1
|
Deng W, Zhao Z, Li Y, Cao R, Chen M, Tang K, Wang D, Fan W, Hu A, Chen G, Chen CTA, Zhang Y. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. MICROBIOME 2023; 11:270. [PMID: 38049915 PMCID: PMC10696704 DOI: 10.1186/s40168-023-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.
Collapse
Affiliation(s)
- Wenchao Deng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yufang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Rongguang Cao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangcheng Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
2
|
Mucilaginibacter sp. Strain Metal(loid) and Antibiotic Resistance Isolated from Estuarine Soil Contaminated Mine Tailing from the Fundão Dam. Genes (Basel) 2022; 13:genes13020174. [PMID: 35205220 PMCID: PMC8871858 DOI: 10.3390/genes13020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
In 2015 a mine dam with Mn-Fe-rich tailings collapsed releasing million tons of sediments over an estuary, in the Southwest of Brazil. The tailings have a high concentration of metals that contaminated soil until the present day. The high contaminant concentrations possibly caused a selection for microorganisms able to strive in such harsh conditions. Here, we isolated metal(loid) and anti-biotic resistance bacteria from the contaminated estuarine soil. After 16S rDNA sequencing to identify the strains, we selected the Mucilaginibacter sp. strain for a whole-genome sequence due to the bioprospective potential of the genus and the high resistance profile. We obtained a complete genome and a genome-guided characterization. Our finding suggests that the 21p strain is possibly a new species of the genus. The species presented genes for resistance for metals (i.e., As, Zn, Co, Cd, and Mn) beyond resistance and cross-resistance for antibiotics (i.e., quinolone, aminoglycoside, β-lactamase, sulphonamide, tetracycline). The Mucilaginibacter sp. 21p description as new species should be further explored, as their extracellular polymeric substances and the potential of this strain as bioremediation and as a growth promoter in high met-al(loid) contaminated soil.
Collapse
|
3
|
Terashima M, Ohashi K, Takasuka TE, Kojima H, Fukui M. Antarctic heterotrophic bacterium Hymenobacter nivis P3 T displays light-enhanced growth and expresses putative photoactive proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:227-235. [PMID: 30298689 DOI: 10.1111/1758-2229.12702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was significantly enhanced under light conditions, while dark conditions had increased extracellular polymeric substances. Furthermore, the expression of several putative light-reactive proteins was determined by proteomic analysis. These results indicate that H. nivis P3T is able to potentially utilize light, which may explain its dominance on the red snow surface environment of Antarctica. ORIGINALITY-SIGNIFICANCE STATEMENT: The role of proteorhodopsin in heterotrophic bacteria is not well-characterized, as only a handful of proteorhodopsin-harbouring isolates were shown to have a light-enhanced phenotype through culture-based experiments to date. This is the first study that demonstrates light-stimulated growth and protein expression evidence of photoactive proteins for a non-marine psychrophile and for a member of the genus Hymenobacter. It is also the first study that provides comprehensive proteome information for this genus. This study presents significant results in understanding the adaptive mechanism of a heterotrophic non-photosynthetic bacterium thriving on the snow surface environment of Antarctica as well as demonstrating the role of light-utilization in promoting growth, possibly through proteorhodopsin.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Keisuke Ohashi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
4
|
Mundt R, Torres Ziegenbein C, Fröbel S, Weingart O, Gilch P. Femtosecond Spectroscopy of Calcium Dipicolinate—A Major Component of Bacterial Spores. J Phys Chem B 2016; 120:9376-86. [DOI: 10.1021/acs.jpcb.6b06230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ramona Mundt
- Institut
für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätstr.
1, D-40225 Düsseldorf, Germany
| | - Christian Torres Ziegenbein
- Institut
für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätstr.
1, D-40225 Düsseldorf, Germany
| | - Sascha Fröbel
- Institut
für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätstr.
1, D-40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut
für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstr. 1, D-40225 Düsseldorf, Germany
| | - Peter Gilch
- Institut
für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätstr.
1, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Setlow P, Li L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem Photobiol 2015; 91:1263-90. [PMID: 26265564 PMCID: PMC4631623 DOI: 10.1111/php.12506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
6
|
Benjdia A, Heil K, Winkler A, Carell T, Schlichting I. Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chem Commun (Camb) 2015; 50:14201-4. [PMID: 25285338 DOI: 10.1039/c4cc05158k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radical SAM enzyme, spore photoproduct lyase, requires an H-atom transfer (HAT) pathway to catalyze DNA repair. By rational engineering, we demonstrate that it is possible to rewire its HAT pathway, a first step toward the development of novel catalysts based on the radical SAM enzyme scaffold.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
7
|
Ames DM, Lin G, Jian Y, Cadet J, Li L. Unusually large deuterium discrimination during spore photoproduct formation. J Org Chem 2014; 79:4843-51. [PMID: 24820206 PMCID: PMC4049236 DOI: 10.1021/jo500775b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The deuterium-labeling strategy has been widely used and proved highly effective in mechanistic investigation of chemical and biochemical reactions. However, it is often hampered by the incomplete label transfer, which subsequently obscures the mechanistic conclusion. During the study of photoinduced generation of 5-thyminyl-5,6-dihydrothymine, which is commonly called the spore photoproduct (SP), the Cadet laboratory found an incomplete (~67%) deuterium transfer in SP formation, which contrasts to the exclusive transfer observed by the Li laboratory. Here, we investigated this discrepancy by re-examining the SP formation using d3-thymidine. We spiked the d3-thymidine with varying amounts of unlabeled thymidine before the SP photochemistry is performed. Strikingly, our data show that the reaction is highly sensitive to the trace protiated thymidine in the starting material. As many as 17-fold enrichment is detected in the formed SP, which may explain the previously observed one-third protium incorporation. Although commercially available deuterated reagents are generally satisfactory as mechanistic probes, our results argue that attention is still needed to the possible interference from the trace protiated impurity, especially when the reaction yield is low and large isotopic discrimination is involved.
Collapse
Affiliation(s)
- David M Ames
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | | | | | | | | |
Collapse
|
8
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 591] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
9
|
Silver SC, Gardenghi DJ, Naik SG, Shepard EM, Huynh BH, Szilagyi RK, Broderick JB. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase. J Biol Inorg Chem 2014; 19:465-83. [PMID: 24532333 PMCID: PMC4089880 DOI: 10.1007/s00775-014-1104-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.
Collapse
Affiliation(s)
| | | | | | | | - Boi Hanh Huynh
- Department of Physics, Emory University, Atlanta, Georgia 30322
| | - Robert K. Szilagyi
- NAI Astrobiology Biogeocatalysis Research Center, Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59718
| | - Joan B. Broderick
- NAI Astrobiology Biogeocatalysis Research Center, Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59718
| |
Collapse
|
10
|
Yang L, Li L. The enzyme-mediated direct reversal of a dithymine photoproduct in germinating endospores. Int J Mol Sci 2013; 14:13137-53. [PMID: 23799365 PMCID: PMC3742179 DOI: 10.3390/ijms140713137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022] Open
Abstract
Spore photoproduct lyase (SPL) repairs a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct, or SP, in germinating endospores. SP is the exclusive DNA photo-damaging product found in endospores; its generation and swift repair by SPL are responsible for the spores’ extremely high UV resistance. Early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair SP in the absence of light. Recently, it has been established that SPL belongs to the radical S-adenosylmethionine (SAM) superfamily. The enzymes in this superfamily utilize a tri-cysteine CXXXCXXC motif to bind a [4Fe-4S] cluster. The cluster provides an electron to the S-adenosylmethionine (SAM) to reductively cleave its C5′-S bond, generating a reactive 5′-deoxyadenosyl (5′-dA) radical. This 5′-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. The H atom donor is suggested to be a conserved cysteine141 in B. subtilis SPL; the resulting thiyl radical likely interacts with a neighboring tyrosine99 before oxidizing the 5′-dA to 5′-dA radical and, subsequently, regenerating SAM. These findings suggest SPL to be the first enzyme in the large radical SAM superfamily (>44,000 members) to utilize a radical transfer pathway for catalysis; its study should shed light on the mechanistic understanding of the SAM regeneration process in other members of the superfamily.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA; E-Mail:
