1
|
Gutiérrez-Pérez P, Santillán EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M, Brandstetter M, Haselbach D, Cochella L. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. SCIENCE ADVANCES 2021; 7:eabh1434. [PMID: 34652942 PMCID: PMC8519577 DOI: 10.1126/sciadv.abh1434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.
Collapse
Affiliation(s)
- Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Emilio M. Santillán
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Anna Schrempf
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Mila Asparuhova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
2
|
Najafov A, Luu HS, Mookhtiar AK, Mifflin L, Xia HG, Amin PP, Ordureau A, Wang H, Yuan J. RIPK1 Promotes Energy Sensing by the mTORC1 Pathway. Mol Cell 2020; 81:370-385.e7. [PMID: 33271062 DOI: 10.1016/j.molcel.2020.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
Collapse
Affiliation(s)
- Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Hoang Son Luu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan K Mookhtiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Guang Xia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Palak P Amin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics 2020; 21:319. [PMID: 32326906 PMCID: PMC7181572 DOI: 10.1186/s12864-020-6709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
| | - Enoch Y. Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
4
|
Zhao W, Zhang Y, Yang S, Hao Y, Wang Z, Duan X. Analysis of two transcript isoforms of vacuolar ATPase subunit H in mouse and zebrafish. Gene 2017; 638:66-75. [PMID: 28970149 DOI: 10.1016/j.gene.2017.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
ATP6V1H encodes the subunit H of vacuolar ATPase (V-ATPase) and has been recently proved to regulate osteoclast function. The alternative splicing of ATP6V1H gene results in two isoforms, and it is not clear whether and how the two isoforms function differently. In this report, we used bioinformatics methods to compare the differences of two isoforms in different species. The distributions and amounts of two isoforms were analyzed in eleven kinds of mouse tissues and mouse osteoclasts using RT-PCR, Q-PCR, western blot and immunohistochemical staining methods, respectively. In order to observe the in vivo biological differences of two isoforms during development, the zebrafish mRNA of two wild type atp6v1h transcripts as well as their mutant forms were also injected into zebrafish embryos, respectively. Bioinformatic analysis revealed that two isoforms were quite different in many ways, especially in protein size, internal space, phosphorylation state and H-bond binding. The amounts of two transcripts and the ratio of long and short transcript varied a lot from tissue to tissue or cell to cell, and osteoclasts were the cells only expressing long isoform among the tissues or cells we detected. The in vivo selective expression of two subunit H splice variants showed their different effects on the craniofacial development of zebrafish. The short isoform reduced the size of zebrafish head and did not play a complete function compared with the long isoform. We propose that long isoform of subunit H is necessary for the normal craniofacial bone development and the lack of short transcript might be necessary for the normal osteoclastic function.
Collapse
Affiliation(s)
- Wanmin Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Hao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
5
|
ATP6V1H Deficiency Impairs Bone Development through Activation of MMP9 and MMP13. PLoS Genet 2017; 13:e1006481. [PMID: 28158191 PMCID: PMC5291374 DOI: 10.1371/journal.pgen.1006481] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
ATP6V1H is a component of a large protein complex with vacuolar ATPase (V-ATPase) activity. We identified two generations of individuals in which short stature and osteoporosis co-segregated with a mutation in ATP6V1H. Since V-ATPases are highly conserved between human and zebrafish, we generated loss-of-function mutants in atp6v1h in zebrafish through CRISPR/Cas9-mediated gene knockout. Homozygous mutant atp6v1h zebrafish exhibited a severe reduction in the number of mature calcified bone cells and a dramatic increase in the expression of mmp9 and mmp13. Heterozygous adults showed curved vertebra that lack calcified centrum structure and reduced bone mass and density. Treatment of mutant embryos with small molecule inhibitors of MMP9 and MMP13 significantly restored bone mass in the atp6v1h mutants. These studies have uncovered a new, ATP6V1H-mediated pathway that regulates bone formation, and defines a new mechanism of disease that leads to bone loss. We propose that MMP9/MMP13 could be therapeutic targets for patients with this rare genetic disease. Osteoporosis, a major health problem worldwide, is characterized by low bone mineral density (BMD) and a propensity to fracture. Genetic factors are clearly the major determinants of BMD, but their identification and contribution to osteoporosis risk have been difficult to assess in humans. Genome-wide association studies (GWAS) have identified numerous sequence variants that influence BMD. The loci identified to date, however, account for only a small fraction of the total variation in BMD. Through analysis of a pedigree with an undiagnosed disease in which affected members have markedly low bone mass, we identify a novel and critical bone formation pathway, mediated through the gene ATP6V1H. Zebrafish lacking apt6vh1 demonstrate loss of bone mass, and exhibit increased mmp9 and mmp13 levels; inhibition of mmp9 and mmp13 led to the rescue of bone density defects. Here we show that happloinsufficiency of ATP6V1H is associated with osteoporosis in both humans and zebrafish. This study exemplifies the value of studying rare diseases to understand prevalent ones.
