1
|
Cashen BA, Morse M, Rouzina I, Karpel RL, Williams MC. C-terminal Domain of T4 gene 32 Protein Enables Rapid Filament Reorganization and Dissociation. J Mol Biol 2024; 436:168544. [PMID: 38508303 DOI: 10.1016/j.jmb.2024.168544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein essential for DNA replication. gp32 forms stable protein filaments on ssDNA through cooperative interactions between its core and N-terminal domain. gp32's C-terminal domain (CTD) is believed to primarily help coordinate DNA replication via direct interactions with constituents of the replisome. However, the exact mechanisms of these interactions are not known, and it is unclear how tightly-bound gp32 filaments are readily displaced from ssDNA as required for genomic processing. Here, we utilized truncated gp32 variants to demonstrate a key role of the CTD in regulating gp32 dissociation. Using optical tweezers, we probed the binding and dissociation dynamics of CTD-truncated gp32, *I, to an 8.1 knt ssDNA molecule and compared these measurements with those for full-length gp32. The *I-ssDNA helical filament becomes progressively unwound with increased protein concentration but remains significantly more stable than that of full-length, wild-type gp32. Protein oversaturation, concomitant with filament unwinding, facilitates rapid dissociation of full-length gp32 from across the entire ssDNA segment. In contrast, *I primarily unbinds slowly from only the ends of the cooperative clusters, regardless of the protein density and degree of DNA unwinding. Our results suggest that the CTD may constrain the relative twist angle of proteins within the ssDNA filament such that upon critical unwinding the cooperative interprotein interactions largely vanish, facilitating prompt removal of gp32. We propose a model of CTD-mediated gp32 displacement via internal restructuring of its filament, providing a mechanism for rapid ssDNA clearing during genomic processing.
Collapse
Affiliation(s)
- Ben A Cashen
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael Morse
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, 281 W Lane Avenue, Columbus, OH 43210, USA
| | - Richard L Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Perumal SK. A real-time fluorescent gp32 probe-based assay for monitoring single-stranded DNA-dependent DNA processing enzymes. Biochem Biophys Rep 2023; 35:101518. [PMID: 37534323 PMCID: PMC10391720 DOI: 10.1016/j.bbrep.2023.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Single-stranded DNA (ssDNA) generated during DNA replication, recombination and damage repair reactions is an important intermediate and ssDNA-binding proteins that binds these intermediates coordinate various DNA metabolic processes. Mechanistic details of these ssDNA-dependent processes can be explored by monitoring the generation and consumption of ssDNA in real time. In this work, a fluorescein-labeled gp32-based sensor was employed to continuously monitor various aspects of ssDNA-dependent DNA replication and recombination processes in real time. The gp32 protein probe displayed high sensitivity and specificity to a variety of ssDNA-dependent processes of T4 phage. Several applications of the probe are illustrated here: the solution dynamics of ssDNA-binding protein, protein-protein and protein-DNA interactions involving gp32 protein and its mode of interaction, ssDNA translocation and protein displacement activities of helicases, primer extension activity of DNA polymerase holoenzyme and nucleoprotein filament formation during DNA recombination. The assay has identified new protein-protein interactions of gp32 during T4 replication and recombination. The fluorescent probe described here can thus be used as a universal probe for monitoring in real time various ssDNA-dependent processes, which is based on a well-characterized and easy-to-express bacteriophage T4 gene 32 protein, gp32.
Collapse
|
3
|
Bianco PR. Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays. Methods 2021; 204:348-360. [PMID: 34896247 PMCID: PMC9534331 DOI: 10.1016/j.ymeth.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
4
|
Wu X, Zhu J, Tao P, Rao VB. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair. mBio 2021; 12:e0136121. [PMID: 34154416 PMCID: PMC8262927 DOI: 10.1128/mbio.01361-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications.
