1
|
Wang J, Fourriere L, Gleeson PA. Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations. Biochem J 2024; 481:1297-1325. [PMID: 39302110 DOI: 10.1042/bcj20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The production of neurotoxic amyloid-β peptides (Aβ) is central to the initiation and progression of Alzheimer's disease (AD) and involves sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are transmembrane proteins and their co-localisation in the same membrane-bound sub-compartment is necessary for APP cleavage. The intracellular trafficking of APP and the β-secretase, BACE1, is critical in regulating APP processing and Aβ production and has been studied in several cellular systems. Here, we summarise the intracellular distribution and transport of APP and its secretases, and the intracellular location for APP cleavage in non-polarised cells and neuronal models. In addition, we review recent advances on the potential impact of familial AD mutations on APP trafficking and processing. This is critical information in understanding the molecular mechanisms of AD progression and in supporting the development of novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
3
|
Toyama Y, Nirasawa T, Morishima M, Saito Y, Irie K, Murayama S, Ikegawa M. Integrated Spatial Multi-Omics Study of Postmortem Brains of Alzheimer's Disease. Acta Histochem Cytochem 2024; 57:119-130. [PMID: 38988692 PMCID: PMC11231568 DOI: 10.1267/ahc.24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Pathological hallmark of Alzheimer's disease (AD) is characterized by the accumulation and aggregation of amyloid β (Aβ) peptides into extracellular plaques of the brain. Clarification of the process of how soluble Aβ starts to assemble into amyloid fibrils is an essential step in elucidating the pathogenesis of AD. In our previous study, Aβ proteoforms including full-length Aβ40 and Aβ42/43 with N- and C-terminal truncated forms were visualized in postmortem brains from AD patients with matrix-assisted laser desorption/ionization-based mass spectrometry imaging (MALDI-MSI). In this study, Aβ proteoforms were consistently visualized by an updated protocol, and uncharacterized peptides such as Aβ1-29 and Aβ10-40 in AD brains were also visualized. To decipher neurotoxic effects of Aβ in patients' brains, here we integrate liquid chromatography tandem mass spectrometry (LC-MS/MS) based shotgun proteomics with laser microdissection (LMD) excised tissue samples as well as direct tissue imaging with MALDI-MSI. With this approach, we have highlighted dynamic alterations of microtubule associating proteins (MAPs) including MAP1A, MAP1B and MAP2 as well as AD dominant proteins including APP, UCHL1, SNCA, and APOE. Of note, as lipid dysregulation has been implicated with AD pathology, we have challenged to integrate proteomics and lipid imaging for AD and control brain tissue. Spatial multi-omics is also valid to uncover molecular pathology of white matter as well as grey matter and leptomeningeal area, for example, by visualizing heme in patients' postmortem brains.
Collapse
Affiliation(s)
- Yumiko Toyama
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Japan
| | | | - Maho Morishima
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Kazuhiro Irie
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Japan
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeo Murayama
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Masaya Ikegawa
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
4
|
Gómez-Castro CZ, Quintanar L, Vela A. An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study. J Biol Inorg Chem 2024; 29:407-425. [PMID: 38811408 PMCID: PMC11186886 DOI: 10.1007/s00775-024-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
The influence of metal ions on the structure of amyloid- β (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aβ42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.
Collapse
Affiliation(s)
- Carlos Z Gómez-Castro
- Conahcyt-Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carr. Pachuca-Tulancingo, Mineral de La Reforma, 42184, Hidalgo, Mexico.
| | - Liliana Quintanar
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| | - Alberto Vela
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| |
Collapse
|
5
|
Ruttenberg SM, Nowick JS. A turn for the worse: Aβ β-hairpins in Alzheimer's disease. Bioorg Med Chem 2024; 105:117715. [PMID: 38615460 DOI: 10.1016/j.bmc.2024.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Amyloid-β (Aβ) oligomers are a cause of neurodegeneration in Alzheimer's disease (AD). These soluble aggregates of the Aβ peptide have proven difficult to study due to their inherent metastability and heterogeneity. Strategies to isolate and stabilize homogenous Aβ oligomer populations have emerged such as mutations, covalent cross-linking, and protein fusions. These strategies along with molecular dynamics simulations have provided a variety of proposed structures of Aβ oligomers, many of which consist of molecules of Aβ in β-hairpin conformations. β-Hairpins are intramolecular antiparallel β-sheets composed of two β-strands connected by a loop or turn. Three decades of research suggests that Aβ peptides form several different β-hairpin conformations, some of which are building blocks of toxic Aβ oligomers. The insights from these studies are currently being used to design anti-Aβ antibodies and vaccines to treat AD. Research suggests that antibody therapies designed to target oligomeric Aβ may be more successful at treating AD than antibodies designed to target linear epitopes of Aβ or fibrillar Aβ. Aβ β-hairpins are good epitopes to use in antibody development to selectively target oligomeric Aβ. This review summarizes the research on β-hairpins in Aβ peptides and discusses the relevance of this conformation in AD pathogenesis and drug development.
