1
|
Yang M, Wang K, Zhang L, Zhang H, Zhang C. DCAF2 is essential for the development of uterine epithelia and mouse fertility. Front Cell Dev Biol 2024; 12:1474660. [PMID: 39364135 PMCID: PMC11446810 DOI: 10.3389/fcell.2024.1474660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction The successful outcome of a pregnancy depends on the proper functioning uterine epithelium. DNA damage binding protein 1 and cullin 4-associated factor 2 (DCAF2), a conserved substrate receptor for the cullin 4-RING E3 ubiquitin ligase (CRL4) complex, is essential for maintaining genome stability by facilitating ubiquitin-mediated degradation of substrates. Methods To better understand the physiological role of DCAF2 in female reproduction, we conducted a study using mice with conditional knockout (cKO) of DCAF2 in the uterus using the progesterone receptor Cre (Pgr Cre/+) mouse model. Results Our results showed the cKO mice were completely infertile, despite having ovarian function. The cKO mice exhibited severely thin uteri, demonstrating notable defects in both the uterine epithelium and a lack of glands. In addition, there were impaired proliferation and differentiation of epithelial cells in the cKO mice, ultimately resulting in failed implantation. Moreover, through deciphering the uterine transcriptome of cKO mice, we revealed crucial differentially expressed genes associated with steroid signaling. Further experiments have demonstrated cKO mice exhibit elevated uterine PGR signaling and reduced estrogen receptor signaling, although the levels of progesterone and estrogen remained unaltered. These alterations may contribute to defects in epithelium. Discussion Overall, our findings highlight a previously unrecognized but indispensable role for DCAF2 in the development of uterine luminal and glandular epithelium by orchestrating PGR and estrogen receptor responses. Its deficiency in the uterus leads to mouse infertility.
Collapse
Affiliation(s)
- Man Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Kaixuan Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
2
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
3
|
Wu K, Hopkins BD, Sanchez R, DeVita RJ, Pan ZQ. Targeting Cullin-RING E3 Ubiquitin Ligase 4 by Small Molecule Modulators. JOURNAL OF CELLULAR SIGNALING 2021; 2:195-205. [PMID: 34604860 PMCID: PMC8486283 DOI: 10.33696/signaling.2.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cullin-RING E3 ubiquitin ligase 4 (CRL4) plays an essential role in cell cycle progression. Recent efforts using high throughput screening and follow up hit-to-lead studies have led to identification of small molecules 33-11 and KH-4-43 that inhibit E3 CRL4's core ligase complex and exhibit anticancer potential. This review provides: 1) an updated perspective of E3 CRL4, including structural organization, major substrate targets and role in cancer; 2) a discussion of the challenges and strategies for finding the CRL inhibitor; and 3) a summary of the properties of the identified CRL4 inhibitors as well as a perspective on their potential utility to probe CRL4 biology and act as therapeutic agents.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Genetics and Genomics, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| |
Collapse
|
4
|
Israel S, Drexler HCA, Fuellen G, Boiani M. The COP9 signalosome subunit 3 is necessary for early embryo survival by way of a stable protein deposit in mouse oocytes. Mol Hum Reprod 2021; 27:gaab048. [PMID: 34264319 DOI: 10.1093/molehr/gaab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Investigations of genes required in early mammalian development are complicated by protein deposits of maternal products, which continue to operate after the gene locus has been disrupted. This leads to delayed phenotypic manifestations and underestimation of the number of genes known to be needed during the embryonic phase of cellular totipotency. Here we expose a critical role of the gene Cops3 by showing that it protects genome integrity during the 2-cell stage of mouse development, in contrast to the previous functional assignment at postimplantation. This new role is mediated by a substantial deposit of protein (94th percentile of the proteome), divided between an exceptionally stable cortical rim, which is prevalent in oocytes, and an ancillary deposit in the embryonic nuclei. Since protein abundance and stability defeat prospects of DNA- or RNA-based gene inactivation in oocytes, we harnessed a classical method next to an emerging method for protein inactivation: antigen masking (for functional inhibition) versus TRIM21-mediated proteasomal degradation, also known as 'Trim away' (for physical removal). Both resulted in 2-cell embryo lethality, unlike the embryos receiving anti-green fluorescent protein. Comparisons between COPS3 protein-targeted and non-targeted embryos revealed large-scale transcriptome differences, which were most evident for genes associated with biological functions critical for RNA metabolism and for the preservation of genome integrity. The gene expression abnormalities associated with COPS3 inactivation were confirmed in situ by the occurrence of DNA endoreduplication and DNA strand breaks in 2-cell embryos. These results recruit Cops3 to the small family of genes that are necessary for early embryo survival. Overall, assigning genes with roles in embryogenesis may be less safe than assumed, if the protein products of these genes accumulate in oocytes: the inactivation of a gene at the protein level can expose an earlier phenotype than that identified by genetic techniques such as conventional gene silencing.