Collapse
Affiliation(s)
- Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
5
|
Jenkins SS, Gore S, Guo X, Liu J, Ede C, Veaute X, Jinks-Robertson S, Kowalczykowski SC, Heyer WD. Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae. Genetics 2019; 212:1133-1145. [PMID: 31142613 PMCID: PMC6707447 DOI: 10.1534/genetics.119.302337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity.
Collapse
Affiliation(s)
- Shirin S Jenkins
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Steven Gore
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Christopher Ede
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xavier Veaute
- CEA, CIGEx, F-92265 Fontenay-aux-Roses Cedex, France
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
6
|
Biochemical characterization of Borrelia burgdorferi's RecA protein. PLoS One 2017; 12:e0187382. [PMID: 29088268 PMCID: PMC5663514 DOI: 10.1371/journal.pone.0187382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/18/2017] [Indexed: 12/03/2022] Open
Abstract
RecA plays key roles in DNA recombination, replication and repair. Mutation of recA in the Lyme disease spirochete, Borrelia burgdorferi, fails to produce some of the phenotypes expected from study of recA mutation in other organisms. ‘Missing’ recA phenotypes include a lack of growth or viability effects, including in the presence of DNA damage, and a lack of a role in vlsE antigenic variation and infectivity. We present a purification and biochemical characterization of recombinant B. burgdorferi RecA protein. We find that B. burgdorferi RecA displays the expected properties of being a DNA-dependent ATPase, of having an intrinsic binding preference for ssDNA over dsDNA enhanced by ATP binding, of promoting DNA pairing and strand exchange reactions and of having a detectable coprotease activity with E. coli LexA repressor. DNA pairing and strand exchange reactions promoted by B. burgdorferi RecA show an unusually strong dependence upon the presence of the cognate ssDNA binding protein (SSB) but are very sensitive to inhibition by SSB when the ssDNA was prebound by SSB. This indicates B. burgdorferi RecA may have an enhanced requirement for recombinational mediators to promote RecA-SSB exchange, despite the absence of homologues of the RecF pathway proteins that normally play this role in eubacteria. Finally, we do not find any unusual, intrinsic properties of B. burgdorferi’s RecA protein to explain the unusual phenotype of recA mutation and suggest that there may be alternative recombinase functions that could explain the ‘missing’ phenotypes.
Collapse
|
7
|
Pavankumar TL, Exell JC, Kowalczykowski SC. Direct Fluorescent Imaging of Translocation and Unwinding by Individual DNA Helicases. Methods Enzymol 2016; 581:1-32. [PMID: 27793277 DOI: 10.1016/bs.mie.2016.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The unique translocation and DNA unwinding properties of DNA helicases can be concealed by the stochastic behavior of enzyme molecules within the necessarily large populations used in ensemble experiments. With recent technological advances, the direct visualization of helicases acting on individual DNA molecules has contributed significantly to the current understanding of their mechanisms of action and biological functions. The combination of single-molecule techniques that enable both manipulation of individual protein or DNA molecules and visualization of their actions has made it possible to literally see novel and unique biochemical characteristics that were previously masked. Here, we describe the execution and use of single-molecule fluorescence imaging techniques, focusing on methods that include optical trapping in conjunction with epifluorescent imaging, and also surface immobilization in conjunction with total internal reflection fluorescence visualization. Combined with microchannel flow cells and microfluidic control, these methods allow individual fluorescently labeled protein and DNA molecules to be imaged and tracked, affording measurement of DNA unwinding and translocation at single-molecule resolution.
Collapse
Affiliation(s)
| | - J C Exell
- University of California, Davis, CA, United States
| | | |
Collapse
|
8
|
Structure and mechanism of the phage T4 recombination mediator protein UvsY. Proc Natl Acad Sci U S A 2016; 113:3275-80. [PMID: 26951671 DOI: 10.1073/pnas.1519154113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.
