1
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
2
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
3
|
Tokuda K, Morine Y, Miyazaki K, Yamada S, Saito Y, Nishi M, Tokunaga T, Ikemoto T, Imura S, Shimada M. The interaction between cancer associated fibroblasts and tumor associated macrophages via the osteopontin pathway in the tumor microenvironment of hepatocellular carcinoma. Oncotarget 2021; 12:333-343. [PMID: 33659044 PMCID: PMC7899554 DOI: 10.18632/oncotarget.27881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer-tumor associated macrophage (TAM)-cancer associated fibroblast (CAF) interactions are an important factor in the tumor microenvironment of hepatocellular carcinoma. MATERIALS AND METHODS Hepatic stellate cells (HSCs) were cultured with cancer cell-conditioned medium (Ca.-CM), TAM-CM and CAF-CM, and the expression of CAF markers were evaluated by RT-PCR. Whether HSCs cultured with Ca.-CM, TAM-CM and CAF-CM contributed to the enhanced malignancy of cancer cells was examined using proliferation, invasion and migration assays. Furthermore, the differences between these three types of CM were evaluated using cytokine arrays. RESULTS HSCs cultured with Ca.-CM, TAM-CM and CAF-CM showed significantly increased mRNA expression of αSMA, FAP and IL-6. All HSCs cultured with each CM exhibited significantly increased proliferation, invasion and migration of cancer cells. The osteopontin concentration was significantly higher in HSCs cultured with TAM-CM than the other CAF-CMs. Osteopontin inhibition significantly reduced osteopontin secretion from HSCs cultured with TAM-CM and suppressed the proliferation and invasion of cancer cells enhanced by HSCs cultured with TAM-CM. CONCLUSIONS We observed enhanced osteopontin secretion from TAMs, and this increased osteopontin further promoted osteopontin secretion from HSCs cultured with TAM-CM, leading to increased malignancy. For the first time, we demonstrated the importance of cancer-TAM-CAF interactions via osteopontin in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masaaki Nishi
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takuya Tokunaga
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Gschwantler-Kaulich D, Weingartshofer S, Rappaport-Fürhauser C, Zeilinger R, Pils D, Muhr D, Braicu EI, Kastner MT, Tan YY, Semmler L, Sehouli J, Singer CF. Diagnostic markers for the detection of ovarian cancer in BRCA1 mutation carriers. PLoS One 2017; 12:e0189641. [PMID: 29244844 PMCID: PMC5731824 DOI: 10.1371/journal.pone.0189641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Screening for ovarian cancer (OC) in women at high risk consists of a combination of carbohydrate antigen 125 (CA125) and transvaginal ultrasound, despite their low sensitivity and specificity. This could be improved by the combination of several biomarkers, which has been shown in average risk patients but has not been investigated until now in female BRCA mutation carriers. Methods Using a multiplex, bead-based, immunoassay system, we analyzed the concentrations of leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, CA125 and human epididymis antigen 4 in 26 healthy wild type women, 26 healthy BRCA1 mutation carriers, 28 wildtype OC patients and 26 OC patients with BRCA1 mutation. Results Using the ROC analysis, we found a high overall sensitivity of 94.3% in differentiating healthy controls from OC patients with comparable results in the wildtype subgroup (sensitivity 92.8%, AUC = 0.988; p = 5.2e-14) as well as in BRCA1 mutation carriers (sensitivity 95.2%, AUC = 0.978; p = 1.7e-15) at an overall specificity of 92.3%. The used algorithm also allowed to identify healthy BRCA1 mutation carriers when compared to healthy wildtype women (sensitivity 88.4%, specificity 80.7%, AUC = 0.895; p = 6e-08), while this was less pronounced in patients with OC (sensitivity 66.7%, specificity 67.8%, AUC = 0.724; p = 0.00065). Conclusion We have developed an algorithm, which can differentiate between healthy women and OC patients and have for the first time shown, that such an algorithm can also be used in BRCA mutation carriers. To clarify a suggested benefit to the existing early detection program, large prospective trials with mainly early stage OC cases are warranted.
