelli AM, Iino M, Goto K. Nucleosome assembly proteins NAP1L1 and NAP1L4 modulate p53 acetylation to regulate cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118560. [DOI: 10.1016/j.bbamcr.2019.118560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
|
7
|
Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Proc Natl Acad Sci U S A 2019; 116:17470-17479. [PMID: 31395738 PMCID: PMC6717262 DOI: 10.1073/pnas.1909393116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The most frequently mutated protein in human cancer is p53, a transcription factor (TF) that regulates myriad genes instrumental in diverse cellular outcomes including growth arrest and cell death. Cell context-dependent p53 modulation is critical for this life-or-death balance, yet remains incompletely understood. Here we identify sequence signatures enriched in genomic p53-binding sites modulated by the transcription cofactor iASPP. Moreover, our p53-iASPP crystal structure reveals that iASPP displaces the p53 L1 loop-which mediates sequence-specific interactions with the signature-corresponding base-without perturbing other DNA-recognizing modules of the p53 DNA-binding domain. A TF commonly uses multiple structural modules to recognize its cognate DNA, and thus this mechanism of a cofactor fine-tuning TF-DNA interactions through targeting a particular module is likely widespread. Previously, all tumor suppressors and oncoproteins that associate with the p53 DNA-binding domain-except the oncogenic E6 from human papillomaviruses (HPVs)-structurally cluster at the DNA-binding site of p53, complicating drug design. By contrast, iASPP inhibits p53 through a distinct surface overlapping the E6 footprint, opening prospects for p53-targeting precision medicine to improve cancer therapy.
Collapse
Affiliation(s)
- Shuo Chen
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jiale Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan Zhong
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yuntong Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingyi Ma
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunhao Wang
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Xin Lu
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
8
|
Signorelli S, Santini S, Yamada T, Bizzarri AR, Beattie CW, Cannistraro S. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochim Biophys Acta Gen Subj 2017; 1861:910-921. [PMID: 28126403 DOI: 10.1016/j.bbagen.2017.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. METHODS Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. RESULTS We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. CONCLUSIONS These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. GENERAL SIGNIFICANCE Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Collapse
Affiliation(s)
- Sara Signorelli
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy; Department of Science, University Roma Tre, Rome, Italy
| | - Simona Santini
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy.
| | - Craig W Beattie
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | | |
Collapse
|
9
|
Ouaray Z, ElSawy KM, Lane DP, Essex JW, Verma C. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain. Proteins 2016; 84:1443-61. [DOI: 10.1002/prot.25089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Zahra Ouaray
- School of Chemistry; University of Southampton; Southampton SO17 1BJ United Kingdom
- Bioinformatics Institute, Agency for Science, Technology and Research; Singapore 138671 Singapore
| | - Karim M. ElSawy
- York Centre for Complex Systems Analysis (YCCSA), University of York; York YO10 5GE United Kingdom
- Department of Chemistry; College of Science, Qassim University; Buraydah 52571 Saudi Arabia
| | - David P. Lane
- p53 Laboratory; Agency for Science, Technology and Research; Singapore 138648 Singapore
| | - Jonathan W. Essex
- School of Chemistry; University of Southampton; Southampton SO17 1BJ United Kingdom
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research; Singapore 138671 Singapore
- School of Biological Sciences; Nanyang Technological University; 637551 Singapore
- Department of Biological Sciences; National University of Singapore; 117543 Singapore
| |
Collapse
|
10
|
Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode. J Mol Biol 2016; 428:3013-25. [DOI: 10.1016/j.jmb.2016.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
|
11
|
Monteith JA, Mellert H, Sammons MA, Kuswanto LA, Sykes SM, Resnick-Silverman L, Manfredi JJ, Berger SL, McMahon SB. A rare DNA contact mutation in cancer confers p53 gain-of-function and tumor cell survival via TNFAIP8 induction. Mol Oncol 2016; 10:1207-20. [PMID: 27341992 DOI: 10.1016/j.molonc.2016.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
The p53 tumor suppressor gene encodes a sequence-specific transcription factor. Mutations in the coding sequence of p53 occur frequently in human cancer and often result in single amino acid substitutions (missense mutations) in the DNA binding domain (DBD), blocking normal tumor suppressive functions. In addition to the loss of canonical functions, some missense mutations in p53 confer gain-of-function (GOF) activities to tumor cells. While many missense mutations in p53 cluster at six "hotspot" amino acids, the majority of mutations in human cancer occur elsewhere in the DBD and at a much lower frequency. We report here that mutations at K120, a non-hotspot DNA contact residue, confer p53 with the previously unrecognized ability to bind and activate the transcription of the pro-survival TNFAIP8 gene. Mutant K120 p53 binds the TNFAIP8 locus at a cryptic p53 response element that is not occupied by wild-type p53. Furthermore, induction of TNFAIP8 is critical for the evasion of apoptosis by tumor cells expressing the K120R variant of p53. These findings identify induction of pro-survival targets as a mechanism of gain-of-function activity for mutant p53 and will likely broaden our understanding of this phenomenon beyond the limited number of GOF activities currently reported for hotspot mutants.