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA; E-Mail:
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-317-278-2202; Fax: +1-317-274-4701
| |
Collapse
|
11
|
Yang L, Nelson RS, Benjdia A, Lin G, Telser J, Stoll S, Schlichting I, Li L. A radical transfer pathway in spore photoproduct lyase. Biochemistry 2013; 52:3041-50. [PMID: 23607538 DOI: 10.1021/bi3016247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore photoproduct lyase (SPL) repairs a covalent UV-induced thymine dimer, spore photoproduct (SP), in germinating endospores and is responsible for the strong UV resistance of endospores. SPL is a radical S-adenosyl-l-methionine (SAM) enzyme, which uses a [4Fe-4S](+) cluster to reduce SAM, generating a catalytic 5'-deoxyadenosyl radical (5'-dA(•)). This in turn abstracts a H atom from SP, generating an SP radical that undergoes β scission to form a repaired 5'-thymine and a 3'-thymine allylic radical. Recent biochemical and structural data suggest that a conserved cysteine donates a H atom to the thymine radical, resulting in a putative thiyl radical. Here we present structural and biochemical data that suggest that two conserved tyrosines are also critical in enzyme catalysis. One [Y99(Bs) in Bacillus subtilis SPL] is downstream of the cysteine, suggesting that SPL uses a novel hydrogen atom transfer (HAT) pathway with a pair of cysteine and tyrosine residues to regenerate SAM. The other tyrosine [Y97(Bs)] has a structural role to facilitate SAM binding; it may also contribute to the SAM regeneration process by interacting with the putative (•)Y99(Bs) and/or 5'-dA(•) intermediates to lower the energy barrier for the second H abstraction step. Our results indicate that SPL is the first member of the radical SAM superfamily (comprising more than 44000 members) to bear a catalytically operating HAT chain.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
5-(α-Thyminyl)-5,6-dihydrothymine, also called spore photoproduct or SP, is commonly found in the genomic DNA of UV-irradiated bacterial endospores. Despite the fact that SP was discovered nearly 50 years ago, its biochemical impact is still largely unclear due to the difficulty of preparing SP-containing oligonucleotide in high purity. Here, we report the first synthesis of the phosphoramidite derivative of dinucleotide SP TpT, which enables successful incorporation of SP TpT into oligodeoxyribonucleotides with high efficiency via standard solid-phase synthesis. This result provides the scientific community a reliable means to prepare SP-containing oligonucleotides, laying the foundation for future SP biochemical studies. Thermal denaturation studies of the SP-containing oligonucleotide found that SP destabilizes the duplex by 10-20 kJ/mol, suggesting that its presence in the spore-genomic DNA may alter the DNA local conformation.
Collapse
Affiliation(s)
- Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Indianapolis, Indiana 46202
| |
Collapse
|
13
|
Benjdia A. DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Curr Opin Struct Biol 2012; 22:711-20. [PMID: 23164663 DOI: 10.1016/j.sbi.2012.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Light is essential for many critical biological processes including vision, circadian rhythms, photosynthesis and DNA repair. DNA photolyases use light energy and a fully reduced flavin cofactor to repair the major UV-induced DNA damages, the cis-syn cyclobutane pyrimidine dimers (CPDs) and the pyrimidine-pyrimidone (6-4) photoproducts. Catalysis involves two photoreactions, the photoactivation which leads to the conversion of the flavin cofactor to its catalytic active form and the photorepair whose efficiency depends on a light-harvesting antenna chromophore. Very interestingly, an alternative and light-independent direct reversal mechanism to repair a distinct photolesion is found in bacterial spores, catalyzed by spore photoproduct lyase. This radical SAM enzyme uses an iron-sulfur cluster and S-adenosyl-l-methionine (SAM) to split a specific photoproduct, the so-called spore photoproduct (SP), back to two thymidine residues. The recently solved crystal structure of SP lyase provides new insights into this unique DNA repair mechanism and allows a detailed comparison with DNA photolyases. Similarities as well as divergences between DNA photolyases and SP lyase are highlighted in this review.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg, Germany.
