1
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Tiessler-Sala L, Sciortino G, Alonso-Cotchico L, Masgrau L, Lledós A, Maréchal JD. Getting Deeper into the Molecular Events of Heme Binding Mechanisms: A Comparative Multi-level Computational Study of HasAsm and HasAyp Hemophores. Inorg Chem 2022; 61:17068-17079. [PMID: 36250592 PMCID: PMC9627568 DOI: 10.1021/acs.inorgchem.2c02193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many biological systems obtain their activity by the
inclusion
of metalloporphyrins into one or several binding pockets. However,
decoding the molecular mechanism under which these compounds bind
to their receptors is something that has not been widely explored
and is a field with open questions. In the present work, we apply
computational techniques to unravel and compare the mechanisms of
two heme-binding systems, concretely the HasA hemophores from Gram
negative bacteria Serratiamarcescens (HasAsm) and Yersinia pestis (HasAyp). Despite the high sequence identity between both systems,
the comparison between the X-ray structures of their apo and holo
forms suggests different heme-binding mechanisms. HasAyp has extremely
similar structures for heme-free and heme-bound forms, while HasAsm
presents a very large displacement of a loop that ultimately leads
to an additional coordination to the metal with respect to HasAyp.
We combined Gaussian accelerated molecular dynamics simulations (GaMDs)
in explicit solvent and protein–ligand docking optimized for
metalloligands. GaMDs were first carried out on heme-free forms of
both hemophores. Then, protein–ligand dockings of the heme
were performed on cluster representatives of these simulations and
the best poses were then subjected to a new series of GaMDs. A series
of analyses reveal the following: (1) HasAyp has a conformational
landscape extremely similar between heme-bound and unbound states
with no to limited impact on the binding of the cofactor, (2) HasAsm
presents as a slightly broader conformational landscape in its apo
state but can only visit conformations similar to the X-ray of the
holo form when the heme has been bound. Such behavior results from
a complex cascade of changes in interactions that spread from the
heme-binding pocket to the flexible loop previously mentioned. This
study sheds light on the diversity of molecular mechanisms of heme-binding
and discusses the weight between the pre-organization of the receptor
as well as the induced motions resulting in association. Heme-containing enzymes and proteins
are important for many
biological and biotechnological processes. However, very little is
known about heme-binding mechanisms. To shed light on this, we report
a multi-level approach combining Gaussian accelerated molecular dynamics
and protein−ligand dockings optimized for metallic moieties.
The protocol unveils the difference in heme recruitment between HasAsm
and HasAyp hemophores and shows its possible applicability to other
heme-binding proteins.
Collapse
Affiliation(s)
- Laura Tiessler-Sala
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Lur Alonso-Cotchico
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Zymvol Biomodeling, Carrer Roc Boronat 117, 08018 Barcelona, Spain
| | - Laura Masgrau
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Zymvol Biomodeling, Carrer Roc Boronat 117, 08018 Barcelona, Spain
| | - Agustí Lledós
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Aldemir H, Shu S, Schaefers F, Hong H, Richarz R, Harteis S, Einsiedler M, Milzarek TM, Schneider S, Gulder TAM. Carrier Protein-Free Enzymatic Biaryl Coupling in Arylomycin A2 Assembly and Structure of the Cytochrome P450 AryC. Chemistry 2022; 28:e202103389. [PMID: 34725865 PMCID: PMC9299028 DOI: 10.1002/chem.202103389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/16/2022]
Abstract
The arylomycin antibiotics are potent inhibitors of bacterial type I signal peptidase. These lipohexapeptides contain a biaryl structural motif reminiscent of glycopeptide antibiotics. We herein describe the functional and structural evaluation of AryC, the cytochrome P450 performing biaryl coupling in biosynthetic arylomycin assembly. Unlike its enzymatic counterparts in glycopeptide biosynthesis, AryC converts free substrates without the requirement of any protein interaction partner, likely enabled by a strongly hydrophobic cavity at the surface of AryC pointing to the substrate tunnel. This activity enables chemo-enzymatic assembly of arylomycin A2 that combines the advantages of liquid- and solid-phase peptide synthesis with late-stage enzymatic cross-coupling. The reactivity of AryC is unprecedented in cytochrome P450-mediated biaryl construction in non-ribosomal peptides, in which peptidyl carrier protein (PCP)-tethering so far was shown crucial both in vivo and in vitro.