Collapse
Affiliation(s)
- Jessica A Monteith
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| | - Hestia Mellert
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| | - Morgan A Sammons
- Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 9-125 Smilow Center for Translational Research, Philadelphia, PA 19104, United States.
| | - Laudita A Kuswanto
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States; University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| | - Stephen M Sykes
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States; Medical Genetics and Molecular Biology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Shelley L Berger
- Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 9-125 Smilow Center for Translational Research, Philadelphia, PA 19104, United States.
| | - Steven B McMahon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| |
Collapse
|
12
|
Beckerman R, Yoh K, Mattia-Sansobrino M, Zupnick A, Laptenko O, Karni-Schmidt O, Ahn J, Byeon IJ, Keezer S, Prives C. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Cell Cycle 2016; 15:1425-38. [PMID: 27210019 DOI: 10.1080/15384101.2016.1170270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
Collapse
Affiliation(s)
| | - Kathryn Yoh
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | | | | | - Oleg Laptenko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Orit Karni-Schmidt
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Jinwoo Ahn
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - In-Ja Byeon
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Susan Keezer
- c Cell Signaling Technology, Inc. , Danvers , MA , USA
| | - Carol Prives
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
13
|
Yamada T, Das Gupta TK, Beattie CW. p28-Mediated Activation of p53 in G2–M Phase of the Cell Cycle Enhances the Efficacy of DNA Damaging and Antimitotic Chemotherapy. Cancer Res 2016; 76:2354-65. [DOI: 10.1158/0008-5472.can-15-2355] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
|
14
|
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014; 35:672-88. [PMID: 24665023 DOI: 10.1002/humu.22552] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 12/18/2022]
Abstract
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris 6, Paris, 75005, France
| | | | | |
Collapse
|
15
|
Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics. PLoS One 2013; 8:e80221. [PMID: 24324553 PMCID: PMC3855832 DOI: 10.1371/journal.pone.0080221] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site.
Collapse
|
16
|
Warren RS, Atreya CE, Niedzwiecki D, Weinberg VK, Donner DB, Mayer RJ, Goldberg RM, Compton CC, Zuraek MB, Ye C, Saltz LB, Bertagnolli MM. Association of TP53 mutational status and gender with survival after adjuvant treatment for stage III colon cancer: results of CALGB 89803. Clin Cancer Res 2013; 19:5777-87. [PMID: 23983256 DOI: 10.1158/1078-0432.ccr-13-0351] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The TP53 tumor suppressor is frequently mutated in colon cancer, but the influence of such mutations on survival remains controversial. We investigated whether mutations in the DNA-binding domain of TP53 are associated with survival in stage III colon cancer. EXPERIMENTAL DESIGN The impact of TP53 genotype was prospectively evaluated in Cancer and Leukemia Group B 89803, a trial that randomized stage III colon cancer patients to receive adjuvant 5-fluorouracil/leucovorin (5FU/LV) or 5FU/LV with irinotecan (IFL). RESULTS TP53 mutations were identified in 274 of 607 cases. The presence of any TP53 mutation did not predict disease-free survival (DFS) or overall survival with either adjuvant regimen when men and women were considered together or as separate groups. However, outcome differences among women became apparent when tumor TP53 genotype was stratified as wild-type versus zinc- or non-zinc-binding mutations in the TP53 DNA-binding domain. DFS at 5 years was 0.59, 0.52, and 0.78 for women with TP53 wild-type tumors, and tumors with zinc- or non-zinc-binding mutations, respectively. Survival at 5 years for these same women was 0.72, 0.59, and 0.90, respectively. No differences in survival by TP53 genotype were observed in men. CONCLUSIONS The presence of any TP53 mutation within the DNA-binding domain did not predict survival in stage III colon cancer. However, TP53 genotype was predictive of survival in women following adjuvant therapy. Future colon cancer therapeutic trials, with inclusion of correlative molecular markers, should be designed to permit evaluation of survival and/or response to treatment in women separately from men.
Collapse
Affiliation(s)
- Robert S Warren
- Authors' Affiliations: Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; Department of Biostatistics and Bioinformatics, Alliance Statistics and Data Center, Duke University Medical Center, Durham, North Carolina; Dana-Farber Cancer Institute; Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts; The Ohio State University, Columbus, Ohio; National Cancer Institute, Bethesda, Maryland; and Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS, Ramos A, Foggetti G, Menichini P, Menendez D, Resnick MA, Viadiu H, Fronza G, Inga A. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Res 2013; 41:8637-53. [PMID: 23892287 PMCID: PMC3794606 DOI: 10.1093/nar/gkt657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural and biochemical studies have demonstrated that p73, p63 and p53 recognize DNA with identical amino acids and similar binding affinity. Here, measuring transactivation activity for a large number of response elements (REs) in yeast and human cell lines, we show that p53 family proteins also have overlapping transactivation profiles. We identified mutations at conserved amino acids of loops L1 and L3 in the DNA-binding domain that tune the transactivation potential nearly equally in p73, p63 and p53. For example, the mutant S139F in p73 has higher transactivation potential towards selected REs, enhanced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the protein–DNA complex. By studying, how variations in the RE sequence affect transactivation specificity, we discovered a RE-transactivation code that predicts enhanced transactivation; this correlation is stronger for promoters of genes associated with apoptosis.