| |
Collapse
|
14
|
Hioe J, Zipse H. Hydrogen transfer in SAM-mediated enzymatic radical reactions. Chemistry 2012; 18:16463-72. [PMID: 23139189 DOI: 10.1002/chem.201202869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/11/2022]
Abstract
S-adenosylmethionine (SAM) plays an essential role in a variety of enzyme-mediated radical reactions. One-electron reduction of SAM is currently believed to generate the C5'-desoxyadenosyl radical, which subsequently abstracts a hydrogen atom from the actual substrate in a catalytic or a non-catalytic fashion. Using a combination of theoretical and experimental bond dissociation energy (BDE) data, the energetics of these radical processes have now been quantified. SAM-derived radicals are found to react with their respective substrates in an exothermic fashion in enzymes using SAM in a stoichiometric (non-catalytic) way. In contrast, the catalytic use of SAM appears to be linked to a sequence of moderately endothermic and exothermic reaction steps. The use of SAM in spore photoproduct lyase (SPL) appears to fit neither of these general categories and appears to constitute the first example of a SAM-initiated radical reaction propagated independently of the cofactor.
Collapse
Affiliation(s)
- Johnny Hioe
- Department of Chemistry, LMU München, Butenandtstrasse 5-13, 81377 München, Germany
| | | |
Collapse
|
15
|
Ruszczycky MW, Ogasawara Y, Liu HW. Radical SAM enzymes in the biosynthesis of sugar-containing natural products. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:1231-44. [PMID: 22172915 PMCID: PMC3438383 DOI: 10.1016/j.bbapap.2011.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
Carbohydrates play a key role in the biological activity of numerous natural products. In many instances their biosynthesis requires radical mediated rearrangements, some of which are catalyzed by radical SAM enzymes. BtrN is one such enzyme responsible for the dehydrogenation of a secondary alcohol in the biosynthesis of 2-deoxystreptamine. DesII is another example that catalyzes a deamination reaction necessary for the net C4 deoxygenation of a glucose derivative en route to desosamine formation. BtrN and DesII represent the two most extensively characterized radical SAM enzymes involved in carbohydrate biosynthesis. In this review, we summarize the biosynthetic roles of these two enzymes, their mechanisms of catalysis, the questions that have arisen during these investigations and the insight they can offer for furthering our understanding of radical SAM enzymology. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Mark W. Ruszczycky
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasushi Ogasawara
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Li L. Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL). BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:1264-77. [PMID: 22197590 PMCID: PMC3314140 DOI: 10.1016/j.bbapap.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023]
Abstract
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Yang L, Lin G, Nelson RS, Jian Y, Telser J, Li L. Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation. Biochemistry 2012; 51:7173-88. [PMID: 22906093 PMCID: PMC3448869 DOI: 10.1021/bi3010945] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
5-Thyminyl-5,6-dihydrothymine (also called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is repaired by a radical SAM (S-adenosylmethionine) enzyme, the spore photoproduct lyase (SPL), at the bacterial early germination phase. Our previous studies proved that SPL utilizes the 5'-dA• generated by the SAM cleavage reaction to abstract the H(6proR) atom to initiate the SP repair process. The resulting thymine allylic radical was suggested to take an H atom from an unknown protein source, most likely cysteine 141. Here we show that C141 can be readily alkylated in the native SPL by an iodoacetamide treatment, suggesting that it is accessible to the TpT radical. SP repair by the SPL C141A mutant yields TpTSO(2)(-) and TpT simultaneously from the very beginning of the reaction; no lag phase is observed for TpTSO(2)(-) formation. Should any other protein residue serve as the H donor, its presence would result in TpT being the major product at least for the first enzyme turnover. These observations provide strong evidence to support C141 as the direct H atom donor. Moreover, because of the lack of this intrinsic H donor, the C141A mutant produces TpT via an unprecedented thymine cation radical reduction (proton-coupled electron transfer) process, contrasting to the H atom transfer