Collapse
Affiliation(s)
- Hülya Aldemir
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Shuangjie Shu
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Francoise Schaefers
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Hanna Hong
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - René Richarz
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Sabrina Harteis
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Manuel Einsiedler
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
| | - Tobias M. Milzarek
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
| | - Sabine Schneider
- Department of ChemistryLudwig-Maximillians-University MunichButenandtstraße 5–1381377MunichGermany
| | - Tobias A. M. Gulder
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
6
|
A noncanonical heme oxygenase specific for the degradation of c-type heme. J Biol Chem 2021; 296:100666. [PMID: 33862082 PMCID: PMC8131568 DOI: 10.1016/j.jbc.2021.100666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Heme oxygenases (HOs) play a critical role in recouping iron from the labile heme pool. The acquisition and liberation of heme iron are especially important for the survival of pathogenic bacteria. All characterized HOs, including those belonging to the HugZ superfamily, preferentially cleave free b-type heme. Another common form of heme found in nature is c-type heme, which is covalently linked to proteinaceous cysteine residues. However, mechanisms for direct iron acquisition from the c-type heme pool are unknown. Here we identify a HugZ homolog from the oligopeptide permease (opp) gene cluster of Paracoccus denitrificans that lacks any observable reactivity with heme b and show that it instead rapidly degrades c-type hemopeptides. This c-type heme oxygenase catalyzes the oxidative cleavage of the model substrate microperoxidase-11 at the β- and/or δ-meso position(s), yielding the corresponding peptide-linked biliverdin, CO, and free iron. X-ray crystallographic analysis suggests that the switch in substrate specificity from b-to c-type heme involves loss of the N-terminal α/β domain and C-terminal loop containing the coordinating histidine residue characteristic of HugZ homologs, thereby accommodating a larger substrate that provides its own iron ligand. These structural features are also absent in certain heme utilization/storage proteins from human pathogens that exhibit low or no HO activity with free heme. This study thus expands the scope of known iron acquisition strategies to include direct oxidative cleavage of heme-containing proteolytic fragments of c-type cytochromes and helps to explain why certain oligopeptide permeases show specificity for the import of heme in addition to peptides.
Collapse
|
7
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
8
|
Ganley JG, D'Ambrosio HK, Shieh M, Derbyshire ER. Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. Chembiochem 2020; 21:1279-1284. [PMID: 31845464 DOI: 10.1002/cbic.201900675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Anopheles mosquito microbiomes are intriguing ecological niches. Within the gut, microbes adapt to oxidative stress due to heme and iron after blood meals. Although metagenomic sequencing has illuminated spatial and temporal fluxes of microbiome populations, limited data exist on microbial growth dynamics. Here, we analyze growth interactions between a dominant microbiome species, Elizabethkingia anophelis, and other Anopheles-associated bacteria. We find E. anophelis inhibits a Pseudomonas sp. via an antimicrobial-independent mechanism and observe biliverdins, heme degradation products, upregulated in cocultures. Purification and characterization of E. anophelis HemS demonstrates heme degradation, and we observe hemS expression is upregulated when cocultured with Pseudomonas sp. This study reveals a competitive microbial interaction between mosquito-associated bacteria and characterizes the stimulation of heme degradation in E. anophelis when grown with Pseudomonas sp.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Meg Shieh
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Lyles KV, Eichenbaum Z. From Host Heme To Iron: The Expanding Spectrum of Heme Degrading Enzymes Used by Pathogenic Bacteria. Front Cell Infect Microbiol 2018; 8:198. [PMID: 29971218 PMCID: PMC6018153 DOI: 10.3389/fcimb.2018.00198] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 01/02/2023] Open
Abstract
Iron is an essential nutrient for many bacteria. Since the metal is highly sequestered in host tissues, bound predominantly to heme, pathogenic bacteria often take advantage of heme uptake and degradation mechanisms to acquire iron during infection. The most common mechanism of releasing iron from heme is through oxidative degradation by heme oxygenases (HOs). In addition, an increasing number of proteins that belong to two distinct structural families have been implicated in aerobic heme catabolism. Finally, an enzyme that degrades heme anaerobically was recently uncovered, further expanding the mechanisms for bacterial heme degradation. In this analysis, we cover the spectrum and recent advances in heme degradation by infectious bacteria. We briefly explain heme oxidation by the two groups of recognized HOs to ground readers before focusing on two new types of proteins that are reported to be involved in utilization of heme iron. We discuss the structure and enzymatic function of proteins representing these groups, their biological context, and how they are regulated to provide a more complete look at their cellular role.
