1
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1046] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
4
|
Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC BIOPHYSICS 2014; 7:5. [PMID: 25170421 PMCID: PMC4141665 DOI: 10.1186/2046-1682-7-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/30/2014] [Indexed: 01/31/2023]
Abstract
Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| | - Chris A Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Trent M Woodruff
- School of Biomedical Sciences, the University of Queensland, St Lucia 4072, Australia
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| |
Collapse
|
5
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
6
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
Complement activation usually results in the formation of complement fragment 5a (C5a) that interacts with its two receptors, C5aR and C5L2. These receptors belong to the rhodopsin family of G protein-coupled seven transmembrane-containing receptors. C5aR and C5L2 are expressed on/in a wide variety of cells and tissues. Interaction of C5a with C5aR leads to many pleiotropic effects, including the release of cytokines and chemokines and recruitment of inflammatory cells. In certain circumstances, C5a-C5aR interactions can also result in pathophysiological changes as seen in sepsis, rheumatoid arthritis, asthma, acute lung injury and ischemia-reperfusion injury. This overview of the C5a-C5aR interactions describes how such interactions facilitate the pivotal role the complement system plays in the host's innate and adaptive responses.
Collapse
Affiliation(s)
- J Vidya Sarma
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, USA
| | | |
Collapse
|
8
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
9
|
Nikiforovich GV, Marshall GR, Baranski TJ. Simplified modeling approach suggests structural mechanisms for constitutive activation of the C5a receptor. Proteins 2010; 79:787-802. [PMID: 21287612 DOI: 10.1002/prot.22918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 11/07/2022]
Abstract
Molecular modeling of conformational changes occurring in the transmembrane region of the complement factor 5a receptor (C5aR) during receptor activation was performed by comparing two constitutively active mutants (CAMs) of C5aR, NQ (I124N/L127Q), and F251A, to those of the wild-type C5aR and NQ-N296A (I124N/L127Q/N296A), which have the wild-type phenotype. Modeling involved comprehensive sampling of various rotations of TM helices aligned to the crystal template of the dark-adapted rhodopsin along their long axes. By assuming that the relative energies of the spontaneously activated states of CAMs should be lower or at least comparable to energies characteristic for the ground states, we selected the plausible models for the conformational states associated with constitutive activation in C5aR. The modeling revealed that the hydrogen bonds between the side chains of D82-N119, S85-N119, and S131-C221 characteristic for the ground state were replaced by the hydrogen bonds D82-N296, N296-Y300, and S131-R134, respectively, in the activated states. Also, conformational transitions that occurred upon activation were hindered by contacts between the side chains of L127 and F251. The results rationalize the available data of mutagenesis in C5aR and offer the first specific molecular mechanism for the loss of constitutive activity in NQ-N296A. Our results also contributed to understanding the general structural mechanisms of activation in G-protein-coupled receptors lacking the "ionic lock", R(3.50) and E/D(6.30). Importantly, these results were obtained by modeling approaches that deliberately simplify many elements in order to explore potential conformations of GPCRs involving large-scale molecular movements.
Collapse
|
10
|
Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46:2753-66. [PMID: 19477527 DOI: 10.1016/j.molimm.2009.04.027] [Citation(s) in RCA: 522] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 12/16/2022]
Abstract
The anaphylatoxin (AT) C3a, C5a and C5a-desArg are generally considered pro-inflammatory polypeptides generated after proteolytic cleavage of C3 and C5 in response to complement activation. Their well-appreciated effector functions include chemotaxis and activation of granulocytes, mast cells and macrophages. Recent evidence suggests that ATs are also generated locally within tissues by pathogen-, cell-, or contact system-derived proteases. This local generation of ATs is important for their pleiotropic biologic effects beyond inflammation. The ATs exert most of the biologic activities through ligation of three cognate receptors, i.e. the C3a receptor, the C5a receptor and the C5a receptor-like, C5L2. Here, we will discuss recent findings suggesting that ATs regulate cell apoptosis, lipid metabolism as well as innate and adaptive immune responses through their impact on antigen-presenting cells and T cells. As we will outline, such regulatory functions of ATs and their receptors play important roles in the pathogenesis of allergy, autoimmunity, neurodegenerative diseases, cancer and infections with intracellular pathogens.