Collapse
Affiliation(s)
- Steffen Israel
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Hannes C A Drexler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany
| | - Michele Boiani
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| |
Collapse
|
5
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
6
|
Wang DC, Huang JC, Lo NW, Chen LR, Mermillod P, Ma WL, Chiang HI, Ju JC. Sonic Hedgehog promotes in vitro oocyte maturation and term development of embryos in Taiwan native goats. Theriogenology 2017; 103:52-58. [DOI: 10.1016/j.theriogenology.2017.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 01/04/2023]
|
7
|
Qiu G, Liu J, Cheng Q, Wang Q, Jing Z, Pei Y, Zhao M, Wang J, Guo JY, Zhang J. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1. Front Immunol 2017; 8:575. [PMID: 28572806 PMCID: PMC5435764 DOI: 10.3389/fimmu.2017.00575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1) leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg) cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.
Collapse
Affiliation(s)
- Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Zhaofei Jing
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Min Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jessie Yanxiang Guo
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, RBHS-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, Tong C, Fan HY. Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci 2017; 130:3297-3307. [DOI: 10.1242/jcs.206664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Precise regulation of DNA replication and genome integrity is crucial for gametogenesis and early embryogenesis. Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of germ cell survival, oocyte meiotic maturation, and maternal-zygotic transition in mammals. DDB1-cullin 4-associated factor-2 (DCAF2, also known as DTL or CDT2) is an evolutionarily conserved substrate receptor of CRL4. To determine whether DCAF2 is a key CRL4 substrate adaptor in mammalian oocytes, we generated a novel mouse strain that carries a Dcaf2 allele flanked by LoxP sequences, and specifically deleted Dcaf2 in oocytes. Dcaf2 knockout in mouse oocytes leads to female infertility. Although Dcaf2 null oocytes were able to develop and mature normally, the embryos derived from them were arrested at 1- to 2-cell stages owing to prolonged DNA replication and accumulation of massive DNA damage. These results indicate that DCAF2 is a previously unrecognized maternal factor that safeguards zygotic genome stability. Maternal DCAF2 protein is crucial for prevention of DNA rereplication in the first and unique mitotic cell cycle of the zygote.
Collapse
Affiliation(s)
- Yi-Wen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Lan-Rui Cao
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Cambridge-Suda Genomic Resource, Soochow University, Suzhou 215123, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Tong
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Olivero M, Dettori D, Arena S, Zecchin D, Lantelme E, Di Renzo MF. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget 2015; 5:5992-6002. [PMID: 25115388 PMCID: PMC4171607 DOI: 10.18632/oncotarget.2042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the mutation profile and CDT2 expression level. Cell death was associated to rereplication and to loss of CDT1 degradation. Conversely, CDT2 depletion did not affect non-transformed human cells, such as immortalized kidney, lung and breast cell lines, and primary cultures of endothelial cells and osteoblasts. The ectopic over-expression of an activated oncogene, such as the mutation-activated RAS or the amplified MET in non-transformed immortalized breast cell lines and primary human osteoblasts, respectively, made cells transformed in vitro, tumorigenic in vivo, and susceptible to CDT2 loss. The widespread effect of CDT2 depletion in different cancer cells suggests that CDT2 is not in a synthetic lethal interaction to a single specific pathway. CDT2 likely is a non-oncogene to which transformed cells become addicted because of their enhanced cellular stress, such as replicative stress and DNA damage.