Collapse
Affiliation(s)
- Kristin V Lyles
- Biology, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
10
|
Onzuka M, Sekine Y, Uchida T, Ishimori K, Ozaki SI. HmuS from Yersinia pseudotuberculosis is a non-canonical heme-degrading enzyme to acquire iron from heme. Biochim Biophys Acta Gen Subj 2017; 1861:1870-1878. [PMID: 28385652 DOI: 10.1016/j.bbagen.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023]
Abstract
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.
Collapse
Affiliation(s)
- Masato Onzuka
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Yukari Sekine
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin-Ichi Ozaki
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
11
|
Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MD, Jubinville É, Jia Z, Ivancich A, Couture M. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: Release of hematinic acid, tripyrrole and Fe(III). J Inorg Biochem 2016; 154:103-13. [DOI: 10.1016/j.jinorgbio.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 11/24/2022]
|
12
|
Wilks A, Ikeda-Saito M. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 2014; 47:2291-8. [PMID: 24873177 PMCID: PMC4139177 DOI: 10.1021/ar500028n] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme
to biliverdin, iron, and carbon monoxide (CO) in three successive
oxygenation steps. Pathogenic bacteria require iron for survival and
infection. Extracellular heme uptake from the host plays a critical
role in iron acquisition and virulence. In the past decade, several
HOs required for the release of iron from extracellular heme have
been identified in pathogenic bacteria, including Corynebacterium
diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The
bacterial enzymes were shown to be structurally and mechanistically
similar to those of the canonical eukaryotic HO enzymes. However,
the recent discovery of the structurally and mechanistically distinct
noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has
expanded the reaction manifold of heme degradation. The distinct ferredoxin-like
structural fold and extreme heme ruffling are proposed to give rise
to the alternate heme degradation products in the S.
aureus and M. tuberculosis enzymes. In addition, several “heme-degrading factors”
with no structural homology to either class of HOs have recently been
reported. The identification of these “heme-degrading proteins”
has largely been determined on the basis of in vitro heme degradation
assays. Many of these proteins were reported to produce biliverdin,
although no extensive characterization of the products was performed.
Prior to the characterization of the canonical HO enzymes, the nonenzymatic
degradation of heme and heme proteins in the presence of a reductant
such as ascorbate or hydrazine, a reaction termed “coupled
oxidation”, served as a model for biological heme degradation.
However, it was recognized that there were important mechanistic differences
between the so-called coupled oxidation of heme proteins and enzymatic
heme oxygenation. In the coupled oxidation reaction, the final product,
verdoheme, can readily be converted to biliverdin under hydrolytic
conditions. The differences between heme oxygenation by the canonical
and noncanonical HOs and coupled oxidation will be discussed in the
context of the stabilization of the reactive FeIII–OOH
intermediate and regioselective heme hydroxylation. Thus, in the determination
of heme oxygenase activity in vitro, it is important to ensure that
the reaction proceeds through successive oxygenation steps. We further
suggest that when bacterial heme degradation is being characterized,
a systems biology approach combining genetics, mechanistic enzymology,
and metabolite profiling should be undertaken.
