1
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
3
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
4
|
Xu M, Yan X, Wang Y, Liu C, Yang Q, Tian D, Bednarek SY, Pan J, Wang C. ADAPTOR PROTEIN-1 complex-mediated post-Golgi trafficking is critical for pollen wall development in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:472-487. [PMID: 35451504 PMCID: PMC9545562 DOI: 10.1111/nph.18170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 05/16/2023]
Abstract
Primexine deposition is essential for the formation of pollen wall patterns and is precisely regulated by the tapetum and microspores. While tapetum- and/or microspore-localized proteins are required for primexine biosynthesis, how their trafficking is established and controlled is poorly understood. In Arabidopsis thaliana, AP1σ1 and AP1σ2, two genes encoding the σ subunit of the trans-Golgi network/early endosome (TGN/EE)-localized ADAPTOR PROTEIN-1 complex (AP-1), are partially redundant for plant viability, and the loss of AP1σ1 function reduces male fertility due to defective primexine formation. Here, we investigated the role of AP-1 in pollen wall formation. The deposition of Acyl-CoA SYNTHETASE5 (ACOS5) and type III LIPID TRANSFER PROTEINs (LTPs) secreted from the anther tapetum, which are involved in exine formation, were impaired in ap1σ1 mutants. In addition, the microspore plasma membrane (PM) protein RUPTURED POLLEN GRAIN1 (RPG1), which regulates primexine deposition, accumulated abnormally at the TGN/EE in ap1σ1 mutants. We show that AP-1μ recognizes the YXXΦ motif of RPG1, thereby regulating its PM abundance through endocytic trafficking, and that loss of AP1σ1 decreases the levels of other AP-1 subunits at the TGN/EE. Our observations show that AP-1-mediated post-Golgi trafficking plays a vital role in pollen wall development by regulating protein transport in tapetal cells and microspores.
Collapse
Affiliation(s)
- Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Qian Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | | | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
- College of Life SciencesShaoxing UniversityShaoxingZhejiang312000China
| |
Collapse
|
5
|
UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat Commun 2022; 13:1594. [PMID: 35332162 PMCID: PMC8948264 DOI: 10.1038/s41467-022-29244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing. Although ubiquitin ligases are known to control clock protein degradation, their other roles in clock neurons are unclear. Here the authors report that UBR4 promotes export of neuropeptides from the Golgi for axonal trafficking, which is important for circadian clock synchrony in mice and flies.
Collapse
|
6
|
Actin filament debranching regulates cell polarity during cell migration and asymmetric cell division. Proc Natl Acad Sci U S A 2021; 118:2100805118. [PMID: 34507987 DOI: 10.1073/pnas.2100805118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.
Collapse
|
7
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
8
|
Go RCP, Corley MJ, Ross GW, Petrovitch H, Masaki KH, Maunakea AK, He Q, Tiirikainen MI. Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson's disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity. BMC Neurosci 2020; 21:31. [PMID: 32650713 PMCID: PMC7350633 DOI: 10.1186/s12868-020-00582-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Parkinson’s disease (PD) is a disease of the central nervous system that progressively affects the motor system. Epidemiological studies have provided evidence that exposure to agriculture-related occupations or agrichemicals elevate a person’s risk for PD. Here, we sought to examine the possible epigenetic changes associated with working on a plantation on Oahu, HI and/or exposure to organochlorines (OGC) in PD cases. Results We measured genome-wide DNA methylation using the Illumina Infinium HumanMethylation450K BeadChip array in matched peripheral blood and postmortem brain biospecimens in PD cases (n = 20) assessed for years of plantation work and presence of organochlorines in brain tissue. The comparison of 10+ to 0 years of plantation work exposure detected 7 and 123 differentially methylated loci (DML) in brain and blood DNA, respectively (p < 0.0001). The comparison of cases with 4+ to 0–2 detectable levels of OGCs, identified 8 and 18 DML in brain and blood DNA, respectively (p < 0.0001). Pathway analyses revealed links to key neurotoxic and neuropathologic pathways related to impaired immune and proinflammatory responses as well as impaired clearance of damaged proteins, as found in the predominantly glial cell population in these environmental exposure-related PD cases. Conclusions These results suggest that distinct DNA methylation biomarker profiles related to environmental exposures in PD cases with previous exposure can be found in both brain and blood.