Collapse
Affiliation(s)
- Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, TN, 38060 Italy, Molecular Mutagenesis and DNA Repair Unit, IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa 16132, Italy, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA and Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIEHS, NIH, RTP, NC, 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yamada T, Christov K, Shilkaitis A, Bratescu L, Green A, Santini S, Bizzarri AR, Cannistraro S, Gupta TKD, Beattie CW. p28, a first in class peptide inhibitor of cop1 binding to p53. Br J Cancer 2013; 108:2495-504. [PMID: 23736031 PMCID: PMC3694247 DOI: 10.1038/bjc.2013.266] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A 28 amino-acid (aa) cell-penetrating peptide (p28) derived from azurin, a redox protein secreted from the opportunistic pathogen Pseudomonas aeruginosa, produces a post-translational increase in p53 in cancer cells by inhibiting its ubiquitination. METHODS In silico computational simulations were used to predict motifs within the p53 DNA-binding domain (DBD) as potential sites for p28 binding. In vitro direct and competitive pull-down studies as well as western blot and RT-PCR analyses were used to validate predictions. RESULTS The L1 loop (aa 112-124), a region within the S7-S8 loop (aa 214-236) and T140, P142, Q144, W146, R282 and L289 of the p53DBD were identified as potential sites for p28 binding. p28 decreased the level of the E3 ligase COP1 >80%, in p53wt and p53mut cells with no decrease in COP1 in p53dom/neg or p53null cells. Brief increases in the expression of the E3 ligases, TOPORS, Pirh2 and HDM2 (human double minute 2) in p53wt and p53mut cells were in response to sustained increases in p53. CONCLUSION These data identify the specific motifs within the DBD of p53 that bind p28 and suggest that p28 inhibition of COP1 binding results in the sustained, post-translational increase in p53 levels and subsequent inhibition of cancer cell growth independent of an HDM2 pathway.
Collapse
Affiliation(s)
- T Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - K Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - A Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - L Bratescu
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - A Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - S Santini
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy
| | - A R Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy
| | - S Cannistraro
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy
| | - T K D Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - C W Beattie
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Rozenberg H, Diskin-Posner Y, Eldar A, Shakked Z. 61 High-resolution crystal structures of p53 mutants and their interaction with DNA. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ethayathulla AS, Nguyen HT, Viadiu H. Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements. J Biol Chem 2012; 288:4744-54. [PMID: 23243311 DOI: 10.1074/jbc.m112.408039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How cells choose between developmental pathways remains a fundamental biological question. In the case of the p53 protein family, its three transcription factors (p73, p63, and p53) each trigger a gene expression pattern that leads to specific cellular pathways. At the same time, these transcription factors recognize the same response element (RE) consensus sequences, and their transactivation of target genes overlaps. We aimed to understand target gene selectivity at the molecular level by determining the crystal structures of the p73 DNA-binding domain (DBD) in complex with full-site REs that vary in sequence. We report two structures of the p73 DBD bound as a tetramer to 20-bp full-site REs based on two distinct quarter-sites: GAACA and GAACC. Our study confirms that the DNA-binding residues are conserved within the p53 family, whereas the dimerization and tetramerization interfaces diverge. Moreover, a conserved lysine residue in loop L1 of the DBD senses the presence of guanines in positions 2 and 3 of the quarter-site RE, whereas a conserved arginine in loop 3 adapts to changes in position 5. Sequence variations in the RE elicit a p73 conformational response that might explain target gene specificity.
Collapse
Affiliation(s)
- Abdul S Ethayathulla
- Laboratory of Structural Biochemistry, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
22
|
Abstract
TP53 mutations are the most frequent genetic alterations found in human cancer. For more than 20 years, TP53 mutation databases have collected over 30,000 somatic mutations from various types of cancer. Analyses of these mutations have led to many types of studies and have improved our knowledge about the TP53 protein and its function. The recent advances in sequencing methodologies and the various cancer genome sequencing projects will lead to a profound shift in database curation and data management. In this paper, we will review the current status of the TP53 mutation database, its application to various fields of research, and how data quality and curation can be improved. We will also discuss how the genetic data will be stored and handled in the future and the consequences for database management.