Collapse
Affiliation(s)
- Angela Wilks
- Department
of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201-1140, United States
| | - Masao Ikeda-Saito
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Lee MJ, Schep D, McLaughlin B, Kaufmann M, Jia Z. Structural Analysis and Identification of PhuS as a Heme-Degrading Enzyme from Pseudomonas aeruginosa. J Mol Biol 2014; 426:1936-46. [DOI: 10.1016/j.jmb.2014.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
14
|
Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS. J Inorg Biochem 2013; 128:131-6. [PMID: 23973453 PMCID: PMC3843485 DOI: 10.1016/j.jinorgbio.2013.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/19/2013] [Accepted: 07/21/2013] [Indexed: 01/07/2023]
Abstract
Iron is an essential element to all living organisms and is an important determinant of bacterial virulence. Bacteria have evolved specialized systems to sequester and transport iron from the environment or host. Pseudomonas aeruginosa, an opportunistic pathogen, uses two outer membrane receptor mediated systems (Phu and Has) to utilize host heme as a source of iron. PhuS is a 39 kDa soluble cytoplasmic heme binding protein which interacts and transports heme from the inner membrane heme transporter to the cytoplasm where it is degraded by heme oxygenase thus releasing iron. PhuS is unique among other cytoplasmic heme transporter proteins owing to the presence of three histidines in the heme binding pocket which can potentially serve as heme ligands. Out of the three histidine residues on the heme binding helix, His 209 is conserved among heme trafficking proteins while His 210 and His 212 are unique to PhuS. Here we report the crystal structure of PhuS at 1.98Å resolution which shows a unique heme binding pocket and oligomeric structure compared to other known cytoplasmic heme transporter and accounts for some of the unusual biochemical properties of PhuS.
Collapse
|
15
|
Runyen-Janecky LJ. Role and regulation of heme iron acquisition in gram-negative pathogens. Front Cell Infect Microbiol 2013; 3:55. [PMID: 24116354 PMCID: PMC3792355 DOI: 10.3389/fcimb.2013.00055] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
Bacteria that reside in animal tissues and/or cells must acquire iron from their host. However, almost all of the host iron is sequestered in iron-containing compounds and proteins, the majority of which is found within heme molecules. Thus, likely iron sources for bacterial pathogens (and non-pathogenic symbionts) are free heme and heme-containing proteins. Furthermore, the cellular location of the bacterial within the host (intra or extracellular) influences the amount and nature of the iron containing compounds available for transport. The low level of free iron in the host, coupled with the presence of numerous different heme sources, has resulted in a wide range of high-affinity iron acquisition strategies within bacteria. However, since excess iron and heme are toxic to bacteria, expression of these acquisition systems is highly regulated. Precise expression in the correct host environment at the appropriate times enables heme iron acquisitions systems to contribute to the growth of bacterial pathogens within the host. This mini-review will highlight some of the recent findings in these areas for gram-negative pathogens.