mechanism in the wild-type (WT) SPL reaction. The C141A mutant repairs SP at a rate that is ~3-fold slower than that of the WT enzyme. Formation of TpTSO(2)(-) and TpT exhibits a V(max) deuterium kinetic isotope effect (KIE) of 1.7 ± 0.2, which is smaller than the (D)V(max) KIE of 2.8 ± 0.3 determined for the WT SPL reaction. These findings suggest that removing the intrinsic H atom donor disturbs the rate-limiting process during enzyme catalysis. As expected, the prereduced C141A mutant supports only ~0.4 turnover, which is in sharp contrast to the >5 turnovers exhibited by the WT SPL reaction, suggesting that the enzyme catalytic cycle (SAM regeneration) is disrupted by this single mutation.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Renae S. Nelson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Chicago, Illinois 60605
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Indianapolis, Indiana 46202
| |
Collapse
|
18
|
Benjdia A, Heil K, Barends TRM, Carell T, Schlichting I. Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Nucleic Acids Res 2012; 40:9308-18. [PMID: 22761404 PMCID: PMC3467042 DOI: 10.1093/nar/gks603] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial spores possess an enormous resistance to ultraviolet (UV) radiation. This is largely due to a unique DNA repair enzyme, Spore Photoproduct Lyase (SP lyase) that repairs a specific UV-induced DNA lesion, the spore photoproduct (SP), through an unprecedented radical-based mechanism. Unlike DNA photolyases, SP lyase belongs to the emerging superfamily of radical S-adenosyl-l-methionine (SAM) enzymes and uses a [4Fe–4S]1+ cluster and SAM to initiate the repair reaction. We report here the first crystal structure of this enigmatic enzyme in complex with its [4Fe–4S] cluster and its SAM cofactor, in the absence and presence of a DNA lesion, the dinucleoside SP. The high resolution structures provide fundamental insights into the active site, the DNA lesion recognition and binding which involve a β-hairpin structure. We show that SAM and a conserved cysteine residue are perfectly positioned in the active site for hydrogen atom abstraction from the dihydrothymine residue of the lesion and donation to the α-thyminyl radical moiety, respectively. Based on structural and biochemical characterizations of mutant proteins, we substantiate the role of this cysteine in the enzymatic mechanism. Our structure reveals how SP lyase combines specific features of radical SAM and DNA repair enzymes to enable a complex radical-based repair reaction to take place.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Oberpichler I, Pierik AJ, Wesslowski J, Pokorny R, Rosen R, Vugman M, Zhang F, Neubauer O, Ron EZ, Batschauer A, Lamparter T. A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster. PLoS One 2011; 6:e26775. [PMID: 22066008 PMCID: PMC3204975 DOI: 10.1371/journal.pone.0026775] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/03/2011] [Indexed: 01/08/2023] Open
Abstract
Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster.
Collapse
Affiliation(s)
- Inga Oberpichler
- Karlsruhe Institute of Technology, Botany I, Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin G, Chen CH, Pink M, Pu J, Li L. Chemical synthesis, crystal structure and enzymatic evaluation of a dinucleotide spore photoproduct analogue containing a formacetal linker. Chemistry 2011; 17:9658-68. [PMID: 21780208 PMCID: PMC3180863 DOI: 10.1002/chem.201101821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Indexed: 11/11/2022]
Abstract
Spore photoproduct (SP) is the exclusive DNA photodamage product found in bacterial endospores. Its photoformation and repair by a metalloenzyme spore photoproduct lyase (SPL) composes the unique SP biochemistry. Despite the fact that the SP was discovered almost 50 years ago, its crystal structure is still unknown and the lack of structural information greatly hinders the study of SP biochemistry. Employing a formacetal linker and organic synthesis, we successfully prepared a dinucleotide SP isostere 5R-CH(2) SP, which contains a neutral CH(2) moiety between the two thymine residues instead of a phosphate. The neutral linker dramatically facilitates the crystallization process, allowing us to obtain the crystal structure for this intriguing thymine dimer half a century after its discovery. Further ROESY spectroscopic, DFT computational, and enzymatic studies of this 5R-CH(2) SP compound prove that it possesses similar properties with the 5R-SP species, suggesting that the revealed structure truly reflects that of SP generated in Nature.