Collapse
Affiliation(s)
- Daphne Gschwantler-Kaulich
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
- * E-mail:
| | - Sigrid Weingartshofer
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | | | - Robert Zeilinger
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Dietmar Pils
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniela Muhr
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Elena I. Braicu
- Department of Gynecology with Center for Oncological Surgery, European Competence Center for Ovarian Cancer, Charité - Campus Virchow-Klinikum, University Medicine of Berlin, Berlin, Germany
| | - Marie-Therese Kastner
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Yen Y. Tan
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Lorenz Semmler
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, European Competence Center for Ovarian Cancer, Charité - Campus Virchow-Klinikum, University Medicine of Berlin, Berlin, Germany
| | - Christian F. Singer
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| |
Collapse
|
5
|
Shi L, Wang X. Role of osteopontin in lung cancer evolution and heterogeneity. Semin Cell Dev Biol 2016; 64:40-47. [PMID: 27578008 DOI: 10.1016/j.semcdb.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Patients with lung cancer still have high mortality, recurrence rate after adjuvant treatment, and poor five-year survival rates, despite of advances in multidisciplinary anti-cancer therapies, e.g. chemotherapy, radiotherapy and targeted therapies, It depends upon the presence of intratumoral heterogeneity and complexity of lung cancer. There is growing evidence to suggest that osteopontin (OPN) may play a critical role in tumor progression and metastasis. The present review briefly describes the structure and molecular biology of OPN, highlights the role of OPN in the development and metastasis of lung cancer, and summarizes potential mechanisms of OPN heterogeneity in tumor to underline some of these inconsistencies. The article will emphasize the importance to understand the role of OPN in cancer evolution and heterogeneity and explore the potential of OPN as a therapeutic target.
Collapse
Affiliation(s)
- Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
6
|
Santivasi WL, Wang H, Wang T, Yang Q, Mo X, Brogi E, Haffty BG, Chakravarthy AB, Xia F. Association between cytosolic expression of BRCA1 and metastatic risk in breast cancer. Br J Cancer 2015; 113:453-9. [PMID: 26057449 PMCID: PMC4522623 DOI: 10.1038/bjc.2015.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background: Although BRCA1 has been extensively studied for its role as a tumour-suppressor protein, the role of BRCA1 subcellular localisation in oncogenesis and tumour progression has remained unclear. This study explores the impact of BRCA1 mislocalisation on clinical outcomes in breast cancer. Methods: Tissue microarrays assembled from a cohort of patients with all stages of breast cancer were analysed for BRCA1 localisation and correlated with patient survival. Tissue microarrays of patients who had breast cancer that had metastasised to the lung were assembled from an independent cohort of patients. These were analysed for BRCA1 subcellular expression. In vitro studies using cultured human breast cancer cells were conducted to examine the effect of cytosolic BRCA1 on cell migration and efficiency of invasion. Results: An inverse association was found between cytosolic BRCA1 expression and metastasis-free survival in patients aged >40 years. Further analysis of BRCA1 subcellular expression in a cohort of breast cancer patients with metastatic disease revealed that the cytosolic BRCA1 content of breast tumours that had metastasised to the lung was 36.0% (95% CI=(31.7%, 40.3%), which was markedly higher than what is reported in the literature (8.2–14.8%). Intriguingly, these lung metastases and their corresponding primary breast tumours demonstrated similarly high cytosolic BRCA1 distributions in both paired and unpaired analyses. Finally, in vitro studies using human breast cancer cells demonstrated that genetically induced BRCA1 cytosolic sequestration (achieved using the cytosol-sequestering BRCA1 5382insC mutation) increased cell invasion efficiency. Conclusions: Results from this study suggest a model where BRCA1 cytosolic mislocalisation promotes breast cancer metastasis, making it a potential biomarker of metastatic disease.