Collapse
|
16
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
17
|
Wu X, Starnes SD. l-Nipecotic Acid-Porphyrin Derivative: A Chiral Host with Introverted Functionality for Chiral Recognition. Org Lett 2012; 14:3652-5. [DOI: 10.1021/ol301499w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaowen Wu
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429, United States
| | - Stephen D. Starnes
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429, United States
| |
Collapse
|
18
|
Induced fit on heme binding to the Pseudomonas aeruginosa cytoplasmic protein (PhuS) drives interaction with heme oxygenase (HemO). Proc Natl Acad Sci U S A 2012; 109:5639-44. [PMID: 22451925 DOI: 10.1073/pnas.1121549109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron, an essential nutrient with limited bioavailability, requires specialized cellular mechanisms for uptake. Although iron uptake into the cytoplasm in the form of heme has been well characterized in many bacteria, the subsequent trafficking is poorly understood. The cytoplasmic heme-binding proteins belong to a structurally related family thought to have evolved as "induced fit" ligand-binding macromolecules. One member, Pseudomonas aeruginosa cytoplasmic protein (PhuS), has previously been shown to be important for delivering heme to the iron regulated heme oxygenase (HemO). Spectroscopic investigations of the holo-PhuS complex revealed a dynamic heme environment with overlapping but distinct heme-binding sites with alternative coordinating heme ligands, His-209 or His-212. In the present work we establish a mechanism for how heme is transferred from PhuS to its partner, HemO. Using surface plasmon resonance and isothermal titration calorimetry, we have discovered that holo-PhuS, but not apo-PhuS, forms a 1:1 complex with HemO. Sedimentation velocity and limited proteolysis experiments suggest that heme binding to PhuS induces a conformational rearrangement that drives the protein interaction with HemO. Hydrodynamic analysis reveals that the holo-PhuS displays a more expanded hydrodynamic envelope compared with apo-PhuS, and we propose that this conformational change drives the interaction with HemO. We further demonstrate that replacement of His-212 by Ala disrupts the interaction of holo-PhuS with HemO; in contrast, the His-209-Ala variant can still complex with HemO, albeit more weakly. Together, the present studies reveal a mechanism that couples a heme-dependent conformational switch in PhuS to protein-protein interaction, the subsequent free energy of which drives heme release to HemO.
Collapse
|
19
|
Binding of cysteine thiolate to the Fe(III) heme complex is critical for the function of heme sensor proteins. J Inorg Biochem 2012; 108:171-7. [DOI: 10.1016/j.jinorgbio.2011.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 11/24/2022]
|
20
|
Wienkers M, Ramos J, Jemal H, Cardenas C, Wiget P, Nelson A, Free S, Wu J, Roach R, Vulcan M, Waynant K, Fort K, Vladimirova A, Sun J, Hunt SE, Rudkevich DM, Starnes SD. Enhanced shape-selective recognition of anion guests through complexation-induced organization of porphyrin hosts. Org Lett 2012; 14:1370-3. [PMID: 22360622 DOI: 10.1021/ol203249x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a fortuitous discovery of enhanced shape-selective recognition of anion guests that stems from a complexation-induced conformational change in porphyrin hosts upon anion binding. Porphyrin hosts reported here exist in a conformation that is not favorable to guest binding. Anions that bind strongly are those that can induce a conformational change in the host to allow guest binding. Furthermore, guests that mimic the shape of the newly formed pocket bind the strongest.
Collapse
Affiliation(s)
- MariJo Wienkers
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Smith LJ, Kahraman A, Thornton JM. Heme proteins--diversity in structural characteristics, function, and folding. Proteins 2010; 78:2349-68. [PMID: 20544970 DOI: 10.1002/prot.22747] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The characteristics of heme prosthetic groups and their binding sites have been analyzed in detail in a data set of nonhomologous heme proteins. Variations in the shape, volume, and chemical composition of the binding site, in the mode of heme binding and in the number and nature of heme-protein interactions are found to result in significantly different heme environments in proteins with different functions in biology. Differences are also seen in the properties of the apo states of the proteins. The apo states of proteins that bind heme permanently in their functional form show some disorder, ranging from local unfolding in the heme binding pocket to complete unfolding to give a random coil. In contrast, proteins that bind heme transiently are fully folded in their apo and holo states, presumably allowing both apo and holo forms to remain biologically active resisting aggregation or proteolysis. The principles identified here provide a framework for the design of de novo proteins that will exhibit tight heme ligand binding and for the identification of the function of structural genomic target proteins with heme ligands.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom.
| | | | | |
Collapse
|
22
|
Lechardeur D, Fernandez A, Robert B, Gaudu P, Trieu-Cuot P, Lamberet G, Gruss A. The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae. J Biol Chem 2010; 285:16032-41. [PMID: 20332091 PMCID: PMC2871472 DOI: 10.1074/jbc.m109.024505] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 03/12/2010] [Indexed: 11/06/2022] Open
Abstract
Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a K(d) of 0.5 microm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein.
