1
|
Singh S, Harmalkar DS, Choi Y, Lee K. Fructose-1,6-bisphosphatase Inhibitors: A Review of Recent (2000- 2017) Advances and Structure-Activity Relationship Studies. Curr Med Chem 2019; 26:5542-5563. [DOI: 10.2174/0929867325666180831133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
:
Diabetes mellitus, commonly referred to as diabetes, is the 8th leading cause of
death worldwide. As of 2015, approximately 415 million people were estimated to be diabetic
worldwide, type 2 diabetes being the most common accounting for approximately 90-95% of
all diagnosed cases with increasing prevalence. Fructose-1,6-bisphosphatase is one of the important
therapeutic targets recently discovered to treat this chronic disease. In this focused
review, we have highlighted recent advances and structure-activity relationship studies in the
discovery and development of different fructose-1,6-bisphosphatase inhibitors reported since
the year 2000.
Collapse
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | | | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
2
|
Chandrangsu P, Huang X, Gaballa A, Helmann JD. Bacillus subtilis FolE is sustained by the ZagA zinc metallochaperone and the alarmone ZTP under conditions of zinc deficiency. Mol Microbiol 2019; 112:751-765. [PMID: 31132310 DOI: 10.1111/mmi.14314] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/23/2022]
Abstract
Bacteria tightly regulate intracellular zinc levels to ensure sufficient zinc to support essential functions, while preventing toxicity. The bacterial response to zinc limitation includes the expression of putative zinc metallochaperones belonging to subfamily 1 of the COG0523 family of G3E GTPases. However, the client proteins and the metabolic processes served by these chaperones are unclear. Here, we demonstrate that the Bacillus subtilis YciC zinc metallochaperone (here renamed ZagA for ZTP activated GTPase A) supports de novo folate biosynthesis under conditions of zinc limitation, and interacts directly with the zinc-dependent GTP cyclohydrolase IA, FolE (GCYH-IA). Furthermore, we identify a role for the alarmone ZTP, a modified purine biosynthesis intermediate, in the response to zinc limitation. ZTP, a signal of 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria, transiently accumulates as FolE begins to fail, stimulates the interaction between ZagA and FolE, and thereby helps to sustain folate synthesis despite declining zinc availability.
Collapse
Affiliation(s)
- Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.,W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps College, Claremont, CA, 91711, USA
| | - Xiaojuan Huang
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Bertin Y, Segura A, Jubelin G, Dunière L, Durand A, Forano E. Aspartate metabolism is involved in the maintenance of enterohaemorrhagicEscherichia coliO157:H7 in bovine intestinal content. Environ Microbiol 2018; 20:4473-4485. [DOI: 10.1111/1462-2920.14380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Gregory Jubelin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Lysiane Dunière
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
- Lallemand Animal Nutrition Blagnac France
| | - Alexandra Durand
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| |
Collapse
|
4
|
Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. MICROBIAL CELL 2017; 5:74-87. [PMID: 29417056 PMCID: PMC5798407 DOI: 10.15698/mic2018.02.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.
Collapse
Affiliation(s)
| | - Stephen P Dearth
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
5
|
Wang Z, Han QQ, Zhou MT, Chen X, Guo L. Protein turnover analysis in Salmonella Typhimurium during infection by dynamic SILAC, Topograph, and quantitative proteomics. J Basic Microbiol 2016; 56:801-11. [PMID: 26773230 DOI: 10.1002/jobm.201500315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022]
Abstract
Protein turnover affects protein abundance and phenotypes. Comprehensive investigation of protein turnover dynamics has the potential to provide substantial information about gene expression. Here we report a large-scale protein turnover study in Salmonella Typhimurium during infection by quantitative proteomics. Murine macrophage-like RAW 264.7 cells were infected with SILAC labeled Salmonella. Bacterial cells were extracted after 0, 30, 60, 120, and 240 min. Mass spectrometry analyses yielded information about Salmonella protein turnover dynamics and a software program named Topograph was used for the calculation of protein half lives. The half lives of 311 proteins from intracellular Salmonella were obtained. For bacteria cultured in control medium (DMEM), the half lives for 870 proteins were obtained. The calculated median of protein half lives was 69.13 and 99.30 min for the infection group and the DMEM group, respectively, indicating an elevated protein turnover at the initial stage of infection. Gene ontology analyses revealed that a number of protein functional groups were significantly regulated by infection, including proteins involved in ribosome, periplasmic space, cellular amino acid metabolic process, ion binding, and catalytic activity. The half lives of proteins involved in purine metabolism pathway were found to be significantly shortened during infection.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang-Qiang Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mao-Tian Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica. J Bacteriol 2015; 197:2821-30. [PMID: 26100042 DOI: 10.1128/jb.00282-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Salmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesized de novo independently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIR in vivo. PurC-dependent conversion of AICAR to AIR was recreated in vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity. IMPORTANCE In bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described.