Collapse
Affiliation(s)
- W L Santivasi
- Department of Radiation Oncology, The Ohio State University College of Medicine, 072 A Starling Loving Hall, 300 W 10th Avenue, Columbus, OH 43212, USA
| | - H Wang
- Department of Lung Cancer, The 307 Hospital of the People's Liberation Army, 8 East Street, Fengtai, Beijing, People's Republic of China
| | - T Wang
- Department of Radiation Oncology, Vanderbilt University School of Medicine, B1003 Preston Research Building, 1301 22nd Avenue South, Nashville, TN 37232, USA
| | - Q Yang
- Department of Radiation Oncology, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - X Mo
- Center for Biostatistics, The Ohio State University, 2012 Kenny Road, Room 244, Columbus, OH 43210, USA
| | - E Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - B G Haffty
- Department of Radiation Oncology, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - A B Chakravarthy
- Department of Radiation Oncology, Vanderbilt University School of Medicine, B1003 Preston Research Building, 1301 22nd Avenue South, Nashville, TN 37232, USA
| | - Fen Xia
- Department of Radiation Oncology, The Ohio State University College of Medicine, 072 A Starling Loving Hall, 300 W 10th Avenue, Columbus, OH 43212, USA
| |
Collapse
|
7
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
8
|
Boudjadi S, Bernatchez G, Beaulieu JF, Carrier JC. Control of the human osteopontin promoter by ERRα in colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:266-76. [PMID: 23680656 DOI: 10.1016/j.ajpath.2013.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 03/07/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is the second leading cause of death from cancer. Osteopontin (OPN) is a component of tumor extracellular matrix identified as a key marker of cancer progression. The estrogen-related receptor α (ERRα) has been implicated in endocrine-related cancer development and progression, possibly through modulation of cellular energy metabolism. Previous reports that ERRα regulates OPN expression in bone prompted us to investigate whether ERRα controls OPN expression in human colorectal cancer. Using a tissue microarray containing 83 tumor-normal tissue pairs of colorectal cancer samples, we found that tumor epithelial cells displayed higher staining for ERRα than normal mucosa, in correlation with elevated OPN expression. In addition, knocking down endogenous ERRα led to reduced OPN expression in HT29 colon cancer cells. Promoter analysis, inhibition of ERRα activity, and expression and mutation of potential ERRα response elements in the proximal promoter of human OPN showed that ERRα and its obligate co-activator, peroxisome proliferator-activated receptor γ co-activator-1 α, positively control human OPN promoter activity. Furthermore, chromatin immunoprecipitation experiments confirmed in vivo occupancy of the OPN promoter by ERRα in HT29 cells, suggesting that OPN is a direct target of ERRα in colorectal cancer. These findings suggest an additional mechanism by which ERRα participates in the development and progression of colorectal cancer, further supporting the relevance of targeting ERRα with antagonists as anticancer agents.
Collapse
Affiliation(s)
- Salah Boudjadi
- Department of Medicine, Faculty of Medicine and Sciences of Health, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Yuen HF, Gunasekharan VK, Chan KK, Zhang SD, Platt-Higgins A, Gately K, O'Byrne K, Fennell DA, Johnston PG, Rudland PS, El-Tanani M. RanGTPase: a candidate for Myc-mediated cancer progression. J Natl Cancer Inst 2013; 105:475-88. [PMID: 23468463 DOI: 10.1093/jnci/djt028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ras-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown. METHODS We investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. RESULTS Myc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (χ2 = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P < .001) and lung (χ2 = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P = .01) cancer cohorts. CONCLUSIONS Our results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, BT9 7BL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res 2011; 39:9536-48. [PMID: 21880590 PMCID: PMC3239190 DOI: 10.1093/nar/gkr679] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/16/2022] Open
Abstract
A role for BRCA1 in the direct and indirect regulation of transcription is well established. However, a comprehensive view of the degree to which BRCA1 impacts transcriptional regulation on a genome-wide level has not been defined. We performed genome-wide expression profiling and ChIP-chip analysis, comparison of which revealed that although BRCA1 depletion results in transcriptional changes in 1294 genes, only 44 of these are promoter bound by BRCA1. However, 27% of these transcripts were linked to transcriptional regulation possibly explaining the large number of indirect transcriptional changes observed by microarray analysis. We show that no specific consensus sequence exists for BRCA1 DNA binding but rather demonstrate the presence of a number of known and novel transcription factor (TF)- binding sites commonly found on BRCA1 bound promoters. Co-immunoprecipitations confirmed that BRCA1 interacts with a number of these TFs including AP2-α, PAX2 and ZF5. Finally, we show that BRCA1 is bound to a subset of promoters of genes that are not altered by BRCA1 loss, but are transcriptionally regulated in a BRCA1-dependent manner upon DNA damage. These data suggest a model, whereby BRCA1 is present on defined promoters as part of an inactive complex poised to respond to various genotoxic stimuli.