Collapse
Affiliation(s)
- Delphine Lechardeur
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Annabelle Fernandez
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Bruno Robert
- the Commissariat à l'Energie Atomique, Institut de Biologie et de Technologie de Saclay, CNRS, URA 2096, 91400 Gif sur Yvette, and
| | - Philippe Gaudu
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Patrick Trieu-Cuot
- the Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS, URA 2172, 75015 Paris, France
| | - Gilles Lamberet
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Alexandra Gruss
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| |
Collapse
|
23
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
24
|
Suits MDL, Lang J, Pal GP, Couture M, Jia Z. Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Sci 2009; 18:825-38. [PMID: 19319934 PMCID: PMC2762594 DOI: 10.1002/pro.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 A resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The nu(Fe-CO) and nu(C-O) frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX.
Collapse
Affiliation(s)
- Michael D L Suits
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Jérôme Lang
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Gour P Pal
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Manon Couture
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Zongchao Jia
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6,*Correspondence to: Zongchao Jia, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. E-mail:
| |
Collapse
|
25
|
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2008; 481:1-15. [PMID: 18977196 DOI: 10.1016/j.abb.2008.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Efficient iron acquisition is critical for an invading microbe's survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, 285 Old Westport Road, Dartmouth, MA 02747-2300, USA
| | | |
Collapse
|
26
|
Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Appl Environ Microbiol 2008; 74:6263-70. [PMID: 18757577 DOI: 10.1128/aem.00964-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to acquire diverse and abundant forms of iron would be expected to confer a survival advantage in the marine environment, where iron is scarce. Marine bacteria are known to use siderophores and inorganic iron, but their ability to use heme, an abundant intracellular iron form, has only been examined preliminarily. Microscilla marina, a cultured relative of a bacterial group frequently found on marine particulates, was used as a model organism to examine heme uptake. Searches of the genome revealed analogs to known heme transport proteins, and reverse transcription-quantitative PCR analysis of these genes showed that they were expressed and upregulated under iron stress and during growth on heme. M. marina was found to take up heme-bound iron and could grow on heme as a sole iron source, supporting the genetic evidence for heme transport. Similar putative heme transport components were identified in the genomes of diverse marine bacteria. These systems were found in the genomes of many bacteria thought to be particle associated but were lacking in known free-living organisms (e.g., Pelagibacter ubique and marine cyanobacteria). This distribution of transporters is consistent with the hydrophobic, light-sensitive nature of heme, suggesting that it is primarily available on phytoplankton or detritus or in nutrient-rich environments.
Collapse
|
27
|
Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J, Rieping W, Wandersman C, Nilges M, Delepierre M, Lecroisey A. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J Mol Biol 2007; 376:517-25. [PMID: 18164722 DOI: 10.1016/j.jmb.2007.11.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/14/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
A heme-acquisition system present in several Gram-negative bacteria requires the secretion of hemophores. These extracellular carrier proteins capture heme and deliver it to specific outer membrane receptors. The Serratia marcescens HasA hemophore is a monodomain protein that binds heme with a very high affinity. Its alpha/beta structure, as that of its binding pocket, has no common features with other iron- or heme-binding proteins. Heme is held by two loops L1 and L2 and coordinated to iron by an unusual ligand pair, H32/Y75. Two independent regions of the hemophore beta-sheet are involved in HasA-HasR receptor interaction. Here, we report the 3-D NMR structure of apoHasA and the backbone dynamics of both loaded and unloaded hemophore. While the overall structure of HasA is very similar in the apo and holo forms, the hemophore presents a transition from an open to a closed form upon ligand binding, through a large movement, of up to 30 A, of loop L1 bearing H32. Comparison of loaded and unloaded HasA dynamics on different time scales reveals striking flexibility changes in the binding pocket. We propose a mechanism by which these structural and dynamic features provide the dual function of heme binding and release to the HasR receptor.