Collapse
Affiliation(s)
- Rodney C P Go
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL, 35294, USA
| | - Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, 650 Ilalo St, Honolulu, HI, 96813, USA
| | - G Webster Ross
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Helen Petrovitch
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Kamal H Masaki
- Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, 650 Ilalo St, Honolulu, HI, 96813, USA
| | - Qimei He
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA
| | - Maarit I Tiirikainen
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo St, Honolulu, HI, 96813, USA.
| |
Collapse
|
9
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
10
|
Riley DRJ, Khalil JS, Naseem KM, Rivero F. Biochemical and immunocytochemical characterization of coronins in platelets. Platelets 2019; 31:913-924. [PMID: 31801396 PMCID: PMC7497283 DOI: 10.1080/09537104.2019.1696457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rapid reorganization of the actin cytoskeleton in response to receptor-mediated signaling cascades allows platelets to transition from a discoid shape to a flat spread shape upon adhesion to damaged vessel walls. Coronins are conserved regulators of the actin cytoskeleton turnover but they also participate in signaling events. To gain a better picture of their functions in platelets we have undertaken a biochemical and immunocytochemical investigation with a focus on Coro1. We found that class I coronins Coro1, 2 and 3 are abundant in human and mouse platelets whereas little Coro7 can be detected. Coro1 is mainly cytosolic, but a significant amount associates with membranes in an actin-independent manner and does not translocate from or to the membrane fraction upon exposure to thrombin, collagen or prostacyclin. Coro1 rapidly translocates to the Triton insoluble cytoskeleton upon platelet stimulation with thrombin or collagen. Coro1, 2 and 3 show a diffuse cytoplasmic localization with discontinuous accumulation at the cell cortex and actin nodules of human platelets, where all three coronins colocalize. Our data are consistent with a role of coronins as integrators of extracellular signals with actin remodeling and suggests a high extent of functional overlap among class I coronins in platelets.
Collapse
Affiliation(s)
- David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK.,School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol , Bristol, UK
| | - Khalid M Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds , Leeds, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| |
Collapse
|
11
|
Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology. Sci Rep 2016; 6:25411. [PMID: 27143109 PMCID: PMC4855144 DOI: 10.1038/srep25411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
The contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP 'hyperactivity' upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner.
Collapse
|
12
|
Chen HY, Liu CC, Chen RH. Cul3-KLHL20 ubiquitin ligase: physiological functions, stress responses, and disease implications. Cell Div 2016; 11:5. [PMID: 27042198 PMCID: PMC4818519 DOI: 10.1186/s13008-016-0017-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023] Open
Abstract
Cullin-RING ubiquitin ligases are the largest Ubiquitin ligase family in eukaryotes and are multi-protein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. KLHL20 is a substrate-binding subunit of Cullin3 (Cul3) ubiquitin ligase. Recent studies have identified a number of substrates of KLHL20-based ubiquitin ligase. Through ubiquitination of these substrates, KLHL20 elicits diverse cellular functions, some of which are associated with human diseases. Furthermore, the functions, subcellular localizations, and expression of KLHL20 are regulated by several physiological and stressed signals, which allow KLHL20 to preferentially act on certain substrates to response to these signals. Here, we provide a summary of the functions and regulations of KLHL20 in several physiological processes and stress responses and its disease implications.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chin-Chih Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan ; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan ; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Abstract
In this issue of Molecular Cell, Yuan et al. (2014) report that the Cul3-KLHL20 E3 ubiquitin ligase regulates protein anterograde transport from the trans-Golgi network (TGN) by facilitating localized actin assembly at the TGN through K33-linked ubiquitination of coronin 7.
Collapse
Affiliation(s)
- Yi-Heng Hao
- Departments of Physiology and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - P Ryan Potts
- Departments of Physiology and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
14
|
K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol Cell 2014; 54:586-600. [DOI: 10.1016/j.molcel.2014.03.035] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/28/2014] [Accepted: 03/18/2014] [Indexed: 01/05/2023]
|
15
|
Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochem Cell Biol 2013; 140:395-405. [DOI: 10.1007/s00418-013-1130-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/31/2022]
|
16
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
17
|
Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64:661-70. [PMID: 22730233 DOI: 10.1002/iub.1054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/29/2012] [Indexed: 11/06/2022]
Abstract
In mammalian cells, the Golgi complex is organized into a continuous membranous system known as the Golgi ribbon, which is formed by individual Golgi stacks that are laterally connected by tubular bridges. During mitosis, the Golgi ribbon undergoes extensive fragmentation through a multistage process that is required for its correct partitioning into the daughter cells. Importantly, inhibition of this Golgi disassembly results in cell-cycle arrest at the G2 stage, suggesting that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Here, we discuss the mechanisms and regulation of the Golgi ribbon breakdown and briefly comment on how Golgi partitioning may inhibit G2/M transition.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council (CNR), Via Pietro Castellino 111, Naples, Italy.