Collapse
Affiliation(s)
- Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, MHH, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Hagemann IS, Miller DL, Klco JM, Nikiforovich GV, Baranski TJ. Structure of the Complement Factor 5a Receptor-Ligand Complex Studied by Disulfide Trapping and Molecular Modeling. J Biol Chem 2008; 283:7763-75. [DOI: 10.1074/jbc.m709467200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1261-70. [PMID: 18346468 DOI: 10.1016/j.bbamcr.2008.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/13/2008] [Accepted: 02/04/2008] [Indexed: 01/15/2023]
Abstract
The carboxyl tail of G protein-coupled receptors contains motifs that regulate receptor interactions with intracellular partners. Activation of the human neutrophil complement fragment C5a receptor (C5aR) is terminated by phosphorylation of the carboxyl tail followed by receptor internalization. In this study, we demonstrated that bulky hydrophobic residues in the membrane-proximal region of the C5aR carboxyl tail play an important role in proper structure and function of the receptor: Substitution of leucine 319 with alanine (L319A) resulted in receptor retention in the endoplasmic reticulum, whereas a L318A substitution allowed receptor transport to the cell surface, but showed slow internalization upon activation, presumably due to a defect in phosphorylation by both PKC and GRK. Normal agonist-induced activation of ERK1/2 and intracellular calcium release suggested that the L318A mutation did not affect receptor signaling. Binding of GRK2 and PKCbetaII to intracellular loop 3 of C5aR in vitro indicated that mutagenesis of L318 did not affect kinase binding. Limited proteolysis with trypsin revealed a conformational difference between wild type and mutant receptor. Our studies support a model in which the L318/L319 stabilizes an amphipathic helix (Q305-R320) in the membrane-proximal region of C5aR.
Collapse
|
13
|
Nikiforovich GV, Marshall GR, Baranski TJ. Modeling molecular mechanisms of binding of the anaphylatoxin C5a to the C5a receptor. Biochemistry 2008; 47:3117-30. [PMID: 18275159 DOI: 10.1021/bi702321a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents the 3D model of the complex between the anaphylatoxin C5a and its specific receptor, C5aR. This is the first 3D model of a G-protein-coupled receptor (GPCR) complex with a peptide ligand deduced by a molecular modeling procedure analyzing various conformational possibilities of the extracellular loops and the N-terminal segment of the GPCR. The modeling results indicated two very different ways of interacting between C5a and C5aR at the two interaction sites suggested earlier based on the data of site-directed mutagenesis. Specifically, C5a and C5aR can be involved in "mutual-induced fit", where the interface between the molecules is determined by both the receptor and the ligand. The rigid core of the C5a ligand selects the proper conformations of the highly flexible N-terminal segment of C5aR (the first interaction site). At the same time, the binding conformation of the flexible C-terminal fragment of C5a is selected by well-defined interactions with the TM region of the C5aR receptor (the second interaction site). The proposed 3D model of C5a/C5aR complex was built without direct use of structural constraints derived from site-directed mutagenesis reserving those data for validation of the model. The available data of site-directed mutagenesis of C5a and C5aR were successfully rationalized with the help of the model. Also, the modeling results predicted that the full-length C5a and C5a-des74 metabolite would have different binding modes with C5aR. Modeling approaches employed in this study are readily applicable for studies of molecular mechanisms of binding of other polypeptide ligands to their specific GPCRs.
Collapse
Affiliation(s)
- Gregory V Nikiforovich
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
14
|
Sen S, Baranski TJ, Nikiforovich GV. Conformational movement of F251 contributes to the molecular mechanism of constitutive activation in the C5a receptor. Chem Biol Drug Des 2008; 71:197-204. [PMID: 18248350 DOI: 10.1111/j.1747-0285.2008.00630.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The activation mechanism of G-protein-coupled receptors triggered upon binding of a ligand represents a very important 'conformational switch' in the biological array of signal transduction. However, the molecular and functional details for this activation switch remain unknown. Random saturation mutagenesis data on the complement factor 5a receptor has provided a large data set of mutants including several constitutively active mutants. In the present study, we employed computational modeling to rationalize the constitutive activity for two constitutively active mutants, NQ (I124N/L127Q) and F251A, and we then made predictions for a series of mutants that either promote or constrain constitutive activity. Biological testing of the site-directed mutants confirmed most of the predictions of the computational modeling. These results support a molecular mechanism of constitutive activity in complement factor 5a receptor mutants that is associated with conformational changes in a network of residues neighboring F251 as the focal point of origin.