Collapse
Affiliation(s)
- Nicolas Wolff
- Unité de RMN des Biomolécules, CNRS URA 2185, Département de Biologie Structurale et de Chimie, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Heme Coordination by Staphylococcus aureus IsdE. J Biol Chem 2007; 282:28815-28822. [PMID: 17666394 DOI: 10.1074/jbc.m704602200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single alpha-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met(78) and His(229). Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His(229) is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christie L Vermeiren
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| |
Collapse
|
29
|
Aranda R, Worley CE, Liu M, Bitto E, Cates MS, Olson JS, Lei B, Phillips GN. Bis-methionyl coordination in the crystal structure of the heme-binding domain of the streptococcal cell surface protein Shp. J Mol Biol 2007; 374:374-83. [PMID: 17920629 DOI: 10.1016/j.jmb.2007.08.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/23/2007] [Accepted: 08/25/2007] [Indexed: 11/17/2022]
Abstract
Surface proteins Shr, Shp, and the ATP-binding cassette (ABC) transporter HtsABC are believed to make up the machinery for heme uptake in Streptococcus pyogenes. Shp transfers its heme to HtsA, the lipoprotein component of HtsABC, providing the only experimentally demonstrated example of direct heme transfer from a surface protein to an ABC transporter in Gram-positive bacteria. To understand the structural basis of heme transfer in this system, the heme-binding domain of Shp (Shp(180)) was crystallized, and its structure determined to a resolution of 2.1 A. Shp(180) exhibits an immunoglobulin-like beta-sandwich fold that has been recently found in other pathogenic bacterial cell surface heme-binding proteins, suggesting that the mechanisms of heme acquisition are conserved. Shp shows minimal amino acid sequence identity to these heme-binding proteins and the structure of Shp(180) reveals a unique heme-iron coordination with the axial ligands being two methionine residues from the same Shp molecule. A negative electrostatic surface of protein structure surrounding the heme pocket may serve as a docking interface for heme transfer from the more basic outer cell wall heme receptor protein Shr. The crystal structure of Shp(180) reveals two exogenous, weakly bound hemins, which form a large interface between the two Shp(180) molecules in the asymmetric unit. These "extra" hemins form a stacked pair with a structure similar to that observed previously for free hemin dimers in aqueous solution. The propionates of the protein-bound heme coordinate to the iron atoms of the exogenous hemin dimer, contributing to the stability of the protein interface. Gel filtration and analytical ultracentrifugation studies indicate that both full-length Shp and Shp(180) are monomeric in dilute aqueous solution.
Collapse
Affiliation(s)
- Roman Aranda
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stojanović SD, Medaković VB, Predović G, Beljanski M, Zarić SD. XH/pi interactions with the pi system of porphyrin ring in porphyrin-containing proteins. J Biol Inorg Chem 2007; 12:1063-71. [PMID: 17659366 DOI: 10.1007/s00775-007-0276-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Searching structures of porphyrin-containing proteins from the Protein Data Bank revealed that the pi system of every porphyrin ring is involved in XH/pi interactions, with most of the porphyrins having several interactions. Both five-membered pyrrole rings and six-membered chelate rings are involved in XH/pi interactions; the number of interactions with five-membered rings is larger than the number of interactions with six-membered rings. We found interactions with C-H and N-H groups as hydrogen-atom donors; however, the number of CH/pi interactions is much larger than the number of NH/pi interactions. The amino acids involved in the interactions show a high conservation score. Our results that every porphyrin is involved in XH/pi interactions and that amino acids involved in these interactions are highly conserved demonstrate that XH/pi interactions play an important role in porphyrin-protein stability.