Collapse
Affiliation(s)
- Julia J Gorski
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL and ALMAC Diagnostics, Craigavon BT63 5QD, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Statistical association of basal cell keratins with metastasis-inducing proteins in a prognostically unfavorable group of sporadic breast cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1061-72. [PMID: 21801876 DOI: 10.1016/j.ajpath.2011.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/03/2011] [Accepted: 04/05/2011] [Indexed: 01/16/2023]
Abstract
Two subgroups of invasive breast carcinomas have been identified with a poor prognosis in different patient cohorts: the basal-like category and the subgroup containing proteins capable of inducing metastasis in experimental rodents, the metastasis-inducing proteins (MIPs). Here we identify by immunohistochemical staining for cytokeratin CK5/6 or CK14 the basal-like subgroup in a set of 297 primary invasive breast carcinomas in which the staining profile for the MIPs S100A4, osteopontin, anterior gradient-2, and S100P has already been established. Monoclonal antibodies to CK5/6 or CK14 specifically stain 31% to 34% of the primary carcinomas. These positively stained tumors are highly significantly associated with premature death of the patient (Wilcoxon statistics, P < 0.0001), the increased relative risk being approximately 5.6-fold. Positive staining for either cytokeratin is very significantly associated with that for each of the four MIPs separately and with loss of staining for the Fanconi anemia protein FANCD2 (corrected Fisher's exact test, P < 0.0007). There is no significant correlation with the remaining tumor variables tested, including staining for the estrogen receptor α, progesterone receptor, and c-erbB-2. These results show that the basal cytokeratin-like carcinomas contain many of the MIPs and that these may arise by their selection for tumors with an inherent deficiency in the FANC/BRCA pathway of DNA repair.
Collapse
|
12
|
El-Tanani MK, Yuen HF, Shi Z, Platt-Higgins A, Buckley NE, Mullan PB, Harkin DP, Johnston PG, Rudland PS. Osteopontin can act as an effector for a germline mutation of BRCA1 in malignant transformation of breast cancer-related cells. Cancer Sci 2010; 101:1354-60. [PMID: 20384635 PMCID: PMC11158710 DOI: 10.1111/j.1349-7006.2010.01561.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/22/2010] [Accepted: 02/27/2010] [Indexed: 12/17/2022] Open
Abstract
Breast cancer-associated 1 (BRCA1) plays an important role in breast cancer initiation and progression through its functions in the cell cycle and DNA repair processes; however, its role in metastatic development in human breast cancer is still poorly understood. We have previously shown that osteopontin (OPN) expression was suppressed by wild-type BRCA1 (Wt.BRCA1) and that a natural mutant allele of BRCA1 (Mut.BRCA1) diminished the effect of Wt.BRCA1 on OPN in vitro. In this study, we show that while Wt.BRCA1 suppresses OPN-induced metastasis in a rat syngeneic system, Mut.BRCA1 enhances the development of metastasis through OPN, suggesting that OPN and BRCA1 work closely to regulate metastatic development in the rat. To test whether these findings are relevant to human breast cancer, we have investigated the relationship between BRCA1, OPN, and metastatic properties in human breast cancer-related cells. Using western blot analysis, we show that Wt.BRCA1 suppresses, while Mut.BRCA1 enhances, OPN protein expression; and in parallel that Wt.BRCA1 suppresses, while Mut.BRCA1 enhances, OPN-mediated in vitro properties associated with the metastatic state in both MCF-7 and MDA MB435s cells. Overall, these results suggest that Mut.BRCA1 can elicit some of the changes involved in metastatic progression in human breast cancer via the overexpression of OPN.