Collapse
Affiliation(s)
- Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
| | - Chun-Hsing Chen
- Indiana University Molecular Structure Center, Chemistry, A421, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Maren Pink
- Indiana University Molecular Structure Center, Chemistry, A421, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202 (USA)
| |
Collapse
|
21
|
Heil K, Kneuttinger AC, Schneider S, Lischke U, Carell T. Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion. Chemistry 2011; 17:9651-7. [PMID: 21780197 DOI: 10.1002/chem.201100177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/05/2011] [Indexed: 11/11/2022]
Abstract
UV light is one of the major causes of DNA damage. In spore DNA, due to an unusual packing of the genetic material, a special spore photoproduct lesion (SP lesion) is formed, which is repaired by the enzyme spore photoproduct lyase (Spl), a radical S-adenosylmethionine (SAM) enzyme. We report here the synthesis and DNA incorporation of a DNA SP lesion analogue lacking the phosphodiester backbone. The oligonucleotides were used for repair studies and they were cocrystallized with a polymerase enzyme as a template to clarify the configuration of the SP lesion and to provide information about the base-pairing properties of the lesion. The structural analysis together with repair studies allowed us to clarify the identity of the preferentially repaired lesion diastereoisomer.
Collapse
Affiliation(s)
- Korbinian Heil
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
22
|
Yang L, Lin G, Liu D, Dria KJ, Telser J, Li L. Probing the reaction mechanism of spore photoproduct lyase (SPL) via diastereoselectively labeled dinucleotide SP TpT substrates. J Am Chem Soc 2011; 133:10434-47. [PMID: 21671623 DOI: 10.1021/ja110196d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Thyminyl-5,6-dihydrothymine (commonly called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is generated in the bacterial sporulation phase and repaired by a radical SAM enzyme, spore photoproduct lyase (SPL), at the early germination phase. SPL utilizes a special [4Fe-4S] cluster to reductively cleave S-adenosylmethionine (SAM) to generate a reactive 5'-dA radical. The 5'-dA radical is proposed to abstract one of the two H-atoms at the C6 carbon of SP to initiate the repair process. Via organic synthesis and DNA photochemistry, we selectively labeled the 6-H(proS) or 6-H(proR) position with a deuterium in a dinucleotide SP TpT substrate. Monitoring the deuterium migration in enzyme catalysis (employing Bacillus subtilis SPL) revealed that it is the 6-H(proR) atom of SP that is abstracted by the 5'-dA radical. Surprisingly, the abstracted deuterium was not returned to the resulting TpT after enzymatic catalysis; an H-atom from the aqueous buffer was incorporated into TpT instead. This result questions the currently hypothesized SPL mechanism which excludes the involvement of protein residue(s) in SPL reaction, suggesting that some protein residue(s), which is capable of exchanging a proton with the aqueous buffer, is involved in the enzyme catalysis. Moreover, evidence has been obtained for a possible SAM regeneration after each catalytic cycle; however, such a regeneration process is more complex than currently thought, with one or even more protein residues involved as well. These observations have enabled us to propose a modified reaction mechanism for this intriguing DNA repair enzyme.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lin G, Li L. Elucidation of spore-photoproduct formation by isotope labeling. Angew Chem Int Ed Engl 2011; 49:9926-9. [PMID: 21104967 DOI: 10.1002/anie.201005228] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
24
|
|
25
|
Heil K, Pearson D, Carell T. Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem Soc Rev 2010; 40:4271-8. [PMID: 21076781 DOI: 10.1039/c000407n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine-pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(α-thyminyl)-5,6-dihydrothymine (SP). In order to be able to investigate how nature's repair and tolerance mechanisms protect the integrity of genetic information, oligonucleotides containing sequence and site-specific UV lesions are essential. This tutorial review provides an overview of synthetic procedures by which these oligonucleotides can be generated, either through phosphoramidite chemistry or direct irradiation of DNA. Moreover, a brief summary on their usage in analysing repair and tolerance processes as well as their biological effects is provided.