Collapse
|
6
|
Zhu J, Zhu XG, Ying SH, Feng MG. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana. Fungal Genet Biol 2016; 98:52-60. [PMID: 28011319 DOI: 10.1016/j.fgb.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Vacuolar ATPase (V-ATPase) is a conserved multi-subunit protein complex that mediates intracellular acidification in fungi. Here we show functional diversity of V-ATPase subunit H (BbVmaH) in Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of BbvmaH resulted in elevated vacuolar pH, increased Ca2+ level in cytosol but not in vacuoles, accelerated culture acidification and reduced accumulation of extracellular ammonia. Aerial conidiation and submerged blastospore production were largely delayed and reduced in the deletion mutant, respectively, accompanied with a significant delay in conidial germination, alterations of conidia and blastospores in morphology, size and/or density, and severe growth defects in minimal media with different carbon and nitrogen sources. Despite null responses to osmotic, oxidative and cell wall perturbing stresses, the deletion mutant showed increased sensitivity to Ca2+, Zn2+ and Cu2+ during growth while its conidia were less tolerant to a wet-heat stress at 45°C and UV-B irradiation. Intracellular glycerol and mannitol contents also decreased significantly. Its virulence to Galleria mellonella larvae was significantly attenuated when conidia were topically applied for normal cuticle infection or injected into haemocoel for cuticle-bypassing infection. All phenotypic changes were restored by targeted gene complementation. Our results indicate that BbVmaH plays an important role in sustaining not only vacuolar acidification but also cytosolic calcium accumulation, ambient pH homeostasis, in vitro asexual cycle and virulence in B. bassiana.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
8
|
Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. EUKARYOTIC CELL 2014; 13:706-14. [PMID: 24706019 DOI: 10.1128/ec.00050-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved.
Collapse
|
9
|
Regulation of vacuolar H+-ATPase activity by the Cdc42 effector Ste20 in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:442-51. [PMID: 22327006 DOI: 10.1128/ec.05286-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coimmunoprecipitation. We also demonstrate that Ste20 associates with vacuolar membranes and that Ste20 stimulates V-ATPase activity in isolated vacuolar membranes. This activation requires Ste20 kinase activity and does not depend on increased assembly of the V1 and V0 sectors of the V-ATPase, which is a major regulatory mechanism. Furthermore, loss of V-ATPase activity leads to a strong increase in invasive growth, possibly because these cells fail to store and mobilize nutrients efficiently in the vacuole in the absence of the vacuolar proton gradient. In contrast to the wild type, which grows in rather small, isolated colonies on solid medium during filamentation, hyperinvasive vma mutants form much bigger aggregates in which a large number of cells are tightly clustered together. Genetic data suggest that Ste20 and the protein kinase A catalytic subunit Tpk2 are both activated in the vma13Δ strain. We propose that during filamentous growth, Ste20 stimulates V-ATPase activity. This would sustain nutrient mobilization from vacuolar stores, which is beneficial for filamentous growth.