Collapse
|
9
|
Morrical SW. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 2015; 7:a016444. [PMID: 25646379 DOI: 10.1101/cshperspect.a016444] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of heteroduplex DNA is a central step in the exchange of DNA sequences via homologous recombination, and in the accurate repair of broken chromosomes via homology-directed repair pathways. In cells, heteroduplex DNA largely arises through the activities of recombination proteins that promote DNA-pairing and annealing reactions. Classes of proteins involved in pairing and annealing include RecA-family DNA-pairing proteins, single-stranded DNA (ssDNA)-binding proteins, recombination mediator proteins, annealing proteins, and nucleases. This review explores the properties of these pairing and annealing proteins, and highlights their roles in complex recombination processes including the double Holliday junction (DhJ) formation, synthesis-dependent strand annealing, and single-strand annealing pathways--DNA transactions that are critical both for genome stability in individual organisms and for the evolution of species.
Collapse
Affiliation(s)
- Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
10
|
Ryzhikov M, Gupta R, Glickman M, Korolev S. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms. J Biol Chem 2014; 289:28846-55. [PMID: 25170075 DOI: 10.1074/jbc.m114.585117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks.
Collapse
Affiliation(s)
- Mikhail Ryzhikov
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Richa Gupta
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Michael Glickman
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sergey Korolev
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
11
|
Branagan AM, Klein JA, Jordan CS, Morrical SW. Control of helicase loading in the coupled DNA replication and recombination systems of bacteriophage T4. J Biol Chem 2013; 289:3040-54. [PMID: 24338568 DOI: 10.1074/jbc.m113.505842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.
Collapse
Affiliation(s)
- Amy M Branagan
- From the Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | | | | |
Collapse
|
12
|
Liu J, Berger CL, Morrical SW. Kinetics of presynaptic filament assembly in the presence of single-stranded DNA binding protein and recombination mediator protein. Biochemistry 2013; 52:7878-89. [PMID: 24124995 DOI: 10.1021/bi401060p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Enzymes of the RecA/Rad51 family catalyze DNA strand exchange reactions that are important for homologous recombination and for the accurate repair of DNA double-strand breaks. RecA/Rad51 recombinases are activated by their assembly into presynaptic filaments on single-stranded DNA (ssDNA), a process that is regulated by ssDNA binding protein (SSB) and mediator proteins. Mediator proteins stimulate strand exchange by accelerating the rate-limiting displacement of SSB from ssDNA by the incoming recombinase. The use of mediators is a highly conserved strategy in recombination, but the precise mechanism of mediator activity is unknown. In this study, the well-defined bacteriophage T4 recombination system (UvsX recombinase, Gp32 SSB, and UvsY mediator) is used to examine the kinetics of presynaptic filament assembly on native ssDNA in vitro. Results indicate that the ATP-dependent assembly of UvsX presynaptic filaments on Gp32-covered ssDNA is limited by a salt-sensitive nucleation step in the absence of mediator. Filament nucleation is selectively enhanced and rendered salt-resistant by mediator protein UvsY, which appears to stabilize a prenucleation complex. This mechanism potentially explains how UvsY promotes presynaptic filament assembly at physiologically relevant ionic strengths and Gp32 concentrations. Other data suggest that presynaptic filament assembly involves multiple nucleation events, resulting in many short UvsX-ssDNA filaments or clusters, which may be the relevant form for recombination in vivo. Together, these findings provide the first detailed kinetic model for presynaptic filament assembly involving all three major protein components (recombinase, mediator, and SSB) on native ssDNA.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and ‡Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine , Burlington, Vermont 05405, United States
| | | | | |
Collapse
|
13
|
Coordinated Binding of Single-Stranded and Double-Stranded DNA by UvsX Recombinase. PLoS One 2013; 8:e66654. [PMID: 23824136 PMCID: PMC3688935 DOI: 10.1371/journal.pone.0066654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 05/11/2013] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination is important for the error-free repair of DNA double-strand breaks and for replication fork restart. Recombinases of the RecA/Rad51 family perform the central catalytic role in this process. UvsX recombinase is the RecA/Rad51 ortholog of bacteriophage T4. UvsX and other recombinases form presynaptic filaments on ssDNA that are activated to search for homology in dsDNA and to perform DNA strand exchange. To effectively initiate recombination, UvsX must find and bind to ssDNA within an excess of dsDNA. Here we examine the binding of UvsX to ssDNA and dsDNA in the presence and absence of nucleotide cofactor, ATP. We also examine how the binding of one DNA substrate is affected by simultaneous binding of the other to determine how UvsX might selectively assemble on ssDNA. We show that the two DNA binding sites of UvsX are regulated by the nucleotide cofactor ATP and are coordinated with each other such that in the presence of ssDNA, dsDNA binding is significantly reduced and correlated with its homology to the ssDNA bound to the enzyme. UvsX has high affinity for dsDNA in the absence of ssDNA, which may allow for sequestration of the enzyme in an inactive form prior to ssDNA generation.