| | | | | | | |
Collapse
|
18
|
Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb) as a novel candidate gene for emotionality in mice. PLoS One 2011; 6:e23604. [PMID: 21897848 PMCID: PMC3163650 DOI: 10.1371/journal.pone.0023604] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7), cathepsin B (Ctsb), muscleblind-like 1 (Mbnl1), metallothionein 1 (Mt1), solute carrier family 25 member 17 (Slc25a17), tribbles homolog 2 (Trib2), zinc finger protein 672 (Zfp672), syntaxin 3 (Stx3), ATP-binding cassette, sub-family A member 2 (Abca2), ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5), high mobility group nucleosomal binding domain 3 (Hmgn3) and pyruvate dehydrogenase beta (Pdhb). Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4). Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.
Collapse
|
19
|
Coronin7 forms a novel E3 ubiquitin ligase complex to promote the degradation of the anti-proliferative protein Tob. FEBS Lett 2010; 585:65-70. [DOI: 10.1016/j.febslet.2010.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
|
20
|
Abstract
The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi–centrosome relationship may be important for directional protein transport and centrosome positioning, which are both required for cell polarization. We also summarize our current knowledge of the link between Golgi organization and cell cycle progression.
Collapse
Affiliation(s)
- Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
21
|
Shina MC, Unal C, Eichinger L, Müller-Taubenberger A, Schleicher M, Steinert M, Noegel AA. A Coronin7 homolog with functions in actin-driven processes. J Biol Chem 2010; 285:9249-61. [PMID: 20071332 DOI: 10.1074/jbc.m109.083725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum Coronin7 (DdCRN7) together with human Coronin7 (CRN7) and Pod-1 of Drosophila melanogaster and Caenorhabditis elegans belong to the coronin family of WD-repeat domain-containing proteins. Coronin7 proteins are characterized by two WD-repeat domains that presumably fold into two beta-propeller structures. DdCRN7 shares highest homology with human CRN7, a protein with roles in membrane trafficking. DdCRN7 is present in the cytosol and accumulates in cell surface projections during movement and phago- and pinocytosis. Cells lacking CRN7 have altered chemotaxis and phagocytosis. Furthermore, loss of CRN7 affects the infection process by the pathogen Legionella pneumophila and allows a more efficient internalization of bacteria. To provide a mechanism for CNR7 action, we studied actin-related aspects. We could show that CRN7 binds directly to F-actin and protects actin filaments from depolymerization. CRN7 also associated with F-actin in vivo. It was present in the Triton X-100-insoluble cytoskeleton, colocalized with F-actin, and its distribution was sensitive to drugs affecting the actin cytoskeleton. We propose that the CRN7 role in chemotaxis and phagocytosis is through its effect on the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria C Shina
- Institute for Biochemistry I, Center for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Medical Faculty, University of Cologne, 50931 Koeln, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Diniz MC, Costa MP, Pacheco ACL, Kamimura MT, Silva SC, Carneiro LDG, Sousa APL, Soares CEA, Souza CSF, de Oliveira DM. Actin-interacting and flagellar proteins in Leishmania spp.: Bioinformatics predictions to functional assignments in phagosome formation. Genet Mol Biol 2009; 32:652-65. [PMID: 21637533 PMCID: PMC3036044 DOI: 10.1590/s1415-47572009000300033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/25/2009] [Indexed: 11/22/2022] Open
Abstract
Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.
Collapse
Affiliation(s)
- Michely C Diniz
- Núcleo Tarcísio Pimenta de Pesquisa Genômica e Bioinformática, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Until recently, structural information about coronins was scarce and the earlier identification of five WD40 repeats gave rise to a structural prediction of a five-bladed beta propeller for the N-terminal domain of these proteins. More detailed analyses revealed the presence of seven WD40 repeats and the hypothesis of a seven-bladed beta propeller structure. This model has recently been validated due to structural information from crystal structures of C-terminally truncated coronin 1 (1A), as well as its C-terminal coiled coil domain. Further structural information is available only indirectly from binding and functional studies.Phosphorylation at distinct serine and tyrosine residues seems to be a common theme for various coronins. There are indications that this modification regulates the quaternary structure of coronin 3 (1C) and thus has implications for the cellular localisation and the general link between signalling and cytoskeletal remodelling. Similarly, phosphorylation-dependent sorting sequences recently discovered on coronin 7 might prove important for the molecular mechanisms of the longer coronins.A matter that will require further clarification is the localisation of protein binding sites on coronins. While earlier reports presented a rather diverse map of actin binding sites, more recent studies, including the crystal structure of the coronin 1 N-terminal domain, deliver more detailed information in this respect. Interaction sites for other target proteins, such as Arp2/3, remain to be identified. Also, while membrane binding is a known feature of coronins, further details as to the binding sites and molecular level events remain to be elucidated. The N-terminal WD40 repeat domain seems to be the membrane-interacting domain, but other domains might provide regulatory effects, most likely by posttranslational modification, in a fashion that is specific for each coronin.In this chapter, we provide a structural overview of coronins 1 (1A), 2 (1B), 3 (1C) and 7 and also present results of our recent efforts to obtain structural models of coronins 3 and 7. Possible implications of these models on the function of these proteins are discussed.