Collapse
Affiliation(s)
- Korbinian Heil
- Center for Integrative Protein Science CiPSM at the Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | |
Collapse
|
26
|
Ruszczycky MW, Choi SH, Liu HW. Stoichiometry of the redox neutral deamination and oxidative dehydrogenation reactions catalyzed by the radical SAM enzyme DesII. J Am Chem Soc 2010; 132:2359-69. [PMID: 20121093 DOI: 10.1021/ja909451a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DesII from Streptomyces venezuelae is a radical SAM (S-adenosyl-l-methionine) enzyme that catalyzes the deamination of TDP-4-amino-4,6-dideoxy-d-glucose to form TDP-3-keto-4,6-dideoxy-d-glucose in the biosynthesis of TDP-d-desosamine. DesII also catalyzes the dehydrogenation of the nonphysiological substrate TDP-D-quinovose to TDP-3-keto-6-deoxy-d-glucose. These properties prompted an investigation of how DesII handles SAM in the redox neutral deamination versus the oxidative dehydrogenation reactions. This work was facilitated by the development of an enzymatic synthesis of TDP-4-amino-4,6-dideoxy-d-glucose that couples a transamination equilibrium to the thermodynamically favorable oxidation of formate. In this study, DesII is found to consume SAM versus TDP-sugar with stoichiometries of 0.96 +/- 0.05 and 1.01 +/- 0.05 in the deamination and dehydrogenation reactions, respectively, using Na(2)S(2)O(4) as the reductant. Importantly, no significant change in stoichiometry is observed when the flavodoxin/flavodoxin NADP(+) oxidoreductase/NADPH reducing system is used in place of Na(2)S(2)O(4). Moreover, there is no evidence of an uncoupled or abortive process in the deamination reaction, as indicated by the observation that dehydrogenation can take place in the absence of an external source of reductant whereas deamination cannot. Mechanistic and biochemical implications of these results are discussed.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
27
|
Silver SC, Chandra T, Zilinskas E, Ghose S, Broderick WE, Broderick JB. Complete stereospecific repair of a synthetic dinucleotide spore photoproduct by spore photoproduct lyase. J Biol Inorg Chem 2010; 15:943-55. [PMID: 20405152 DOI: 10.1007/s00775-010-0656-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
Spore photoproduct lyase (SP lyase), a member of the radical S-adenosylmethionine superfamily of enzymes, catalyzes the repair of 5-thyminyl-5,6-dihydrothymine [spore photoproduct (SP)], a type of UV-induced DNA damage unique to bacterial spores. The anaerobic purification and characterization of Clostridium acetobutylicum SP lyase heterologously expressed in Escherichia coli, and its catalytic activity in repairing stereochemically defined synthetic dinucleotide SPs was investigated. The purified enzyme contains between 2.3 and 3.1 iron atoms per protein. Electron paramagnetic resonance (EPR) spectroscopy reveals an isotropic signal centered at g = 1.99, characteristic of a [3Fe-4S](+) cluster accounting for 3-4% of the iron in the sample. Upon reduction, a nearly axial signal (g = 2.03, 1.93 and 1.92) characteristic of a [4Fe-4S](+) cluster is observed that accounts for 34-45% of total iron. Addition of S-adenosylmethionine to the reduced enzyme produces a rhombic signal (g = 2.02, 1.93, 1.82) unique to the S-adenosyl-L: -methionine complex while decreasing the overall EPR intensity. This reduced enzyme is shown to rapidly and completely repair the 5R diastereomer of a synthetic dinucleotide SP with a specific activity of 7.1 +/- 0.6 nmol min(-1) mg(-1), whereas no repair was observed for the 5S diastereomer.
Collapse
Affiliation(s)
- Sunshine C Silver
- Department of Chemistry and Biochemistry, The Astrobiology Biogeocatalysis Research Center, Montana State University, 103 CBB, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chang X, Yang L, Zhao Q, Fu W, Chen H, Qiu Z, Chen JA, Hu R, Shu W. Involvement of recF in 254 nm Ultraviolet Radiation Resistance in Deinococcus radiodurans and Escherichia coli. Curr Microbiol 2010; 61:458-64. [DOI: 10.1007/s00284-010-9638-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 03/24/2010] [Indexed: 11/28/2022]
|
29
|
|
30
|
Desnous C, Guillaume D, Clivio P. Spore Photoproduct: A Key to Bacterial Eternal Life. Chem Rev 2009; 110:1213-32. [DOI: 10.1021/cr0781972] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Céline Desnous
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Dominique Guillaume
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Pascale Clivio
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| |
Collapse
|
31
|
Chandra T, Silver SC, Zilinskas E, Shepard EM, Broderick WE, Broderick JB. Spore photoproduct lyase catalyzes specific repair of the 5R but not the 5S spore photoproduct. J Am Chem Soc 2009; 131:2420-1. [PMID: 19178276 DOI: 10.1021/ja807375c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial spores are remarkable in their resistance to chemical and physical stresses, including exposure to UV radiation. The unusual UV resistance of bacterial spores is a result of the unique photochemistry of spore DNA, which results in accumulation of 5-thyminyl-5,6-dihydrothymine (spore photoproduct, or SP), coupled with the efficient repair of accumulated damage by the enzyme spore photoproduct lyase (SPL). SPL is a member of the radical AdoMet superfamily of enzymes, and utilizes an iron-sulfur cluster and S-adenosylmethionine to repair SP by a direct reversal mechanism initiated by H atom abstraction from C-6 of the thymine dimer. While two distinct diastereomers of SP (5R or 5S) could in principle be formed upon UV irradiation of bacterial spores, only the 5R configuration is possible for SP formed from adjacent thymines in double helical DNA, due to the constraints imposed by the DNA structure; the 5S configuration is possible in less well-defined DNA structures or as an interstrand cross-link. We report here results from HPLC and MS analysis of in vitro enzymatic assays on stereochemically defined SP substrates demonstrating that SPL specifically repairs only the 5R isomer of SP. The observation that 5R-SP, but not 5S-SP, is a substrate for SPL is consistent with the expectation that 5R is the SP isomer produced in vivo upon UV irradiation of bacterial spore DNA.