Collapse
|
14
|
Perumal SK, Nelson SW, Benkovic SJ. Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail. J Mol Biol 2013; 425:2823-39. [PMID: 23732982 DOI: 10.1016/j.jmb.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage T4 UvsW helicase contains both unwinding and annealing activities and displays some functional similarities to bacterial RecG and RecQ helicases. UvsW is involved in several DNA repair pathways, playing important roles in recombination-dependent DNA repair and the reorganization of stalled replication forks. The T4 single-stranded DNA (ssDNA) binding protein gp32 is a central player in nearly all DNA replication and repair processes and is thought to facilitate their coordination by recruiting and regulating the various proteins involved. Here, we show that the activities of the UvsW protein are modulated by gp32. UvsW-catalyzed unwinding of recombination intermediates such as D-loops and static X-DNA (Holliday junction mimic) to ssDNA products is enhanced by the gp32 protein. The enhancement requires the presence of the protein interaction domain of gp32 (the acidic carboxy-terminus), suggesting that a specific interaction between UvsW and gp32 is required. In the absence of this interaction, the ssDNA annealing and ATP-dependent translocation activities of UvsW are severely inhibited when gp32 coats the ssDNA lattice. However, when UvsW and gp32 do interact, UvsW is able to efficiently displace the gp32 protein from the ssDNA. This ability of UvsW to remove gp32 from ssDNA may explain its ability to enhance the strand invasion activity of the T4 recombinase (UvsX) and suggests a possible new role for UvsW in gp32-mediated DNA transactions.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
15
|
An archaeal RadA paralog influences presynaptic filament formation. DNA Repair (Amst) 2013; 12:403-13. [PMID: 23622866 DOI: 10.1016/j.dnarep.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 11/24/2022]
Abstract
Recombinases of the RecA family play vital roles in homologous recombination, a high-fidelity mechanism to repair DNA double-stranded breaks. These proteins catalyze strand invasion and exchange after forming dynamic nucleoprotein filaments on ssDNA. Increasing evidence suggests that stabilization of these dynamic filaments is a highly conserved function across diverse species. Here, we analyze the presynaptic filament formation and DNA binding characteristics of the Sulfolobus solfataricus recombinase SsoRadA in conjunction with the SsoRadA paralog SsoRal1. In addition to constraining SsoRadA ssDNA-dependent ATPase activity, the paralog also enhances SsoRadA ssDNA binding, effectively influencing activities necessary for presynaptic filament formation. These activities result in enhanced SsoRadA-mediated strand invasion in the presence of SsoRal1 and suggest a filament stabilization function for the SsoRal1 protein.