Collapse
Affiliation(s)
- Mohamed K El-Tanani
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shi Z, Hodges VM, Dunlop EA, Percy MJ, Maxwell AP, El-Tanani M, Lappin TR. Erythropoietin-Induced Activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK Pathways Promotes Malignant Cell Behavior in a Modified Breast Cancer Cell Line. Mol Cancer Res 2010; 8:615-26. [PMID: 20353997 DOI: 10.1158/1541-7786.mcr-09-0264] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Promkan M, Liu G, Patmasiriwat P, Chakrabarty S. BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. Int J Cancer 2009; 125:2820-8. [DOI: 10.1002/ijc.24684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Interferon-induced transmembrane 3 binds osteopontin in vitro: expressed in vivo IFITM3 reduced OPN expression. Oncogene 2009; 29:752-62. [PMID: 19901966 DOI: 10.1038/onc.2009.379] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein, which has an important role in tumour progression. We have shown that Wnt, Ets, AP-1, c-jun and beta-catenin/Lef-1/Tcf-1 stimulates OPN transcription in rat mammary carcinoma cells by binding to a specific promoter sequence. However, co-repressors of OPN have not been identified. In this study, we have used the bacterial two-hybrid system to isolate cDNA-encoding proteins that bind to OPN and modulate its role in malignant transformation. Using this approach we isolated interferon-induced transmembrane protein 3 gene (IFITM3) as a potential protein partner. We show that IFITM3 and OPN interact in vitro and in vivo and that IFITM3 reduces osteopontin (OPN) mRNA expression, possibly by affecting OPN mRNA stability. Stable transfection of IFITM3 inhibits OPN, which mediates anchorage-independent growth, cell adhesion and cell invasion. Northern blot analysis revealed an inverse mRNA expression pattern of IFITM3 and OPN in human mammary cell lines. Inhibition of IFITM3 by antisense RNA promoted OPN protein expression, enhanced cell invasion by parental benign non-invasive Rama 37 cells, indicating that the two proteins interact functionally as well. We also identified an IFITM3 DNA-binding domain, which interacts with OPN, deletion of which abolished its inhibitive effect on OPN. This work has shown for the first time that IFITM3 physically interacts with OPN and reduces OPN mRNA expression, which mediates cell adhesion, cell invasion, colony formation in soft agar and metastasis in a rat model system.
Collapse
|
16
|
Xu H, McCann M, Zhang Z, Posner GH, Bingham V, El-Tanani M, Campbell FC. Vitamin D receptor modulates the neoplastic phenotype through antagonistic growth regulatory signals. Mol Carcinog 2009; 48:758-72. [PMID: 19184984 DOI: 10.1002/mc.20520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Karnan S, Mohseni M, Konishi Y, Tamaki A, Hosokawa Y, Park BH, Konishi H. Controversial BRCA1 allelotypes in commonly used breast cancer cell lines. Breast Cancer Res Treat 2009; 119:249-51. [PMID: 19585236 DOI: 10.1007/s10549-009-0465-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 06/30/2009] [Indexed: 01/13/2023]
|
18
|
Kurisetty VV, Johnston PG, Rudland PS, El-Tanani MK. Identification of genes differentially expressed between benign and osteopontin transformed rat mammary epithelial cells. BMC Res Notes 2009; 2:15. [PMID: 19192273 PMCID: PMC2644310 DOI: 10.1186/1756-0500-2-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023] Open
Abstract
Background Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein which has an important role in tumor progression. Findings In this study, we have utilized suppressive subtractive hybridization (SSH) to evaluate OPN regulated gene expression, using the Rama 37 benign non-invasive rat mammary cell line and a subclone, Rama 37-OPN. Rama 37-OPN was produced by stably transfecting Rama 37 with an OPN expression vector and it demonstrates increased malignant properties in vitro. Sequence and expression array analysis of the respective cDNA libraries of over 1600 subtracted cDNA fragments revealed 982 ESTs, 45 novel sequences and 659 known genes. The known up-regulated genes in the Rama 37-OPN library code for proteins with a variety of functions including those involved in metabolism, cell adhesion and migration, signal transduction and in apoptosis. Four of the most differentially expressed genes between the benign and in vitro malignant rat mammary cell lines are tumor protein translationally controlled I (TPTI), aryl hydrocarbon receptor nuclear translocator (ARNT), ataxia telangiectasia mutated (ATM) and RAN GTPase (RAN). The largest difference (ca 10,000 fold) between the less aggressively (MCF-7, ZR-75) and more aggressively malignant (MDA MB 231, MDA MB 435S) human breast cancer cell lines is that due to RAN, the next is that due to osteopontin itself. Conclusion The results suggest that enhanced properties associated with the malignant state in vitro induced by osteopontin may be due to, in part, overexpression of RAN GTPase and these biological results are the subject of a subsequent publication [1].