Collapse
Affiliation(s)
- Saurabh Sen
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, Box 8127, St Louis, MO 63110, USA
| | | | | |
Collapse
|
15
|
Monk PN, Scola AM, Madala P, Fairlie DP. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 2007; 152:429-48. [PMID: 17603557 PMCID: PMC2050825 DOI: 10.1038/sj.bjp.0707332] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complement fragment (C)5a is a 74 residue pro-inflammatory polypeptide produced during activation of the complement cascade of serum proteins in response to foreign surfaces such as microorganisms and tissue damaged by physical or chemical injury. C5a binds to at least two seven-transmembrane domain receptors, C5aR (C5R1, CD88) and C5L2 (gpr77), expressed ubiquitously on a wide variety of cells but particularly on the surface of immune cells like macrophages, neutrophils and T cells. C5aR is a classical G protein-coupled receptor that signals through G alpha i and G alpha 16, whereas C5L2 does not appear to couple to G proteins and has no known signalling activity. Although C5a was first described as an anaphylatoxin and later as a leukocyte chemoattractant, the widespread expression of C5aR suggested more general functionality. Our understanding of the physiology of C5a has improved significantly in recent years through exploitation of receptor knockout and knocking mice, C5 and C5a antibodies, soluble recombinant C5a and C5a analogues and newly developed receptor antagonists. C5a is now also implicated in non-immunological functions associated with developmental biology, CNS development and neurodegeneration, tissue regeneration, and haematopoiesis. Combined receptor mutagenesis, molecular modelling, structure-activity relationship studies and species dependence for ligand potency on C5aR have been helpful for identifying ligand binding sites on the receptor and for defining mechanisms of receptor activation and inactivation. This review will highlight major developments in C5a receptor research that support C5aR as an important therapeutic target. The intriguing possibilities raised by the existence of a non-signalling C5a receptor are also discussed.
Collapse
Affiliation(s)
- P N Monk
- Academic Neurology Unit, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
16
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
17
|
Matsumoto ML, Narzinski K, Nikiforovich GV, Baranski TJ. A Comprehensive Structure-Function Map of the Intracellular Surface of the Human C5a Receptor. J Biol Chem 2007; 282:3122-33. [PMID: 17090530 DOI: 10.1074/jbc.m607683200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within any given cell many G protein-coupled receptors are expressed in the presence of multiple G proteins, yet most receptors couple to a specific subset of G proteins to elicit their programmed response. Numerous studies demonstrate that the carboxyl-terminal five amino acids of the Galpha subunits are a major determinant of specificity, however the receptor determinants of specificity are less clear. We have used a collection of 133 functional mutants of the C5a receptor obtained in a mutagenesis screen targeting the intracellular loops and the carboxyl terminus (Matsumoto, M. L., Narzinski, K., Kiser, P. D., Nikiforovich, G. V., and Baranski, T. J. (2007) J. Biol. Chem. 282, 3105-3121) to investigate how specificity is encoded. Each mutant, originally selected for its ability to signal through a nearly full-length Galpha(i) in yeast, was tested to see whether it could activate three versions of chimeric Galpha subunits consisting of Gpa1 fused to the carboxyl-terminal five amino acids of Galpha(i), Galpha(q), or Galpha(s) in yeast. Surprisingly the carboxyl-terminal tail of the C5a receptor is the most important specificity determinant in that nearly all mutants in this region showed a gain in coupling to Galpha(q) and/or Galpha(s). More than half of the receptors mutated in the second intracellular loop also demonstrated broadened G protein coupling. Given a lack of selective advantage for this broadened signaling in the initial screen, we propose a model in which the carboxyl-terminal tail acts together with the intracellular loops to generate a specificity filter for receptor-G protein interactions that functions primarily to restrict access of incorrect G proteins to the receptor.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Medicine and Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|