Collapse
|
16
|
Branagan AM, Maher RL, Morrical SW. Assembly and dynamics of Gp59-Gp32-single-stranded DNA (ssDNA), a DNA helicase loading complex required for recombination-dependent replication in bacteriophage T4. J Biol Chem 2012; 287:19070-81. [PMID: 22500043 DOI: 10.1074/jbc.m112.343830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gp59 protein of bacteriophage T4 plays critical roles in recombination-dependent DNA replication and repair by correctly loading the replicative helicase, Gp41, onto recombination intermediates. Previous work demonstrated that Gp59 is required to load helicase onto single-stranded DNA that is saturated with Gp32, the T4 single-stranded DNA (ssDNA)-binding protein. Gp59 and Gp32 bind simultaneously to ssDNA, forming a Gp59-Gp32-ssDNA complex that is a key intermediate in helicase loading. Here we characterize the assembly and dynamics of this helicase loading complex (HLC) through changes in the fluorescent states of Gp32F, a fluorescein-Gp32 conjugate. Results show that HLC formation requires a minimum Gp32-ssDNA cluster size and that Gp59 co-localizes with Gp32-ssDNA clusters in the presence of excess free ssDNA. These and other results indicate that Gp59 targets helicase assembly onto Gp32-ssDNA clusters that form on the displaced strand of D-loops, which suggests a mechanism for the rapid initiation of recombination-dependent DNA replication. Helicase loading at the HLC requires ATP binding (not hydrolysis) by Gp41 and results in local remodeling of Gp32 within the HLC. Subsequent ATPase-driven translocation of Gp41 progressively disrupts Gp32-ssDNA interactions. Evidence suggests that Gp59 from the HLC is recycled to promote multiple rounds of helicase assembly on Gp32-ssDNA, a capability that could be important for the restart of stalled replication forks.
Collapse
Affiliation(s)
- Amy M Branagan
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
17
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
18
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|
19
|
Liu J, Morrical SW. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 2010; 7:357. [PMID: 21129202 PMCID: PMC3016280 DOI: 10.1186/1743-422x-7-357] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022] Open
Abstract
Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
20
|
Crystal structure of the phage T4 recombinase UvsX and its functional interaction with the T4 SF2 helicase UvsW. J Mol Biol 2010; 405:65-76. [PMID: 21035462 DOI: 10.1016/j.jmb.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 11/23/2022]
Abstract
Bacteriophage T4 provides an important model system for studying the mechanism of homologous recombination. We have determined the crystal structure of the T4 UvsX recombinase, and the overall architecture and fold closely resemble those of RecA, including a highly conserved ATP binding site. Based on this new structure, we reanalyzed electron microscopy reconstructions of UvsX-DNA filaments and docked the UvsX crystal structure into two different filament forms: a compressed filament generated in the presence of ADP and an elongated filament generated in the presence of ATP and aluminum fluoride. In these reconstructions, the ATP binding site sits at the protomer interface, as in the RecA filament crystal structure. However, the environment of the ATP binding site is altered in the two filament reconstructions, suggesting that nucleotide cannot be as easily accommodated at the protomer interface of the compressed filament. Finally, we show that the phage helicase UvsW completes the UvsX-promoted strand-exchange reaction, allowing the generation of a simple nicked circular product rather than complex networks of partially exchanged substrates.
Collapse
|
21
|
Xu H, Beernink HTH, Morrical SW. DNA-binding properties of T4 UvsY recombination mediator protein: polynucleotide wrapping promotes high-affinity binding to single-stranded DNA. Nucleic Acids Res 2010; 38:4821-33. [PMID: 20371513 PMCID: PMC2919719 DOI: 10.1093/nar/gkq219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To carry out homologous recombination events in the cell, recombination proteins must be able to recognize and form presynaptic filaments on single-stranded DNA (ssDNA) in the presence of a vast excess of double-stranded DNA (dsDNA). Therefore recombination machineries stringently discriminate between ssDNA and dsDNA lattices. Recent single-molecule studies of bacteriophage T4 recombination proteins revealed that, surprisingly, the UvsY recombination mediator protein binds stronger to stretched dsDNA molecules than to stretched ssDNA. Here, we show that for relaxed DNA lattices, the opposite is true: UvsY exhibits a 1000-fold intrinsic affinity preference for ssDNA over dsDNA at moderate salt concentrations. This finding suggests that UvsY preferentially loads UvsX recombinase onto ssDNA under physiological conditions. The biochemical basis for high-affinity UvsY–ssDNA binding was investigated by hydrodynamic and cross-linking methods. Results show that UvsY forms ring-like hexamers in solution, and that ssDNA binds to multiple subunits within each hexamer, consistent with ssDNA wrapping. The data support a model in which ssDNA wrapping by UvsY protein is important for the selective nucleation of presynaptic filaments on ssDNA versus dsDNA, and for the coordinated transfer of ssDNA from Gp32 (SSB) to UvsY (RMP) to UvsX (recombinase) during filament assembly.