Collapse
Affiliation(s)
- Vittal V Kurisetty
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, BT9 7BL, UK.
| | | | | | | |
Collapse
|
19
|
RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 2008; 27:7139-49. [PMID: 18794800 DOI: 10.1038/onc.2008.325] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis.
Collapse
|
20
|
Zhao J, Lu B, Xu H, Tong X, Wu G, Zhang X, Liang A, Cong W, Dai J, Wang H, Wu M, Guo Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 2008; 48:265-75. [PMID: 18537194 DOI: 10.1002/hep.22280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED It has been previously demonstrated that the 30-kDa Tat-interacting protein (TIP30) plays an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Here we report that TIP30 suppresses metastasis of hepatocellular carcinoma (HCC) through inhibiting the transcription of osteopontin (OPN), a key molecule in the development of tumor metastasis. The expression of TIP30 messenger RNA was reverse to that of OPN messenger RNA in HCC cell lines. Ectopic expression of TIP30 greatly suppressed OPN expression, inhibited invasion of HCC cells through extracellular matrix (ECM) and adhesion with fibronectin in vitro, whereas down-regulation of TIP30 by RNA-mediated interference enhanced OPN expression and promoted metastatic abilities of HCC cells in vitro. Moreover, overexpression of TIP30 significantly inhibited the growth and lung metastases of HCC cells in nude mice. In contrast, down-regulation of TIP30 greatly promoted tumor cell growth and metastases in vivo. TIP30 repressed OPN transcription through interaction with Ets-1 and suppressed the transcriptional activity of Ets-1 and synergistic actions of Ets-1 and alkaline phosphatase-1. Thus, TIP30 may act as an Ets-1 modulator and inhibit tumor metastasis through abrogating Ets-1-dependent transcription. Moreover, expression of TIP30 was inversely associated with OPN expression in HCC tissue samples as detected by immunohistochemistry assay. CONCLUSION Our results reveal a novel pathway by which OPN and possibly other Ets-1 target genes involved in tumor metastasis are regulated by TIP30 and elucidate a mechanism for metastasis promoted by TIP30 deficiency.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mason CK, McFarlane S, Johnston PG, Crowe P, Erwin PJ, Domostoj MM, Campbell FC, Manaviazar S, Hale KJ, El-Tanani M. Agelastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Cancer Ther 2008; 7:548-58. [PMID: 18347142 DOI: 10.1158/1535-7163.mct-07-2251] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective inhibitors of osteopontin (OPN)-mediated neoplastic transformation and metastasis are still lacking. (-)-Agelastatin A is a naturally occurring oroidin alkaloid with powerful antitumor effects that, in many cases, are superior to cisplatin in vitro. In this regard, past comparative assaying of the two agents against a range of human tumor cell lines has revealed that typically (-)-agelastatin A is 1.5 to 16 times more potent than cisplatin at inhibiting cell growth, its effects being most pronounced against human bladder, skin, colon, and breast carcinomas. In this study, we have investigated the effects of (-)-agelastatin A on OPN-mediated malignant transformation using mammary epithelial cell lines. Treatment with (-)-agelastatin A inhibited OPN protein expression and enhanced expression of the cellular OPN inhibitor, Tcf-4. (-)-Agelastatin A treatment also reduced beta-catenin protein expression and reduced anchorage-independent growth, adhesion, and invasion in R37 OPN pBK-CMV and C9 cell lines. Similar effects were observed in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines exposed to (-)-agelastatin A. Suppression of Tcf-4 by RNA interference (short interfering RNA) induced malignant/invasive transformation in parental benign Rama 37 cells; significantly, these events were reversed by treatment with (-)-agelastatin A. Our study reveals, for the very first time, that (-)-agelastatin A down-regulates beta-catenin expression while simultaneously up-regulating Tcf-4 and that these combined effects cause repression of OPN and inhibition of OPN-mediated malignant cell invasion, adhesion, and colony formation in vitro. We have also shown that (-)-agelastatin A inhibits cancer cell proliferation by causing cells to accumulate in the G(2) phase of cell cycle.