Collapse
Affiliation(s)
- Tilak Chandra
- Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | |
Collapse
|
32
|
Control of radical chemistry in the AdoMet radical enzymes. Curr Opin Chem Biol 2009; 13:74-83. [PMID: 19269883 DOI: 10.1016/j.cbpa.2009.01.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/30/2009] [Indexed: 11/20/2022]
Abstract
The radical AdoMet superfamily comprises a diverse set of >2800 enzymes that utilize iron-sulfur clusters and S-adenosylmethionine (SAM or AdoMet) to initiate a diverse set of radical-mediated reactions. The intricate control these enzymes exercise over the radical transformations they catalyze is an amazing feat of elegance and sophistication in biochemistry. This review focuses on the accumulating evidence for how these enzymes control this remarkable chemistry, including controlling the reactivity between the iron-sulfur cluster and AdoMet, and controlling the subsequent radical transformations.
Collapse
|
33
|
Chandor-Proust A, Berteau O, Douki T, Gasparutto D, Ollagnier-de-Choudens S, Fontecave M, Atta M. DNA repair and free radicals, new insights into the mechanism of spore photoproduct lyase revealed by single amino acid substitution. J Biol Chem 2008; 283:36361-8. [PMID: 18957420 DOI: 10.1074/jbc.m806503200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major DNA photoproduct in UV-irradiated Bacillus subtilis spores is the thymine dimer named spore photoproduct (SP, 5-(alpha-thyminyl)-5,6-dihydrothymine). The SP lesion has been found to be efficiently repaired by SP lyase (SPL) a very specific enzyme that reverses the SP to two intact thymines, at the origin of the great resistance of the spores to UV irradiation. SPL belongs to a superfamily of [4Fe-4S] iron-sulfur enzymes, called "Radical-SAM." Here, we show that the single substitution of cysteine 141 into alanine, a residue fully conserved in Bacillus species and previously shown to be essential for spore DNA repair in vivo, has a major impact on the outcome of the SPL-dependent repair reaction in vitro. Indeed the modified enzyme catalyzes the almost quantitative conversion of the SP lesion into one thymine and one thymine sulfinic acid derivative. This compound results from the trapping of the allyl-type radical intermediate by dithionite, used as reducing agent in the reaction mixture. Implications of the data reported here regarding the repair mechanism and the role of Cys-141 are discussed.
Collapse
Affiliation(s)
- Alexia Chandor-Proust
- Commissariat à l'Energie Atomique (CEA), Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, Grenoble 38054, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Gu SY, Yan XX, Liang DC. Crystal structure of Tflp: a ferredoxin-like metallo-beta-lactamase superfamily protein from Thermoanaerobacter tengcongensis. Proteins 2008; 72:531-6. [PMID: 18431751 DOI: 10.1002/prot.22069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shen-Yan Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
35
|
Goosen N, Moolenaar GF. Repair of UV damage in bacteria. DNA Repair (Amst) 2008; 7:353-79. [DOI: 10.1016/j.dnarep.2007.09.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|