Collapse
Affiliation(s)
- Hang Xu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | |
Collapse
|
22
|
Chen J, Villanueva N, Rould MA, Morrical SW. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant. Nucleic Acids Res 2010; 38:4889-906. [PMID: 20371520 PMCID: PMC2919713 DOI: 10.1093/nar/gkq209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 A crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 A) conformation with P6(1) symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the gamma-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA-DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05403, USA
| | | | | | | |
Collapse
|
23
|
Farb JN, Morrical SW. Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 2009; 37:2336-45. [PMID: 19244311 PMCID: PMC2673438 DOI: 10.1093/nar/gkp096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteriophage T4 homologous recombination events are promoted by presynaptic filaments of UvsX recombinase bound to single-stranded DNA (ssDNA). UvsY, the phage recombination mediator protein, promotes filament assembly in a concentration-dependent manner, stimulating UvsX at stoichiometric concentrations but inhibiting at higher concentrations. Recent work demonstrated that UvsX-H195Q/A mutants exhibit decreased ssDNA-binding affinity and altered enzymatic properties. Here, we show that unlike wild-type UvsX, the ssDNA-dependent ATPase activities of UvsX-H195Q/A are strongly inhibited by both low and high concentrations of UvsY protein. This inhibition is partially relieved by UvsY mutants with decreased ssDNA-binding affinity. The UvsX-H195Q mutant retains weak DNA strand exchange activity that is inhibited by wild-type UvsY, but stimulated by ssDNA-binding compromised UvsY mutants. These and other results support a mechanism in which the formation of competent presynaptic filaments requires a hand-off of ssDNA from UvsY to UvsX, with the efficiency of the hand-off controlled by the relative ssDNA-binding affinities of the two proteins. Other results suggest that UvsY acts as a nucleotide exchange factor for UvsX, enhancing filament stability by increasing the lifetime of the high-affinity, ATP-bound form of the enzyme. Our findings reveal new details of the UvsX/UvsY relationship in T4 recombination, which may have parallels in other recombinase/mediator systems.
Collapse
Affiliation(s)
- Joshua N Farb
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
24
|
Farb JN, Morrical SW. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 2008; 385:393-404. [PMID: 19027026 DOI: 10.1016/j.jmb.2008.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022]
Abstract
Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.
Collapse
Affiliation(s)
- Joshua N Farb
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
25
|
Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys J 2008; 95:3330-9. [PMID: 18599625 DOI: 10.1529/biophysj.108.133512] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation and maintenance of single-stranded DNA (ssDNA) are essential parts of many processes involving DNA. For example, strand separation of double-stranded DNA (dsDNA) is catalyzed by helicases, and this exposure of the bases on the DNA allows further processing, such as replication, recombination, or repair. Assays of helicase activity and probes for their mechanism are essential for understanding related biological processes. Here we describe the development and use of a fluorescent probe to measure ssDNA formation specifically and in real time, with high sensitivity and time resolution. The reagentless biosensor is based on the ssDNA binding protein (SSB) from Escherichia coli, labeled at a specific site with a coumarin fluorophore. Its use in the study of DNA manipulations involving ssDNA intermediates is demonstrated in assays for DNA unwinding, catalyzed by DNA helicases.