Collapse
Affiliation(s)
- Martina Olivero
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Daniela Dettori
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: HUGEF, Human Genetics Foundation, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Davide Zecchin
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Signal Transduction Laboratory, Cancer Research UK London Research Institute, London U.K
| | - Erica Lantelme
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Washington University in St. Louis, St. Louis, MO
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
10
|
Zhao Y, Wang Q, Qiu G, Zhou S, Jing Z, Wang J, Wang W, Cao J, Han K, Cheng Q, Shen B, Chen Y, Zhang WJ, Ma Y, Zhang J. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK. Cell Rep 2015; 13:1407-1417. [PMID: 26549445 DOI: 10.1016/j.celrep.2015.10.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/07/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022] Open
Abstract
Autophagy is essential for maintaining tissue homeostasis. Although adaptors have been demonstrated to facilitate the assembly of the Atg14L-Beclin 1-Vps34-Vps15 complex, which functions in autophagosome formation, it remains unknown whether the autophagy machinery actively recruits such adaptors. WD40-repeat proteins are a large, highly conserved family of adaptors implicated in various cellular activities. However, the role of WD40-repeat-only proteins, such as RACK1, in postnatal mammalian physiology remains unknown. Here, we report that hepatocyte-specific RACK1 deficiency leads to lipid accumulation in the liver, accompanied by impaired Atg14L-linked Vps34 activity and autophagy. Further exploration indicates that RACK1 participates in the formation of autophagosome biogenesis complex upon its phosphorylation by AMPK at Thr50. Thr50 phosphorylation of RACK1 enhances its direct binding to Vps15, Atg14L, and Beclin 1, thereby promoting the assembly of the autophagy-initiation complex. These observations provide insight into autophagy induction and establish a pivotal role for RACK1 in postnatal mammalian physiology.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Zhaofei Jing
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Jingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Wendie Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Junxia Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Kun Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Beifen Shen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100083, PRC
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PRC
| | - Yuanfang Ma
- Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC.
| |
Collapse
|
11
|
14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation. Mol Cell Biol 2014; 34:4049-61. [PMID: 25154416 DOI: 10.1128/mcb.00838-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdt2 is the substrate recognition adaptor of CRL4(Cdt2) E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCF(FbxO11)-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4(Cdt2) substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression.
Collapse
|
12
|
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 2014; 31:595-612. [PMID: 24493024 DOI: 10.1007/s10585-014-9642-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023]
Abstract
Bone metastasis accounts for the vast majority of breast cancer (BC) metastases, and is related to a high rate of morbidity and mortality. A number of seminal studies have uncovered gene expression signatures involved in BC development and bone metastasis; each of them points at a distinct step of the 'invasion-metastasis cascade'. In this review, we provide most recently discovered functions of sets of genes that are selected from widely accepted gene signatures that are implicate in BC progression and bone metastasis. We propose a possible sequential pattern of gene expression that may lead a benign primary breast tumor to get aggressiveness and progress toward bone metastasis. A panel of genes which primarily deal with features like DNA replication, survival, proliferation, then, angiogenesis, migration, and invasion has been identified. TGF-β, FGF, NFκB, WNT, PI3K, and JAK-STAT signaling pathways, as the key pathways involved in breast cancer development and metastasis, are evidently regulated by several genes in all three signatures. Epithelial to mesenchymal transition that is also an important mechanism in cancer stem cell generation and metastasis is evidently regulated by these genes. This review provides a comprehensive insight regarding breast cancer bone metastasis that may lead to a better understanding of the disease and take step toward better treatments.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Street, P.O. Box: 14176-13151, Keshavarz Boulevard, Tehran, Iran