Collapse
Affiliation(s)
- Charlene K Mason
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 2008; 8:212-26. [PMID: 18292776 PMCID: PMC2484121 DOI: 10.1038/nrc2345] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein - small integrin-binding ligand N-linked glycoproteins (SIBLINGs) - are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Akeila Bellahcène
- Metastasis Research Laboratory, University of Liege, Tour de Pathologie, -1, Bât. B23, Sart Tilman via 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
23
|
Green CD, Thompson PD, Johnston PG, El-Tanani MK. Interaction between transcription factor, basal transcription factor 3, and the NH2-terminal domain of human estrogen receptor alpha. Mol Cancer Res 2008; 5:1191-200. [PMID: 18025262 DOI: 10.1158/1541-7786.mcr-07-0123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The estrogen receptor (ER), like other members of the nuclear receptor superfamily, possesses two separate transcriptional activation functions, AF-1 and AF-2. Although a variety of coactivators and corepressors of AF-2 have been identified, less is known of the mechanism of action of AF-1. We have used the yeast two-hybrid system to isolate a cDNA coding for a protein that binds specifically to the AF-1 region of human ERalpha. This cDNA codes for the transcription factor basal transcription factor 3 (BTF3). The specificity of the interaction between BTF3 and ERalpha has been confirmed in vivo and in vitro. Transient transfection experiments reveal that overexpression of BTF3 modulates the transcriptional response of reporter genes to ERalpha. BTF3 interacts with ERalpha that has been activated either by 17beta-estradiol (ligand-dependent activation) or by epidermal growth factor (ligand-independent activation). The effects of BTF3 on the reporter genes requires the presence of ERalpha containing an active AF-1 function. BTF3 may be a component of the mechanism by which the AF-1 function of ERalpha stimulates gene transcription.
Collapse
Affiliation(s)
- Chris D Green
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, University Floor, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, United Kingdom
| | | | | | | |
Collapse
|
24
|
Tuck AB, Chambers AF, Allan AL. Osteopontin overexpression in breast cancer: Knowledge gained and possible implications for clinical management. J Cell Biochem 2007; 102:859-68. [PMID: 17721886 DOI: 10.1002/jcb.21520] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Osteopontin (OPN) is a secreted protein that is overexpressed in a number of human cancers, and has been associated with increased metastatic burden and poor prognosis in breast cancer patients. The OPN protein contains several conserved structural elements including heparin- and calcium-binding domains, a thrombin-cleavage site, a CD44 binding site, and two integrin-binding sites. Experimental studies have shown that the ability of OPN to interact with a diverse range of factors, including cell surface receptors (integrins, CD44), secreted proteases (matrix metalloproteinases, urokinase plasminogen activator), and growth factor/receptor pathways (TGFalpha/EGFR, HGF/Met) is central to its role in malignancy. These complex signaling interactions can result in changes in gene expression, which ultimately lead to alterations in cell properties involved in malignancy such as adhesion, migration, invasion, enhanced tumor cell survival, tumor angiogenesis, and metastasis. Therefore, OPN is not merely associated with cancer, but rather it plays a multi-faceted functional role via complex molecular cross-talk with other factors. This review will focus on the role of OPN in breast cancer, in particular on the malignancy-promoting aspects of OPN that may reveal opportunities for new approaches to the clinical management of breast cancer.
Collapse
Affiliation(s)
- Alan B Tuck
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.
| | | | | |
Collapse
|