Collapse
|
7
|
Rodriguez-Contreras D, Hamilton N. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase. J Biol Chem 2014; 289:32989-3000. [PMID: 25288791 DOI: 10.1074/jbc.m114.569434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | - Nicklas Hamilton
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
8
|
Bertin Y, Deval C, de la Foye A, Masson L, Gannon V, Harel J, Martin C, Desvaux M, Forano E. The gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. PLoS One 2014; 9:e98367. [PMID: 24887187 PMCID: PMC4041753 DOI: 10.1371/journal.pone.0098367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are responsible for outbreaks of food- and water-borne illness. The bovine gastrointestinal tract (GIT) is thought to be the principle reservoir of EHEC. Knowledge of the nutrients essential for EHEC growth and survival in the bovine intestine may help in developing strategies to limit their shedding in bovine faeces thus reducing the risk of human illnesses. To identify specific metabolic pathways induced in the animal GIT, the transcriptome profiles of EHEC O157:H7 EDL933 during incubation in bovine small intestine contents (BSIC) and minimal medium supplemented with glucose were compared. The transcriptome analysis revealed that genes responsible for the assimilation of ethanolamine, urea, agmatine and amino acids (Asp, Thr, Gly, Ser and Trp) were strongly up-regulated suggesting that these compounds are the main nitrogen sources for EHEC in BSIC. A central role for the gluconeogenesis pathway and assimilation of gluconeogenic substrates was also pinpointed in EHEC incubated in BSIC. Our results suggested that three amino acids (Asp, Ser and Trp), glycerol, glycerol 3-phosphate, L-lactate and C4-dicarboxylates are important carbon sources for EHEC in BSIC. The ability to use gluconeogenic substrates as nitrogen sources (amino acids) and/or carbon sources (amino acids, glycerol and lactate) may provide a growth advantage to the bacteria in intestinal fluids. Accordingly, aspartate (2.4 mM), serine (1.9 mM), glycerol (5.8 mM) and lactate (3.6 mM) were present in BSIC and may represent the main gluconeogenic substrates potentially used by EHEC. A double mutant of E. coli EDL933 defective for phosphoenolpyruvate synthase (PpsA) and phosphoenolpyruvate carboxykinase (PckA), unable to utilize tricarboxylic acid (TCA) intermediates was constructed. Growth competition experiments between EHEC EDL933 and the isogenic mutant strain in BSIC clearly showed a significant competitive growth advantage of the wild-type strain further illustrating the importance of the gluconeogenesis pathway in maintaining EHEC in the bovine GIT.
Collapse
Affiliation(s)
- Yolande Bertin
- Institut National de la Recherche Agronomique, UR454 Microbiologie, Saint-Genès-Champanelle, France
- * E-mail:
| | - Christiane Deval
- Institut National de la Recherche Agronomique, UMR 1019, Unité de Nutrition Humaine, Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France; Clermont Université, Université d’Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
| | - Anne de la Foye
- Institut National de la Recherche Agronomique, UMR1213 Herbivores, Plate-Forme d’Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Luke Masson
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - Victor Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada
| | - Christine Martin
- Institut National de la Recherche Agronomique, UR454 Microbiologie, Saint-Genès-Champanelle, France
| | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, UR454 Microbiologie, Saint-Genès-Champanelle, France
| | - Evelyne Forano
- Institut National de la Recherche Agronomique, UR454 Microbiologie, Saint-Genès-Champanelle, France
| |
Collapse
|
9
|
Amino-4-imidazolecarboxamide ribotide directly inhibits coenzyme A biosynthesis in Salmonella enterica. J Bacteriol 2013; 196:772-9. [PMID: 24296672 DOI: 10.1128/jb.01087-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a by-product of histidine biosynthesis. In bacteria, yeast, and humans, accumulation of AICAR has been shown to affect an array of cellular processes by both direct and indirect mechanisms. In purine biosynthesis, AICAR is the substrate of the bifunctional protein phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (PurH, EC 2.1.2.3/3.5.4.10). Strains lacking PurH accumulate AICAR and have a defect in the synthesis of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine. The formation of HMP is also compromised in vivo when coenzyme A (CoA) levels are reduced. Our results show that the in vivo accumulation of AICAR decreased total CoA pools and, further, that AICAR inhibited the activity of pantoate β-alanine ligase in vitro (PanC, EC 6.3.2.1). These results demonstrated a mechanism of AICAR action and provide new insights into the metabolic consequences of disrupting purine metabolism.