Collapse
|
24
|
Abstract
The coronin gene family comprises seven vertebrate paralogs and at least five unclassified subfamilies in nonvertebrate metazoa, fungi and protozoa, but no representatives in plants or distant protists. All known members exhibit elevated structural conservation in two unique domains of unknown function (DUF1899 and DUF1900) interspaced by three canonical WD40 domains (plus additional pseudo domains) that form part of a 7-bladed beta-propeller scaffold, plus a C-terminal variable "coiled coil domain" responsible for oligomerization. Phylogenetic analysis of the N-terminal conserved region in known members (i.e.420 aa in 250 taxa) established the origin of the founding monomeric unit and a dimeric paralog in unicellular eukaryotes. The monomeric ancestor duplicated to two distinct lineages in basal metazoa and later propagated during the whole genome duplications in primitive chordates 450-550 million years ago to form six vertebrate-specific genes. The delineation of 12 subfamily clades in distinct phyla provided a rational basis for proposing a simplified, universal nomenclature for the coronin family in accordance with evolutionary history, structural relationships and functional divergence.Comparative genomic analysis of coronin subfamily locus maps and gene organization provided corroboratory evidence for their chromosomal dispersal and structural relatedness. Statistical analysis of evolutionary sequence conservation by profile hidden Markov models (pHMM) and the prediction of Specificity Determining Positions (SDPpred) helped to characterize coronin domains by highlighting structurally conserved sites relevant to coronin function and subfamily divergence. The incorporation of such evolutionary information into 3D models facilitated the distinction between candidate sites with a structural role versus those implicated in dynamic, actin-related cytoskeletal interactions. A highly conserved "KGD" motif identified in the coronin DUF1900 domain has been observed in other actin-binding proteins such as annexins and is a potential ligand for integrins and C2 domains known to be associated with structural and signalling roles in the membrane cytoskeleton. Molecular evolution studies provide a comprehensive overview of the structural history of the coronin gene family and a systematic methodology to gain deeper insight into the function(s) of individual members.
Collapse
|
25
|
Abstract
What I'd like to do in this chapter is to share with you my recollections from the earliest days of coronin research and then to provide an overview of the still-developing story of this fascinating family of proteins.
Collapse
|
26
|
Abstract
Most coronin proteins rely on interaction with actin in their functions. Mammalian coronin 7 has not been shown to interact with actin, but rather to bind to the outer side of Golgi complex membranes. Targeting of coronin 7 to Golgi membranes requires the activity of Src kinase and integrity of AP-1 adaptor protein complex. Coronin 7 further physically interacts with both AP-1 and Src in vivo and in vitro and is phosphorylated by Src. Depletion of coronin 7 by RNAi results in Golgi breakdown and accumulation of arrested cargo proteins, suggesting the protein functions in the later stages of cargo sorting and export from the Golgi complex. We suggest that coronin 7 acts as a mediator of cargo vesicle formation at the trans-Golgi network (TGN) downstream of AP-1 interaction with cargo but upstream of protein kinase D dependent membrane fission.
Collapse
Affiliation(s)
- Vasily Rybakin
- The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Chi S, Cao H, Chen J, McNiven MA. Eps15 mediates vesicle trafficking from the trans-Golgi network via an interaction with the clathrin adaptor AP-1. Mol Biol Cell 2008; 19:3564-75. [PMID: 18524853 PMCID: PMC2488291 DOI: 10.1091/mbc.e07-10-0997] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/11/2022] Open
Abstract
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.
Collapse
Affiliation(s)
- Susan Chi
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Hong Cao
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Jing Chen
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Mark A. McNiven
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| |
Collapse
|
28
|
|
29
|
Abstract
Coronins are highly conserved among species, but their function is far from being understood in detail. Here we will introduce members of the family of coronin like proteins from Drosophila melanogaster, Caenorhabditis elegans and the social amoeba Dictyostelium discoideum. Genetic data from D. discoideum and D. melanogaster revealed that coronins in general are important regulators of many actin-dependent processes.
Collapse
Affiliation(s)
- Maria C Shina
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne, Germany
| | | |
Collapse
|
30
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|