Collapse
|
23
|
Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc Natl Acad Sci U S A 2011; 108:8251-6. [PMID: 21525412 DOI: 10.1073/pnas.1105028108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lys120 in the DNA-binding domain (DBD) of p53 becomes acetylated in response to DNA damage. But, the role and effects of acetylation are obscure. We prepared p53 specifically acetylated at Lys120, AcK120p53, by in vivo incorporation of acetylated lysine to study biophysical and structural consequences of acetylation that may shed light on its biological role. Acetylation had no affect on the overall crystal structure of the DBD at 1.9-Å resolution, but significantly altered the effects of salt concentration on specificity of DNA binding. p53 binds DNA randomly in vitro at effective physiological salt concentration and does not bind specifically to DNA or distinguish among its different response elements until higher salt concentrations. But, on acetylation, AcK120p53 exhibited specific DNA binding and discriminated among response elements at effective physiological salt concentration. AcK120p53 and p53 had the highest affinity to the same DNA sequence, although acetylation reduced the importance of the consensus C and G at positions 4 and 7, respectively. Mass spectrometry of p53 and AcK120p53 DBDs bound to DNA showed they preferentially segregated into complexes that were either DNA(p53DBD)(4) or DNA(AcK120DBD)(4), indicating that the different DBDs prefer different quaternary structures. These results are consistent with electron microscopy observations that p53 binds to nonspecific DNA in different, relaxed, quaternary states from those bound to specific sequences. Evidence is accumulating that p53 can be sequestered by random DNA, and target search requires acetylation of Lys120 and/or interaction with other factors to impose specificity of binding via modulating changes in quaternary structure.
Collapse
|
24
|
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J 2011; 30:2167-76. [PMID: 21522129 DOI: 10.1038/emboj.2011.127] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/24/2011] [Indexed: 01/23/2023] Open
Abstract
The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence-specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off-rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence-specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off-rates, than on differences in affinities, to recognize their specific DNA sites.
Collapse
|
25
|
Rapid sequence scanning mutagenesis using in silico oligo design and the Megaprimer PCR of whole plasmid method (MegaWHOP). Methods Mol Biol 2010. [PMID: 20676980 DOI: 10.1007/978-1-60761-652-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A wide variety of random- and site-directed mutagenesis techniques have been developed to investigate the structure-function relationship in proteins and intergenic regions like promoter sequences. Similar techniques can be employed to optimize protein properties like enantioselectivity, substrate specificity, and stability in a directed evolution approach. Due to the tremendous genetic diversity that is created by common random-mutagenesis methods, directed evolution techniques usually require the time-consuming and cumbersome screening of large numbers of variants. A gene-scanning saturation-mutagenesis approach represents one efficient way to limit the screening effort by reducing the created genetic diversity. In structure/function studies often a similar method, e.g., alanine- or arginine-scanning mutagenesis, is used to probe the role of specific amino acids in a protein. Here, we present a standardized mutagenesis strategy that can speed up the process of scanning whole proteins for structure/function studies and, furthermore, allows for the fast and efficient generation of gene-scanning saturation-mutagenesis libraries to be used in the directed evolution of enzyme functions and properties. The described method uses automated computer-assisted oligonucleotide design, and a two-step PCR-mutagenesis protocol to amplify site-specifically mutated circular plasmids that can be directly transformed in Escherichia coli expression strains.
Collapse
|
26
|
Zhang J, Chen YH, Lu Q. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol 2010; 6:587-603. [PMID: 20373871 DOI: 10.2217/fon.10.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of 'unwanted' gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Anatomy & Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
27
|
Lim AC, Ketchem RR, Borges L, Carabeo T, Carter J, Hoover JE, Hu Z, Wittekind M, Zhou H, Mehlin C. A diversity of antibody epitopes can induce signaling through the erythropoietin receptor. Biochemistry 2010; 49:3797-804. [PMID: 20337434 DOI: 10.1021/bi1001147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stimulation of red cell production through agonism of the erythropoietin receptor (EpoR) has historically been accomplished through administration of erythropoietin (EPO), the native ligand. The short half-life of EPO has led to the development of a variety of other agonists, including antibodies. It is of considerable interest to understand how these agents might activate the EpoR and whether or not it is important to bind in a manner similar to the native ligand. The binding epitopes of a panel of eight agonistic, single-chain antibody (scFv-Fc) constructs were determined through scanning alanine mutagenesis as well as more limited arginine mutagenesis of the receptor. It was found that while some of these constructs bound to receptor epitopes shared by the ligand, others bound in completely unique ways. The use of a panel of agonists and scanning mutagenesis can define the critical binding regions for signaling; in the case of the EpoR, these regions were remarkably broad.
Collapse
Affiliation(s)
- Ai Ching Lim
- Amgen, Inc., 1201 Amgen Court West AW2/3152, Seattle, Washington 98119-3105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem J 2010; 427:225-36. [DOI: 10.1042/bj20091888] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To assess the potential of mutations from the L1 loop of the tumour suppressor p53 as second-site suppressors, the effect of H115N and S116M on the p53 ‘hot spot’ mutations has been investigated using the double-mutant approach. The effects of these two mutants on the p53 hot spots in terms of thermal stability and DNA binding were evaluated. The results show that: (i) the p53 mutants H115N and S116M are thermally more stable than wild-type p53; (ii) H115N but not S116M is capable of rescuing the DNA binding of one of the most frequent p53 mutants in cancer, R248Q, as shown by binding of R248Q/H115N to gadd45 (the promoter of a gene involved in cell-cycle arrest); (iii) the double mutant R248Q/H115N is more stable than wild-type p53; (iv) the effect of H115N as a second-site suppressor to restore DNA-binding activity is specific to R248Q, but not to R248W; (v) molecular-dynamics simulations indicate that R248Q/H115N has a conformation similar to wild-type p53, which is distinct from that of R248Q. These findings could be exploited in designing strategies for cancer therapy to identify molecules that could mimic the effect of H115N in restoring function to oncogenic p53 mutants.