Collapse
|
26
|
Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC. Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 2008; 380:799-811. [PMID: 18565541 DOI: 10.1016/j.jmb.2008.05.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/16/2022]
Abstract
Bacteriophage T4 UvsY is a recombination mediator protein that promotes assembly of the UvsX-ssDNA presynaptic filament. UvsY helps UvsX to displace T4 gene 32 protein (gp32) from ssDNA, a reaction necessary for proper formation of the presynaptic filament. Here we use DNA stretching to examine UvsY interactions with single DNA molecules in the presence and absence of gp32 and a gp32 C-terminal truncation (*I), and show that in both cases UvsY is able to destabilize gp32-ssDNA interactions. In these experiments UvsY binds more strongly to dsDNA than ssDNA due to its inability to wrap ssDNA at high forces. To support this hypothesis, we show that ssDNA created by exposure of stretched DNA to glyoxal is strongly wrapped by UvsY, but wrapping occurs only at low forces. Our results demonstrate that UvsY interacts strongly with stretched DNA in the absence of other proteins. In the presence of gp32 and *I, UvsY is capable of strongly destabilizing gp32-DNA complexes in order to facilitate ssDNA wrapping, which in turn prepares the ssDNA for presynaptic filament assembly in the presence of UvsX. Thus, UvsY mediates UvsX binding to ssDNA by converting rigid gp32-DNA filaments into a structure that can be strongly bound by UvsX.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Templated mutagenesis in bacteriophage T4 involving imperfect direct or indirect sequence repeats. Genetics 2008; 178:661-73. [PMID: 18245334 DOI: 10.1534/genetics.107.083444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some mutations arise in association with a potential sequence donor that consists of an imperfect direct or reverse repeat. Many such mutations are complex; that is, they consist of multiple close sequence changes. Current models posit that the primer terminus of a replicating DNA molecule dissociates, reanneals with an ectopic template, extends briefly, and then returns to the cognate template, bringing with it a locally different sequence; alternatively, a hairpin structure may form the mutational intermediate when processed by mismatch repair. This process resembles replication repair, in which primer extension is blocked by a lesion in the template; in this case, the ectopic template is the other daughter strand, and the result is error-free bypass of the lesion. We previously showed that mutations that impair replication repair can enhance templated mutagenesis. We show here that the intensity of templated mutation can be exquisitely sensitive to its local sequence, that the donor and recipient arms of an imperfect inverse repeat can exchange roles, and that double mutants carrying two alleles, each affecting both templated mutagenesis and replication repair, can have unexpected phenotypes. We also record an instance in which the mutation rates at two particular sites change concordantly with a distant sequence change, but in a manner that appears unrelated to templated mutagenesis.
Collapse
|
28
|
Abstract
The phenolic pKa of fluorescein varies depending on its environment. The fluorescence of the dye varies likewise. Accordingly, a change in fluorescence can report on the association of a fluorescein conjugate to another molecule. Here, we demonstrate how to optimize this process with chemical synthesis. The fluorescence of fluorescein-labeled model protein, bovine pancreatic ribonuclease (RNase A), decreases upon binding to its cognate inhibitor protein (RI). Free and RI-bound fluorescein-RNase A have pKa values of 6.35 and 6.70, respectively, leaving the fluorescein moiety largely unprotonated at physiological pH and thus limiting the sensitivity of the assay. To increase the fluorescein pKa and, hence, the assay sensitivity, we installed an electron-donating alkyl group ortho to each phenol group. 2',7'-Diethylfluorescein (DEF) has spectral properties similar to those of fluorescein but a higher phenolic pKa. Most importantly, free and RI-bound DEF-RNase A have pKa values of 6.68 and 7.29, respectively, resulting in a substantial increase in the sensitivity of the assay. Using DEF-RNase A rather than fluorescein-RNase A in a microplate assay at pH 7.12 increased the Z'-factor from -0.17 to 0.69. We propose that synthetic "tuning" of the pKa of fluorescein and other pH-sensitive fluorophores provides a general means to optimize binding assays.
Collapse
Affiliation(s)
| | | | - Ronald T. Raines
- Corresponding author. Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544; Phone: 608-262-8588. Fax: 608-262-3453.
| |
Collapse
|