Collapse
|
10
|
Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress. EUKARYOTIC CELL 2011; 11:282-91. [PMID: 22210831 DOI: 10.1128/ec.05198-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyperosmotic stress activates an array of cellular detoxification mechanisms, including the high-osmolarity glycerol (HOG) pathway. We report here that vacuolar H(+)-ATPase (V-ATPase) activity helps provide osmotic tolerance in Saccharomyces cerevisiae. V-ATPase subunit genes exhibit complex haploinsufficiency interactions with HOG pathway components. vma mutants lacking V-ATPase function are sensitive to high concentrations of salt and exhibit Hog1p activation even at low salt concentrations, as demonstrated by phosphorylation of Hog1p, a shift in Hog1-green fluorescent protein localization, transcriptional activation of a subset of HOG pathway effectors, and transcriptional inhibition of parallel mitogen-activated protein kinase pathway targets. vma2Δ hog1Δ and vma3Δ pbs2Δ double mutants have a synthetic growth phenotype, poor salt tolerance, and an aberrant, hyper-elongated morphology on solid media, accompanied by activation of a filamentous response element-LacZ construct, indicating cross talk into the filamentous growth pathway. Vacuoles isolated from wild-type cells briefly exposed to salt show higher levels of V-ATPase activity, and Na(+)/H(+) exchange in isolated vacuolar vesicles suggests a biochemical basis for the genetic interactions observed. V-ATPase activity is upregulated during salt stress by increasing assembly of the catalytic V(1) sector with the membrane-bound V(o) sector. Together, these data suggest that the V-ATPase acts in parallel with the HOG pathway in order to mediate salt detoxification.
Collapse
|
11
|
Diab H, Ohira M, Liu M, Cobb E, Kane PM. Subunit interactions and requirements for inhibition of the yeast V1-ATPase. J Biol Chem 2009; 284:13316-13325. [PMID: 19299516 DOI: 10.1074/jbc.m900475200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disassembly of the yeast V-ATPase into cytosolic V(1) and membrane V(0) sectors inactivates MgATPase activity of the V(1)-ATPase. This inactivation requires the V(1) H subunit (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767), but its mechanism is not fully understood. The H subunit has two domains. Interactions of each domain with V(1) and V(0) subunits were identified by two-hybrid assay. The B subunit of the V(1) catalytic headgroup interacted with the H subunit N-terminal domain (H-NT), and the C-terminal domain (H-CT) interacted with V(1) subunits B, E (peripheral stalk), and D (central stalk), and the cytosolic N-terminal domain of V(0) subunit Vph1p. V(1)-ATPase complexes from yeast expressing H-NT are partially inhibited, exhibiting 26% the MgATPase activity of complexes with no H subunit. The H-CT domain does not copurify with V(1) when expressed in yeast, but the bacterially expressed and purified H-CT domain inhibits MgATPase activity in V(1) lacking H almost as well as the full-length H subunit. Binding of full-length H subunit to V(1) was more stable than binding of either H-NT or H-CT, suggesting that both domains contribute to binding and inhibition. Intact H and H-CT can bind to the expressed N-terminal domain of Vph1p, but this fragment of Vph1p does not bind to V(1) complexes containing subunit H. We propose that upon disassembly, the H subunit undergoes a conformational change that inhibits V(1)-ATPase activity and precludes V(0) interactions.
Collapse
Affiliation(s)
- Heba Diab
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Masashi Ohira
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Mali Liu
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Ester Cobb
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
12
|
Flannery AR, Stevens TH. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase. J Biol Chem 2008; 283:29099-108. [PMID: 18708638 DOI: 10.1074/jbc.m803280200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The yeast Saccharomyces cerevisiae vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying intracellular organelles and is highly regulated. One of the regulatory subunits, subunit H, is encoded by the VMA13 gene in yeast and is composed of two domains, the N-terminal domain (amino acids (aa) 1-352) and the C-terminal domain (aa 353-478). The N-terminal domain is required for the activation of the complex, whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation (Liu, M., Tarsio, M., Charsky, C. M., and Kane, P. M. (2005) J. Biol. Chem. 280, 36978-36985). Experiments with epitope-tagged copies of Vma13p revealed that there is only one copy of Vma13p/subunit H per V-ATPase complex. Analysis of the N-terminal domain shows that the first 179 amino acids are not required for the activation and full function of the V-ATPase complex and that the minimal region of Vma13p/subunit H capable of activating the V-ATPase is aa 180-353 of the N-terminal domain. Subunit H is expressed as two splice variants in mammals, and deletion of 18 amino acids in yeast Vma13p corresponding to the mammalian subunit H beta isoform results in reduced V-ATPase activity and significantly lower coupling of ATPase hydrolysis to proton translocation. Intriguingly, the yeast Vma13p mimicking the mammalian subunit H beta isoform is functionally equivalent to Vma13p lacking the entire C-terminal domain. These results suggest that the mammalian V-ATPase complexes with subunit H splice variant SFD-alpha or SFD-beta are likely to have different activities and may perform distinct cellular functions.