Collapse
|
29
|
Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure 2010; 18:246-56. [PMID: 20159469 PMCID: PMC2824536 DOI: 10.1016/j.str.2009.11.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/02/2009] [Accepted: 11/14/2009] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that p53 binds predominantly to consensus sites composed of two decameric half-sites with zero spacing in vivo. Here we report the crystal structure of the p53 core domain bound to a full consensus site as a tetramer at 2.13A resolution. Comparison with previously reported structures of p53 dimer:DNA complexes and a chemically trapped p53 tetramer:DNA complex reveals that DNA binding by the p53 core domain is a cooperative self-assembling process accompanied by structural changes of the p53 dimer and DNA. Each p53 monomer interacts with its two neighboring subunits through two different protein-protein interfaces. The DNA is largely B-form and shows no discernible bend, but the central base-pairs between the two half-sites display a significant slide. The extensive protein-protein and protein-DNA interactions explain the high cooperativity and kinetic stability of p53 binding to contiguous decameric sites and the conservation of such binding-site configuration in vivo.
Collapse
|
30
|
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2:a000919. [PMID: 20516128 DOI: 10.1101/cshperspect.a000919] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Even 30 years after its discovery, the tumor suppressor protein p53 is still somewhat of an enigma. p53's intimate and multifaceted role in the cell cycle is mirrored in its equally complex structural biology that is being unraveled only slowly. Here, we discuss key structural aspects of p53 function and its inactivation by oncogenic mutations. Concerted action of folded and intrinsically disordered domains of the highly dynamic p53 protein provides binding promiscuity and specificity, allowing p53 to process a myriad of cellular signals to maintain the integrity of the human genome. Importantly, progress in elucidating the structural biology of p53 and its partner proteins has opened various avenues for structure-guided rescue of p53 function in tumors. These emerging anticancer strategies include targeting mutant-specific lesions on the surface of destabilized cancer mutants with small molecules and selective inhibition of p53's degradative pathways.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
31
|
Abstract
While the tumor suppressor functions of p53 have long been recognized, the contribution of p53 to numerous other aspects of disease and normal life is only now being appreciated. This burgeoning range of responses to p53 is reflected by an increasing variety of mechanisms through which p53 can function, although the ability to activate transcription remains key to p53's modus operandi. Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision we must understand if we are to exploit efficiently the next generation of drugs that selectively activate or inhibit p53.
Collapse
Affiliation(s)
- Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK.
| | | |
Collapse
|
32
|
Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation. Mol Cell Biol 2009; 29:3953-63. [PMID: 19451233 DOI: 10.1128/mcb.00449-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p63, a member of the p53 tumor suppressor family, is essential for the development of epidermis as well as other stratified epithelia. Collective evidence indicates that DeltaNp63 proteins, the N-terminally deleted versions of p63, are essential for the proliferation and survival of stratified epithelial cells and squamous cell carcinoma cells. But in response to DNA damage, DeltaNp63 proteins are quickly downregulated in part through protein degradation. To elucidate the mechanisms by which DeltaNp63 proteins are maintained at relatively high levels in proliferating cells but destabilized in response to stress, we sought to identify p63 interactive proteins that regulate p63 stability. We found that Stxbp4 and RACK1, two scaffold proteins, play central roles in balancing DeltaNp63 protein levels. While Stxbp4 functions to stabilize DeltaNp63 proteins, RACK1 targets DeltaNp63 for degradation. Under normal growth conditions, Stxbp4 is indispensable for maintaining high basal levels of DeltaNp63 and preventing RACK1-mediated p63 degradation. Upon genotoxic stress, however, Stxbp4 itself is downregulated, correlating with DeltaNp63 destabilization mediated in part by RACK1. Taken together, we have delineated key mechanisms that regulate DeltaNp63 protein stability in vivo.
Collapse
|
33
|
Shinmen N, Koshida T, Kumazawa T, Sato K, Shimada H, Matsutani T, Iwadate Y, Takiguchi M, Hiwasa T. Activation of NFAT signal by p53-K120R mutant. FEBS Lett 2009; 583:1916-22. [PMID: 19416725 DOI: 10.1016/j.febslet.2009.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/27/2009] [Indexed: 11/20/2022]
Abstract
The tumor suppressor p53 is activated by phosphorylation and/or acetylation. We constructed 14 non-phosphorylated, 11 phospho-mimetic, and 1 non-acetylated point p53 mutations and compared their transactivation ability in U-87 human glioblastoma cells by the luciferase reporter assay. Despite mutations at the phosphorylation sites, only the p53-K120R and p53-S9E mutants had marginally reduced activities. On the other hand, the Nuclear factor of activated T-cells (NFAT)-luciferase reporter was more potently activated by p53-K120R than by wild-type p53 and other mutants in glioblastoma, hepatoma and esophageal carcinoma cells. This suggests that acetylation at Lys-120 of p53 negatively regulates a signaling pathway leading to NFAT activation.