Collapse
|
10
|
Lee DH, Lim JA, Lee J, Roh E, Jung K, Choi M, Oh C, Ryu S, Yun J, Heu S. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. MICROBIOLOGY-SGM 2013; 159:1487-1496. [PMID: 23676432 PMCID: PMC3749726 DOI: 10.1099/mic.0.067280-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pectobacterium carotovorum subsp. carotovorum is a well-known plant pathogen that causes severe soft rot disease in various crops, resulting in considerable economic loss. To identify pathogenicity-related factors, Chinese cabbage was inoculated with 5314 transposon mutants of P. carotovorum subsp. carotovorum Pcc21 derived using Tn5 transposon mutagenesis. A total of 35 reduced-virulence or avirulent mutants were isolated, and 14 loci were identified. The 14 loci could be functionally grouped into nutrient utilization (pyrD, purH, purD, leuA and serB), production of plant cell-wall-degrading enzymes (PCWDEs) (expI, expR and PCC21_023220), motility (flgA, fliA and flhB), biofilm formation (expI, expR and qseC), susceptibility to antibacterial plant chemicals (tolC) and unknown function (ECA2640). Among the 14 genes identified, qseC, tolC and PCC21_023220 are novel pathogenicity factors of P. carotovorum subsp. carotovorum involved in biofilm formation, phytochemical resistance and PCWDE production, respectively.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Juneok Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Eunjung Roh
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kyusuk Jung
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Minseon Choi
- Department of Horticultural Biotechnology and Institute of Life Science & Resources, Kyung Hee University, Yongin 441-701, Republic of Korea
| | - Changsik Oh
- Department of Horticultural Biotechnology and Institute of Life Science & Resources, Kyung Hee University, Yongin 441-701, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jongchul Yun
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| |
Collapse
|
11
|
Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 2012; 8:e1002612. [PMID: 22807670 PMCID: PMC3395594 DOI: 10.1371/journal.pcbi.1002612] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux. Design of allosterically regulatable enzyme is essential to develop a highly efficient metabolite production. However, mutations on allosteric ligand binding sites often disrupt the catalytic activity of enzyme. To aid the design process of allosterically controllable enzymes, we develop an effective computational strategy to deregulate the allosteric inhibition of enzymes based on sequence evolution analysis of allosteric ligand-binding sites. We analyzed the molecular evolution and amino acid composition of catalytic and allosteric sites of enzymes, and discovered that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We then experimentally tested our strategy of enzyme allosteric regulation and found that the designed mutations effectively deregulated allosteric inhibition of FBPase. We believe that our method will aid the rational design of enzyme allosteric regulation and help to facilitate control of metabolic flux.