Collapse
Affiliation(s)
- Andrew R Flannery
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | |
Collapse
|
13
|
Codlin S, Haines RL, Burden JJE, Mole SE. Btn1 affects cytokinesis and cell-wall deposition by independent mechanisms, one of which is linked to dysregulation of vacuole pH. J Cell Sci 2008; 121:2860-70. [PMID: 18697832 DOI: 10.1242/jcs.030122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
btn1, the Schizosaccharomyces pombe orthologue of the human Batten-disease gene CLN3, is involved in vacuole pH homeostasis. We show that loss of btn1 also results in a defective cell wall marked by sensitivity to zymolyase, a beta-glucanase. The defect can be rescued by expression of Btn1p or CLN3, and the extent of the defect correlates with disease severity. The vacuole and cell-wall defects are linked by a common pH-dependent mechanism, because they are suppressed by growth in acidic pH and a similar glucan defect is also apparent in the V-type H(+) ATPase (v-ATPase) mutants vma1Delta and vma3Delta. Significantly, Btn1p acts as a multicopy suppressor of the cell-wall and other vacuole-related defects of these v-ATPase-null cells. In addition, Btn1p is required in a second, pH-independent, process that affects sites of polarised growth and of cell-wall deposition, particularly at the septum, causing cytokinesis problems under normal growth conditions and eventual cell lysis at 37 degrees C. Thus, Btn1p impacts two independent processes, which suggests that Batten disease is more than a pH-related lysosome disorder.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT
| | | | | | | |
Collapse
|
14
|
Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 2008; 476:33-42. [PMID: 18406336 PMCID: PMC2543942 DOI: 10.1016/j.abb.2008.03.025] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 02/07/2023]
Abstract
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V(1)) responsible for hydrolysis of ATP and an integral domain (V(0)) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V(1) and V(0) domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
15
|
Jefferies KC, Forgac M. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J Biol Chem 2007; 283:4512-9. [PMID: 18156183 DOI: 10.1074/jbc.m707144200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H+) ATPases (V-ATPases) are large, multimeric proton pumps that, like the related family of F1F0 ATP synthases, employ a rotary mechanism. ATP hydrolysis by the peripheral V1 domain drives rotation of a rotary complex (the rotor) relative to the stationary part of the enzyme (the stator), leading to proton translocation through the integral V0 domain. One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation of the V1 and V0 domains. Unlike the corresponding domains in F1F0, the dissociated V1 domain does not hydrolyze ATP, and the free V0 domain does not passively conduct protons. These properties are important to avoid generation of an uncoupled ATPase activity or an unregulated proton conductance upon dissociation of the complex in vivo. Previous results (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767) showed that subunit H (part of the stator) inhibits ATP hydrolysis by free V1. To test the hypothesis that subunit H accomplishes this by bridging rotor and stator in free V1, cysteine-mediated cross-linking studies were performed. Unique cysteine residues were introduced over the surface of subunit H from yeast by site-directed mutagenesis and used as the site of attachment of the photo-activated cross-linking reagent maleimido benzophenone. After UV-activated cross-linking, cross-linked products were identified by Western blot using subunit-specific antibodies. The results indicate that the subunit H mutant S381C shows cross-linking between subunit H and subunit F (a rotor subunit) in the free V1 domain but not in the intact V1V0 complex. These results indicate that subunits H and F are proximal in free V1, supporting the hypothesis that subunit H inhibits free V1 by bridging the rotary and stator domains.
Collapse
Affiliation(s)
- Kevin C Jefferies
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|