Collapse
Affiliation(s)
- Natsuko Shinmen
- Department of Biochemistry and Genetics, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a tetrameric p53 DNA binding domain (p53DBD) bound to DNA and the X-ray crystal structure of the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA with no relative twist and that a p53 tetramer can bind to DNA without introducing significant DNA bending. The numerous dimer-dimer interactions involve several strictly conserved residues thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 domain or p53 cofactor interactions.
Collapse
Affiliation(s)
- K A Malecka
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
35
|
Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJW, Frolow F, Liran A, Rotter V, Shakked Z. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J Mol Biol 2008; 385:249-65. [PMID: 18996393 DOI: 10.1016/j.jmb.2008.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/19/2008] [Accepted: 10/23/2008] [Indexed: 11/27/2022]
Abstract
The tumor suppressor protein p53 is mutated in more than 50% of invasive cancers. About 30% of the mutations are found in six major "hot spot" codons located in its DNA binding core domain. To gain structural insight into the deleterious effects of such mutations and their rescue by suppressor mutations, we determined the crystal structures of the p53 core domain incorporating the hot spot mutation R249S, the core domain incorporating R249S and a second-site suppressor mutation H168R (referred to as the double mutant R249S/H168R) and its sequence-specific complex with DNA and of the triple mutant R249S/H168R/T123A. The structural studies were accompanied by transactivation and apoptosis experiments. The crystal structures show that the region at the vicinity of the mutation site in the R249S mutant displays a range of conformations [wild-type (wt) and several mutant-type conformations] due to the loss of stabilizing interactions mediated by R249 in the wt protein. As a consequence, the protein surface that is critical to the formation of functional p53-DNA complexes, through protein-protein and protein-DNA interactions, is largely distorted in the mutant conformations, thus explaining the protein's "loss of function" as a transcription factor. The structure of this region is restored in both R249S/H168R and R249S/H168R/T123A and is further stabilized in the complex of R249S/H168R with DNA. Our functional data show that the introduction of H168R as a second-site suppressor mutation partially restores the transactivation capacity of the protein and that this effect is further amplified by the addition of a third-site mutation T123A. These findings together with previously reported data on wt and mutant p53 provide a structural framework for understanding p53 dysfunction as a result of oncogenic mutations and its rescue by suppressor mutations and for a potential drug design aimed at restoring wt activity to aberrant p53 proteins.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The tumor suppressor protein p53 induces or represses the expression of a variety of target genes involved in cell cycle control, senescence, and apoptosis in response to oncogenic or other cellular stress signals. It exerts its function as guardian of the genome through an intricate interplay of independently folded and intrinsically disordered functional domains. In this review, we provide insights into the structural complexity of p53, the molecular mechanisms of its inactivation in cancer, and therapeutic strategies for the pharmacological rescue of p53 function in tumors. p53 emerges as a paradigm for a more general understanding of the structural organization of modular proteins and the effects of disease-causing mutations.
Collapse
Affiliation(s)
- Andreas C Joerger
- Medical Research Council Centre for Protein Engineering, Cambridge, United Kingdom.
| | | |
Collapse
|
37
|
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell 2008; 133:612-26. [PMID: 18485870 DOI: 10.1016/j.cell.2008.03.025] [Citation(s) in RCA: 659] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/24/2007] [Accepted: 03/14/2008] [Indexed: 01/14/2023]
Abstract
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.
Collapse
Affiliation(s)
- Yi Tang
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.
Collapse
|
39
|
Abstract
Background The tumour suppressor protein p53 protein has a core domain that binds DNA and is the site for most oncogenic mutations. This domain is quite unstable compared to its homologs p63 and p73. Two key residues in the core domain of p53 (Tyr236, Thr253), have been mutated in-silico, to their equivalent residues in p63 (Phe238 and Ile255) and p73 (Phe238 and Ile255), with subsequent increase in stability of p53. Computational studies have been performed to examine the basis of instability in p53. Results Molecular dynamics simulations suggest that mutations in p53 lead to increased conformational sampling of the phase space which stabilizes the system entropically. In contrast, reverse mutations, where p63 and p73 were mutated by replacing the Phe238 and Ile255 by Tyr and Thr respectively (as in p53), showed reduced conformational sampling although the change for p63 was much smaller than that for p73. Barriers to the rotation of sidechains containing aromatic rings at the core of the proteins were reduced several-fold when p53 was mutated; in contrast they increased when p73 was mutated and decreased by a small amount in p63. The rate of ring flipping of a Tyrosine residue at the boundary of two domains can be correlated with the change in stability, with implications for possible pathways of entry of agents that induce unfolding. Conclusion A double mutation at the core of the DNA binding domain of p53 leads to enhanced stability by increasing the softness of the protein. A change from a highly directional polar interaction of the core residues Tyr236 and Thr253 to a non-directional apolar interaction between Phe and Ile respectively may enable the system to adapt more easily and thus increase its robustness to structural perturbations, giving it increased stability. This leads to enhanced conformational sampling which in turn is associated with an increased "softness" of the protein core. However the system seems to become more rigid at the periphery. The success of this methodology in reproducing the experimental trends in the stability of p53 suggests that it has the potential to complement structural studies for rapidly estimating changes in stability upon mutations and could be an additional tool in the design of specific classes of proteins.