| | | |
Collapse
|
13
|
Castiello L, Mossoba M, Viterbo A, Sabatino M, Fellowes V, Foley JE, Winterton M, Halverson DC, Civini S, Jin P, Fowler DH, Stroncek DF. Differential gene expression profile of first-generation and second-generation rapamycin-resistant allogeneic T cells. Cytotherapy 2013; 15:598-609. [PMID: 23352462 DOI: 10.1016/j.jcyt.2012.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/14/2012] [Accepted: 12/28/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND AIMS We completed a phase II clinical trial evaluating rapamycin-resistant allogeneic T cells (T-rapa) and now have evaluated a T-rapa product manufactured in 6 days (T-rapa(6)) rather than 12 days (T-Rapa(12)). METHODS Using gene expression microarrays, we addressed our hypothesis that the two products would express a similar phenotype. The products had similar phenotypes using conventional comparison methods of cytokine secretion and surface markers. RESULTS Unsupervised analysis of 34,340 genes revealed that T-rapa(6) and T-rapa(12) products clustered together, distinct from culture input CD4(+) T cells. Statistical analysis of T-rapa(6) products revealed differential expression of 19.3% of genes (n = 6641) compared with input CD4(+) cells; similarly, 17.8% of genes (n = 6147) were differentially expressed between T-rapa(12) products and input CD4(+) cells. Compared with input CD4(+) cells, T-rapa(6) and T-rapa(12) products were similar in terms of up-regulation of major gene families (cell cycle, stress response, glucose catabolism, DNA metabolism) and down-regulation (inflammatory response, immune response, apoptosis, transcriptional regulation). However, when directly compared, T-rapa(6) and T-rapa(12) products showed differential expression of 5.8% of genes (n = 1994; T-rapa(6) vs. T-rapa(12)). CONCLUSIONS Second-generation T-rapa(6) cells possess a similar yet distinct gene expression profile relative to first-generation T-rapa(12) cells and may mediate differential effects after adoptive transfer.
Collapse
Affiliation(s)
- Luciano Castiello
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1288, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sloan RS, Swanson CI, Gavilano L, Smith KN, Malek PY, Snow-Smith M, Duronio RJ, Key SCS. Characterization of null and hypomorphic alleles of the Drosophila l(2)dtl/cdt2 gene: Larval lethality and male fertility. Fly (Austin) 2012; 6:173-83. [PMID: 22722696 DOI: 10.4161/fly.20247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Drosophila lethal(2)denticleless (l(2)dtl) gene was originally reported as essential for embryogenesis and formation of the rows of tiny hairs on the larval ventral cuticle known as denticle belts. It is now well-established that l(2)dtl (also called cdt2) encodes a subunit of a Cullin 4-based E3 ubiquitin ligase complex that targets a number of key cell cycle regulatory proteins, including p21, Cdt1, E2F1 and Set8, to prevent replication defects and maintain cell cycle control. To investigate the role of l(2)dtl/cdt2 during development, we characterized existing l(2)dtl/cdt2 mutants and generated new deletion alleles, using P-element excision mutagenesis. Surprisingly, homozygous l(2)dtl/cdt2 mutant embryos developed beyond embryogenesis, had intact denticle belts, and lacked an observable embryonic replication defect. These mutants died during larval stages, affirming that loss of l(2)dtl/cdt2 function is lethal. Our data show that L(2)dtl/Cdt2 is maternally deposited, remains nuclear throughout the cell cycle, and has a previously unreported, elevated expression in the developing gonads. We also find that E2f1 regulates l(2)dtl/cdt2 expression during embryogenesis, possibly via several highly conserved putative E2f1 binding sites near the l(2)dtl/cdt2 promoter. Finally, hypomorphic allele combinations of the l(2)dtl/cdt2 gene result in a novel phenotype: viable, low-fertility males. We conclude that "denticleless" is a misnomer, but that l(2)dtl/cdt2 is an essential gene for Drosophila development.