Collapse
|
12
|
Chen WM, Prell J, James EK, Sheu DS, Sheu SY. Effect of phosphoglycerate mutase and fructose 1,6-bisphosphatase deficiency on symbiotic Burkholderia phymatum. MICROBIOLOGY-SGM 2012; 158:1127-1136. [PMID: 22282515 DOI: 10.1099/mic.0.055095-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia phymatum STM815 is a β-rhizobial strain that can effectively nodulate several species of the large legume genus Mimosa. Two Tn5-induced mutants of this strain, KM16-22 and KM51, failed to form root nodules on Mimosa pudica, but still caused root hair deformation, which is one of the early steps of rhizobial infection. Both mutants grew well in a complex medium. However, KM16-22 could not grow on minimal medium unless a sugar and a metabolic intermediate such as pyruvate were provided, and KM51 also could not grow on minimal medium unless a sugar was added. The Tn5-interrupted genes of the mutants showed strong homologies to pgm, which encodes 2,3-biphosphoglycerate-dependent phosphoglycerate mutase (dPGM), and fbp, which encodes fructose 1,6-bisphosphatase (FBPase). Both enzymes are known to be involved in obligate steps in carbohydrate metabolism. Enzyme assays confirmed that KM16-22 and KM51 had indeed lost dPGM and FBPase activity, respectively, whilst the activities of these enzymes were expressed normally in both free-living bacteria and symbiotic bacteroids of the parental strain STM815. Both mutants recovered their enzyme activity after the introduction of wild-type pgm or fbp genes, were subsequently able to use carbohydrate as a carbon source, and were able to form root nodules on M. pudica and to fix nitrogen as efficiently as the parental strain. We conclude that the enzymes dPGM and FBPase are essential for the formation of a symbiosis with the host plant.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Jurgen Prell
- Soil Ecology, Department of Botany, RWTH Aachen, 52056 Aachen, Germany
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
13
|
Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis 2012; 11:10. [PMID: 22243683 PMCID: PMC3398342 DOI: 10.1186/1476-511x-11-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. RESULTS Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. CONCLUSION This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Honghui Guo
- Department of Food Science, Yingdong College of Bioengineering, Shaoguan University, Shaoguan, Guangdong Province, China.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.
Collapse
|
15
|
Raghunathan A, Shin S, Daefler S. Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC SYSTEMS BIOLOGY 2010; 4:118. [PMID: 20731870 PMCID: PMC2933595 DOI: 10.1186/1752-0509-4-118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/23/2010] [Indexed: 12/31/2022]
Abstract
Background Francisella tularensis is a prototypic example of a pathogen for which few experimental datasets exist, but for which copious high-throughout data are becoming available because of its re-emerging significance as biothreat agent. The virulence of Francisella tularensis depends on its growth capabilities within a defined environmental niche of the host cell. Results We reconstructed the metabolism of Francisella as a stoichiometric matrix. This systems biology approach demonstrated that changes in carbohydrate utilization and amino acid metabolism play a pivotal role in growth, acid resistance, and energy homeostasis during infection with Francisella. We also show how varying the expression of certain metabolic genes in different environments efficiently controls the metabolic capacity of F. tularensis. Selective gene-expression analysis showed modulation of sugar catabolism by switching from oxidative metabolism (TCA cycle) in the initial stages of infection to fatty acid oxidation and gluconeogenesis later on. Computational analysis with constraints derived from experimental data revealed a limited set of metabolic genes that are operational during infection. Conclusions This integrated systems approach provides an important tool to understand the pathogenesis of an ill-characterized biothreat agent and to identify potential novel drug targets when rapid target identification is required should such microbes be intentionally released or become epidemic.
Collapse
Affiliation(s)
- Anu Raghunathan
- Mount Sinai School of Medicine, Department of Medicine, One Gustave L, Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
16
|
Abstract
Strains of Salmonella enterica serovar Typhimurium LT2 lacking a functional 2-methylcitric acid cycle (2-MCC) display increased sensitivity to propionate. Previous work from our group indicated that this sensitivity to propionate is in part due to the production of 2-methylcitrate (2-MC) by the Krebs cycle enzyme citrate synthase (GltA). Here we report in vivo and in vitro data which show that a target of the 2-MC isomer produced by GltA (2-MC(GltA)) is fructose-1,6-bisphosphatase (FBPase), a key enzyme in gluconeogenesis. Lack of growth due to inhibition of FBPase by 2-MC(GltA) was overcome by increasing the level of FBPase or by micromolar amounts of glucose in the medium. We isolated an fbp allele encoding a single amino acid substitution in FBPase (S123F), which allowed a strain lacking a functional 2-MCC to grow in the presence of propionate. We show that the 2-MC(GltA) and the 2-MC isomer synthesized by the 2-MC synthase (PrpC; 2-MC(PrpC)) are not equally toxic to the cell, with 2-MC(GltA) being significantly more toxic than 2-MC(PrpC). This difference in 2-MC toxicity is likely due to the fact that as a si-citrate synthase, GltA may produce multiple isomers of 2-MC, which we propose are not substrates for the 2-MC dehydratase (PrpD) enzyme, accumulate inside the cell, and have deleterious effects on FBPase activity. Our findings may help explain human inborn errors in propionate metabolism.
Collapse
|