Collapse
|
40
|
Fen CX, Coomber DW, Lane DP, Ghadessy FJ. Directed evolution of p53 variants with altered DNA-binding specificities by in vitro compartmentalization. J Mol Biol 2007; 371:1238-48. [PMID: 17610896 DOI: 10.1016/j.jmb.2007.05.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/16/2022]
Abstract
The p53 tumour suppressor governs cell fate by differential transactivation of a spectrum of target genes. To further understand how p53 discriminates between target promoters, we have for the first time used in vitro compartmentalization (IVC) to evolve variants with greater affinity for the distal p53 response element in the promoter of the p21 gene involved in cell-cycle arrest, and for the low affinity BS1 response element of the pro-apoptotic PUMA gene. These variants have mutations in the L1 loop of the p53 DNA binding domain and in the N-terminal proline-rich domain. The in vitro binding phenotype of these variants extends to both increased transactivation of promoters containing the response elements in reporter gene studies and increased up-regulation of endogenous p21 as compared to wild-type p53. One variant was co-selected for increased binding to both response elements yet displayed increased apoptotic function. This result supports the notion that prediction of phenotypic outcome based on transcriptional activation of individual genes is confounded by the networked complexity of the p53 response.
Collapse
Affiliation(s)
- Chen Xue Fen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673
| | | | | | | |
Collapse
|
41
|
Abstract
The tumor suppressor protein p53 is inactivated by mutation in about half of all human cancers. Most mutations are located in the DNA-binding domain of the protein. It is, therefore, important to understand the structure of p53 and how it responds to mutation, so as to predict the phenotypic response and cancer prognosis. In this review, we present recent structural and systematic functional data that elucidate the molecular basis of how p53 is inactivated by different types of cancer mutation. Intriguingly, common cancer mutants exhibit a variety of distinct local structural changes, while the overall structural scaffold is largely preserved. The diverse structural and energetic response to mutation determines: (i) the folding state of a particular mutant under physiological conditions; (ii) its affinity for the various p53 target DNA sequences; and (iii) its protein-protein interactions both within the p53 tetramer and with a multitude of regulatory proteins. Further, the structural details of individual mutants provide the basis for the design of specific and generic drugs for cancer therapy purposes. In combination with studies on second-site suppressor mutations, it appears that some mutants are ideal rescue candidates, whereas for others simple pharmacological rescue by small molecule drugs may not be successful.
Collapse
Affiliation(s)
- A C Joerger
- Centre for Protein Engineering, Medical Research Council Centre, Cambridge, UK.
| | | |
Collapse
|
42
|
Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 2007; 24:841-51. [PMID: 17189187 PMCID: PMC1766330 DOI: 10.1016/j.molcel.2006.11.026] [Citation(s) in RCA: 565] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/03/2006] [Accepted: 11/28/2006] [Indexed: 12/21/2022]
Abstract
The ability of p53 to induce apoptosis plays an important role in tumor suppression. Here, we describe a previously unknown posttranslational modification of the DNA-binding domain of p53. This modification, acetylation of lysine 120 (K120), occurs rapidly after DNA damage and is catalyzed by the MYST family acetyltransferases hMOF and TIP60. Mutation of K120 to arginine, as occurs in human cancer, debilitates K120 acetylation and diminishes p53-mediated apoptosis without affecting cell-cycle arrest. The K120R mutation selectively blocks the transcription of proapoptotic target genes such as BAX and PUMA while the nonapoptotic targets p21 and hMDM2 remain unaffected. Consistent with this, depletion of hMOF and/or TIP60 inhibits the ability of p53 to activate BAX and PUMA transcription. Furthermore, the acetyllysine 120 (acetyl-K120) form of p53 specifically accumulates at proapoptotic target genes. These data suggest that K120 acetylation may help distinguish the cell-cycle arrest and apoptotic functions of p53.
Collapse
Affiliation(s)
- Stephen M. Sykes
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104
| | - Hestia S. Mellert
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104
| | - Marc A. Holbert
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| | - Keqin Li
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| | | | - William S. Lane
- Harvard Microchemistry and Proteomics Analysis Facility, Cambridge MA 02138
| | - Steven B. McMahon
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- *corresponding author , telephone: 215 955-9064
| |
Collapse
|
43
|
Lokshin M, Li Y, Gaiddon C, Prives C. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res 2006; 35:340-52. [PMID: 17170001 PMCID: PMC1802567 DOI: 10.1093/nar/gkl1047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 12/11/2022] Open
Abstract
Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73beta proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73beta than of p53 to bind DNA, most likely due to the greater effect that the loss of zinc has on the conformation of the DNA-binding domain of p73. Furthermore, prebinding to DNA strongly protects p73beta but not p53 from chelation by EDTA suggesting that DNA renders the core domain of p73 less accessible to its environment. Further exploring these biochemical differences, a five-base sub-sequence was identified in the p53 consensus binding site that confers a greater DNA-binding stability on p73beta than on full-length p53 in vitro. Surprisingly, p53 lacking its C-terminal non-specific DNA-binding domain (p53Delta30) demonstrates the same sequence discrimination as does p73beta. In vivo, both p53 and p73beta exhibit higher transactivation of a reporter with a binding site containing this sub-sequence, suggesting that lower in vitro dissociation translates to higher in vivo transactivation of sub-sequence-containing sites.