Collapse
Affiliation(s)
- Roketa S Sloan
- Department of Biology, North Carolina Central University, Durham, NC USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Mackintosh C, Ordóñez JL, García-Domínguez DJ, Sevillano V, Llombart-Bosch A, Szuhai K, Scotlandi K, Alberghini M, Sciot R, Sinnaeve F, Hogendoorn PCW, Picci P, Knuutila S, Dirksen U, Debiec-Rychter M, Schaefer KL, de Álava E. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene 2011; 31:1287-98. [PMID: 21822310 DOI: 10.1038/onc.2011.317] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite extensive characterization of the role of the EWS-ETS fusions, little is known about secondary genetic alterations and their clinical contribution to Ewing sarcoma (ES). It has been demonstrated that the molecular structure of EWS-ETS lacks prognostic value. Moreover, CDKN2A deletion and TP53 mutation, despite carrying a poor prognosis, are infrequent. In this scenario identifying secondary genetic alterations with a significant prevalence could contribute to understand the molecular mechanisms underlying the most aggressive forms of ES.We screened a 67 ES tumor set for copy number alterations by array comparative genomic hybridization. 1q gain (1qG), detected in 31% of tumor samples, was found markedly associated with relapse and poor overall and disease-free survival and demonstrated a prognostic value independent of classical clinical parameters. Reanalysis of an expression dataset belonging to an independent tumor set (n=37) not only validated this finding but also led us to identify a transcriptomic profile of severe cell cycle deregulation in 1qG ES tumors. Consistently, a higher proliferation rate was detected in this tumor subset by Ki-67 immunohistochemistry. CDT2, a 1q-located candidate gene encoding a protein involved in ubiquitin ligase activity and significantly overexpressed in 1qG ES tumors, was validated in vitro and in vivo proving its major contribution to this molecular and clinical phenotype. This integrative genomic study of 105 ES tumors in overall renders the potential value of 1qG and CDT2 overexpression as prognostic biomarkers and also affords a rationale for the application of already available new therapeutic compounds selectively targeting the protein-ubiquitin machinery.
Collapse
Affiliation(s)
- C Mackintosh
- Molecular Pathology Program, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Campus Miguel de Unamuno S/N, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sonic Hedgehog improves in vitro development of porcine parthenotes and handmade cloned embryos. Theriogenology 2011; 74:1149-60. [PMID: 20663544 DOI: 10.1016/j.theriogenology.2010.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/27/2010] [Accepted: 05/13/2010] [Indexed: 12/31/2022]
Abstract
This study investigated the expression of Sonic Hedgehog (Shh) signaling pathway and its effect on porcine parthenogenetic (PA) embryo development. The Shh receptor Patched (Ptc1) and co-receptor Smoothened (Smo) were expressed at various stages of PA porcine embryos, at both mRNA and protein levels. Furthermore, the transcriptional activator Gli1 mRNA was first present in the 2-cell stage embryos, and was readily detected at the 4-cell stage and beyond. Culture medium supplemented with 0.5 μg/mL Shh optimized blastocyst rates (58.6 vs. 41.1%; P < 0.05) and the total number of cells per blastocyst (56.4 vs. 45.6 cells; P < 0.05); however, this response was prevented by simultaneous addition of 1 mM cyclopamine (an Shh inhibitor). Moreover, blastocysts that developed in medium containing 0.5 μg/mL Shh had lower apoptotic indices and reduced DNA damage (evaluated by TUNEL and comet assays, respectively). Based on Western-blot analysis, expression of phosphorylated Akt protein in Shh-treated blastocysts was higher than that of the control group (1.22- vs. 0.66-fold, P < 0.05), and less total PARP-1/2 protein was accumulated (0.7-fold, P < 0.05) in treated blastocysts compared to untreated controls. Furthermore, supplementation of Shh (1 μg/mL) also supported development of handmade cloned embryos (50.3 vs. 26.8%; P < 0.05) with reduced apoptotic rates (2.8 vs. 6.3%; P < 0.05). We inferred that the Shh signaling pathway existed in porcine PA embryos and we concluded that Shh supplementation improved the quality and developmental competence of early PA embryos, at least in part, by increasing cell proliferation and reducing apoptosis of the developing embryos.