Collapse
Affiliation(s)
- Srdan D Stojanović
- Department of Chemistry, University of Belgrade, Studentski trg 16, 11001 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
31
|
Vorobiev SM, Neely H, Seetharaman J, Ma LC, Xiao R, Acton TB, Montelione GT, Tong L. Crystal structure of AGR_C_4470p from Agrobacterium tumefaciens. Protein Sci 2007; 16:535-8. [PMID: 17322535 PMCID: PMC2203313 DOI: 10.1110/ps.062663307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report here the crystal structure at 2.0 A resolution of the AGR_C_4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR_C_4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved in AGR_C_4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR_C_4470p in E. coli, in addition to the ChuS protein.
Collapse
Affiliation(s)
- Sergey M Vorobiev
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Unno M, Matsui T, Ikeda-Saito M. Structure and catalytic mechanism of heme oxygenase. Nat Prod Rep 2007; 24:553-70. [PMID: 17534530 DOI: 10.1039/b604180a] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Masaki Unno
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | | | | |
Collapse
|
33
|
Sharp KH, Schneider S, Cockayne A, Paoli M. Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus. J Biol Chem 2007; 282:10625-31. [PMID: 17287214 DOI: 10.1074/jbc.m700234200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens such as Staphylococcus aureus require iron to survive and have evolved specialized proteins to steal heme from their host. IsdC is the central conduit of the Isd (iron-regulated surface determinant) multicomponent heme uptake machinery; staphylococcal cell-surface proteins such as IsdA, IsdB, and IsdH are thought to funnel their molecular cargo to IsdC, which then mediates the transfer of the iron-containing nutrient to the membrane translocation system IsdDEF. The structure of the heme-IsdC complex reveals a novel heme site within an immunoglobulin-like domain and sheds light on its binding mechanism. The folding topology is reminiscent of the architecture of cytochrome f, cellobiose dehydrogenase, and ethylbenzene dehydrogenase; in these three proteins, the heme is bound in an equivalent position, but interestingly, IsdC features a distinct binding pocket with the ligand located next to the hydrophobic core of the beta-sandwich. The iron is coordinated with a tyrosine surrounded by several non-polar side chains that cluster into a tightly packed proximal side. On the other hand, the distal side is relatively exposed with a short helical peptide segment that acts as a lip clasping onto almost half of the porphyrin plane. This structural feature is argued to play a role in the mechanism of binding and release by switching to an open conformation and thus loosening the interactions holding the heme. The structure of the heme-IsdC complex provides a template for the understanding of other proteins, such as IsdA, IsdB, and IsdH, that contain the same heme-binding module as IsdC, known as the NEAT (near transporter) domain.
Collapse
Affiliation(s)
- Katherine H Sharp
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
34
|
Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 2007; 24:511-22. [PMID: 17534527 DOI: 10.1039/b604193k] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
35
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 2007; 63:139-49. [PMID: 17229211 DOI: 10.1111/j.1365-2958.2006.05502.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Successful pathogenic organisms have developed mechanisms to thrive under extreme levels of iron restriction. Haem-iron represents the largest iron reservoir in the human body and is a significant source of iron for some bacterial pathogens. NEAT (NEAr Transporter) domains are found exclusively in a family of cell surface proteins in Gram-positive bacteria. Many NEAT domain-containing proteins, including IsdA in Staphylococcus aureus, are implicated in haem binding. Here, we show that overexpression of IsdA in S. aureus enhances growth and an inactivation mutant of IsdA has a growth defect, compared with wild type, when grown in media containing haem as the sole iron source. Furthermore, the haem-binding property of IsdA is contained within the NEAT domain. Crystal structures of the apo-IsdA NEAT domain and in complex with haem were solved and reveal a clathrin adapter-like beta-sandwich fold with a large hydrophobic haem-binding pocket. Haem is bound with the propionate groups directed at the molecular surface and the iron is co-ordinated solely by Tyr(166). The phenol groups of Tyr(166) and Tyr(170) form an H-bond that may function in regulating haem binding and release. An analysis of IsdA structure-sequence alignments indicate that conservation of Tyr(166) is a predictor of haem binding by NEAT domains.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|