Collapse
Affiliation(s)
- Maria Lokshin
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Yingchun Li
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Christian Gaiddon
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Carol Prives
- To whom correspondence should be addressed. Tel: +1 212 854 2557; Fax: +1 212 865 8246;
| |
Collapse
|
44
|
Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci U S A 2006; 103:15056-61. [PMID: 17015838 PMCID: PMC1635156 DOI: 10.1073/pnas.0607286103] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The DNA-binding domain of the tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. We have solved high-resolution crystal structures of several oncogenic mutants to investigate the structural basis of inactivation and provide information for designing drugs that may rescue inactivated mutants. We found a variety of structural consequences upon mutation: (i) the removal of an essential contact with DNA, (ii) creation of large, water-accessible crevices or hydrophobic internal cavities with no other structural changes but with a large loss of thermodynamic stability, (iii) distortion of the DNA-binding surface, and (iv) alterations to surfaces not directly involved in DNA binding but involved in domain-domain interactions on binding as a tetramer. These findings explain differences in functional properties and associated phenotypes (e.g., temperature sensitivity). Some mutants have the potential of being rescued by a generic stabilizing drug. In addition, a mutation-induced crevice is a potential target site for a mutant-selective stabilizing drug.
Collapse
Affiliation(s)
- Andreas C. Joerger
- Cambridge University Chemical Laboratory and Cambridge Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Hwee Ching Ang
- Cambridge University Chemical Laboratory and Cambridge Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
45
|
Tidow H, Veprintsev DB, Freund SMV, Fersht AR. Effects of Oncogenic Mutations and DNA Response Elements on the Binding of p53 to p53-binding Protein 2 (53BP2). J Biol Chem 2006; 281:32526-33. [PMID: 16887812 DOI: 10.1074/jbc.m604725200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. Upon activation it can induce cell cycle arrest or apoptosis. ASPP2 can specifically stimulate the apoptotic function of p53 but not cell cycle arrest, but the mechanism of enhancing the activation of pro-apoptotic genes over cell cycle arrest genes remains unknown. In this study, we analyzed the binding of 53BP2 (p53-binding protein 2, the C-terminal domain of ASPP2) to p53 core domain and various mutants using biophysical techniques. We found that several p53 core domain mutations (R181E, G245S, R249S, R273H) have different effects on the binding of DNA response elements and 53BP2. Further, we investigated the existence of a ternary complex consisting of 53BP2, p53, and DNA response elements to gain insight into the specific pro-apoptotic activation of p53. We found that binding of 53BP2 and DNA to p53 is mutually exclusive in the case of GADD45, p21, Bax, and PIG3. Both pro-apoptotic and non-apoptotic response elements were competed off p53 by 53BP2 with no indication of a ternary complex.
Collapse
Affiliation(s)
- Henning Tidow
- Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
46
|
p14ARF upregulation of p53 and enhanced effects of 5-fluorouracil in pancreatic cancer. Chin Med J (Engl) 2003; 4:e791. [PMID: 24008735 PMCID: PMC3789167 DOI: 10.1038/cddis.2013.307] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022] Open
Abstract
Gemcitabine is a chemotherapeutic that is widely used for the treatment of a variety of haematological malignancies and has become the standard chemotherapy for the treatment of advanced pancreatic cancer. Combinational gemcitabine regimes (e.g.with doxorubicin) are being tested in clinical trials to treat a variety of cancers, including colon cancer. The limited success of these trials has prompted us to pursue a better understanding of gemcitabine's mechanism of cell killing, which could dramatically improve the therapeutic potential of this agent. For comparison, we included gamma irradiation that triggers robust cell cycle arrest and Cr(VI), which is a highly toxic chemical that induces a robust p53-dependent apoptotic response. Gemcitabine induced a potent p53-dependent apoptosis that correlated with the accumulation of pro-apoptotic proteins such as PUMA and Bax. This is accompanied by a drastic reduction in p2l and 14-3-3σ protein levels, thereby significantly sensitizing the cells to apoptosis. In vitro and in vivo studies demonstrated that gemcitabine required PUMA transcription to instigate an apoptotic programme. This was in contrast to Cr(VI)-induced apoptosis that required Bax and was independent of transcription. An examination of clinical colon and pancreatic cancer tissues shows higher p53, p21, 14-3-3σ and Bax expression compared with matched normal tissues, yet there is a near absence of PUMA protein. This may explain why gemcitabine shows only limited efficacy in the treatment of these cancers. Our results raise the possibility that targeting the Bax-dependent cell death pathway, rather than the PUMA pathway, could result in significantly improved patient outcome and prognosis for these cancers.
Collapse
|