Collapse
|
18
|
Jørgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MSY, Kousholt AN, Syljuåsen RG, Trelle MB, Jensen ON, Helin K, Sørensen CS. SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. ACTA ACUST UNITED AC 2011; 192:43-54. [PMID: 21220508 PMCID: PMC3019552 DOI: 10.1083/jcb.201009076] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degradation of the histone H4 methyltransferase SET8, which regulates chromosome compaction and genomic integrity, is regulated by the CRL4(CDT2) ubiquitin ligase to facilitate DNA replication and repair. The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)–dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin–proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.
Collapse
Affiliation(s)
- Stine Jørgensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 2011; 10:241-9. [PMID: 21212733 DOI: 10.4161/cc.10.2.14530] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polyubiquitin-mediated degradation of proteins plays an essential role in various physiological processes including cell cycle progression, transcription and DNA replication and repair. Increasing evidence supports a vital role for the E3 ubiquitin ligase cullin-4, in conjunction with the substrate recognition factor Cdt2 (CRL4Cdt2), for the degradation of multiple cell cycle-regulated proteins to prevent genomic instability. In addition, it is critical for normal cell cycle progression by ensuring the timely destruction of various cell cycle proteins whose deregulated expression impairs cell cycle progression. Here, we summarize our current knowledge about the various roles of the CRL4Cdt2 E3 ubiquitin ligase, and how its activity contributes both to the preservation of genome integrity and to normal cell cycle progression, and how its deregulation may contribute to human cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
20
|
Li J, Ng EKO, Ng YP, Wong CYP, Yu J, Jin H, Cheng VYY, Go MYY, Cheung PKF, Ebert MPA, Tong J, To KF, Chan FKL, Sung JJY, Ip NY, Leung WK. Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer. Br J Cancer 2009; 101:691-8. [PMID: 19672268 PMCID: PMC2736823 DOI: 10.1038/sj.bjc.6605202] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/18/2009] [Accepted: 06/30/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Retinoic acid-regulated nuclear matrix-associated protein (RAMP) is a WD40 repeat-containing protein that is involved in various biological functions, but little is known about its role in human cancer. This study aims to delineate the oncogenic role of RAMP in gastric carcinogenesis. METHODS RAMP expression was examined by real-time quantitative RT-PCR, immunohistochemistry and western blotting. Inhibition of RAMP expression was performed by siRNA-mediated knockdown. The functional effects of RAMP on cell kinetics were measured by cell viability assay, colony formation assay and flow cytometry. Cell lines stably expressing RAMP were established to investigate the oncogenic effects of RAMP in vitro. RESULTS Ramp was readily expressed in all seven gastric cancer cell lines and was significantly increased in human gastric cancer tissues when compared with their adjacent non-cancerous tissues (P<0.001). In keeping with this, expression of RAMP protein was higher in gastric cancer tissues compared with their adjacent non-cancerous tissues, whereas moderate protein expression were noted in intestinal metaplasia. Knockdown of RAMP in gastric cancer cells significantly reduced cell proliferation (P<0.01) and soft agar colony formation (P<0.001), but induced apoptosis and G(2)/M arrest. In additional, knockdown RAMP induced cell apoptosis is dependent on functional accumulation of p53 and p21 and induction of cleaved caspases-9, caspases-3 and PARP. Strikingly, overexpression of RAMP promoted anchorage-independent cell growth in soft agar. CONCLUSION Our findings demonstrate that RAMP plays an oncogenic role in gastric carcinogenesis. Inhibition of RAMP may be a promising approach for gastric cancer therapy.
Collapse
Affiliation(s)
- J Li
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - E K O Ng
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Y P Ng
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - C Y P Wong
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - J Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - H Jin
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - V Y Y Cheng
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - M Y Y Go
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - P K F Cheung
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - M P A Ebert
- Department of Medicine II, Technical University of Munich, Munich, Germany
| | - J Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - K F To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - F K L Chan
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - J J Y Sung
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - N Y Ip
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - W K Leung
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|