Collapse
Affiliation(s)
- Sarah M Ruttenberg
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States.
| |
Collapse
|
6
|
Takasugi N, Komai M, Kaneshiro N, Ikeda A, Kamikubo Y, Uehara T. The Pursuit of the "Inside" of the Amyloid Hypothesis-Is C99 a Promising Therapeutic Target for Alzheimer's Disease? Cells 2023; 12:454. [PMID: 36766796 PMCID: PMC9914381 DOI: 10.3390/cells12030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer's disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-β (Aβ), which accumulates in the patient brain. The "amyloid hypothesis" based therapy that places the aggregation and toxicity of Aβ at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aβ is produced from a type-I transmembrane protein, Aβ precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the AD patient's brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the "outside" of the neuron, but C99 accumulation might explain the toxicity on the "inside" of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Nanaka Kaneshiro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
8
|
Abstract
Amyloid-β (Aβ) peptides are involved in Alzheimer's disease (AD) development. The interactions of these peptides with copper and zinc ions also seem to be crucial for this pathology. Although Cu(II) and Zn(II) ions binding by Aβ peptides has been scrupulously investigated, surprisingly, this phenomenon has not been so thoroughly elucidated for N-truncated Aβ4-x-probably the most common version of this biomolecule. This negligence also applies to mixed Cu-Zn complexes. From the structural in silico analysis presented in this work, it appears that there are two possible mixed Cu-Zn(Aβ4-x) complexes with different stoichiometries and, consequently, distinct properties. The Cu-Zn(Aβ4-x) complex with 1:1:1 stoichiometry may have a neuroprotective superoxide dismutase-like activity. On the other hand, another mixed 2:1:2 Cu-Zn(Aβ4-x) complex is perhaps a seed for toxic oligomers. Hence, this work proposes a novel research direction for our better understanding of AD development.
Collapse
|
9
|
Sakata T, Shiratori R, Kato M. Hydrogel-Coated Gate Field-Effect Transistor for Real-Time and Label-Free Monitoring of β-Amyloid Aggregation and Its Inhibition. Anal Chem 2022; 94:2820-2826. [PMID: 35119275 DOI: 10.1021/acs.analchem.1c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we propose a hydrogel-coated gate field-effect transistor (FET) for the real-time and label-free monitoring of β-amyloid (Aβ) aggregation and its inhibition. The hydrogel used in this study is composed of poly tetramethoxysilane (TMOS), in which Aβ monomers are entrapped and then aggregate, and coated on the gate insulator; that is, Aβ aggregation is induced in the vicinity of the sensing surface. With the Aβ hydrogel-coated gate FET, the steplike decrease in the surface potential of the Aβ hydrogel-coated gate electrode is electrically monitored in real time, according to the stepwise aggregation of Aβ monomers to form into fibrils through oligomers and so forth in stages. This is because the capacitance of the Aβ-hydrogel membrane decreases depending on the stage of aggregation; that is, the hydrophobicity of the Aβ-hydrogel membrane increases stepwise depending on the amount of Aβ aggregates. The formation of Aβ fibrils is also confirmed in the measurement solution using a fluorescent dye, thioflavin T, which selectively binds to the Aβ fibrils. Moreover, the addition of daunomycin, an inhibitor of Aβ aggregation, to the measurement solution suppresses the stepwise electrical response of the Aβ hydrogel-coated gate FET. Thus, a platform based on the Aβ hydrogel-coated gate FET is suitable for a simple screening system for inhibitors of Aβ aggregation, which may lead the identification of potential therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Reiko Shiratori
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Kato
- Department of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
10
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|
11
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
12
|
Shi H, Wang L, Yao Z, Lee JY, Guo W. Role of the English (H6R) Mutation on the Structural Properties of Aβ40 and Aβ42 Owing to the Histidine Tautomeric Effect. ACS Chem Neurosci 2021; 12:2705-2711. [PMID: 34240598 DOI: 10.1021/acschemneuro.1c00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As an intrinsic origin cause, histidine behaviors play a critical role in protein misfolding processes. Generally, the English (H6R) mutation will disrupt H6 interactions. However, the structural properties of Aβ40 H6R and Aβ42 H6R under the complex influence of a histidine tautomeric effect and an H6R mutation remain unclear. Therefore, we performed a replica exchange molecular dynamics simulation to unveil such structural properties. Our result showed that the H6R substitute could promote the generation of β-sheet structures in comparison to the wild type. Three β-strand structure properties were observed in Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) with β-sheet contents of 47.5%, 37.2%, 46.9%, and 38.6%, respectively, and the dominant conformational properties of Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) had top conformational states of 86.0%, 73.2%, 67.0%, and 56.5%, respectively. Further analysis confirmed that R6 had different mechanisms for controlling the conformational features in Aβ40 H6R and Aβ42 H6R. In the Aβ40 systems, H14 H-bond networks played a critical role in controlling the structural properties. However, in the Aβ42 systems, R6 was more important because it was directly involved in the β-strand formation and maintained the β-sheet between the N-terminus and the central hydrophobic core region. Our current study helps to elucidate the histidine tautomeric behaviors in H6R mutations, which will present opportunities to understand the correlation between with/without H6 and the Aβ40/Aβ42 H6R misfolding mechanisms.
Collapse
Affiliation(s)
- Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lisha Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
13
|
Sun Y, Kakinen A, Wan X, Moriarty N, Hunt CP, Li Y, Andrikopoulos N, Nandakumar A, Davis TP, Parish CL, Song Y, Ke PC, Ding F. Spontaneous Formation of β-sheet Nano-barrels during the Early Aggregation of Alzheimer's Amyloid Beta. NANO TODAY 2021; 38:101125. [PMID: 33936250 PMCID: PMC8081394 DOI: 10.1016/j.nantod.2021.101125] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soluble low-molecular-weight oligomers formed during the early aggregation of amyloid peptides have been hypothesized as a major toxic species of amyloidogenesis. Herein, we performed the first synergic in silico, in vitro and in vivo validations of the structure, dynamics and toxicity of Aβ42 oligomers. Aβ peptides readily assembled into β-rich oligomers comprised of extended β-hairpins and β-strands. Nanosized β-barrels were observed with certainty with simulations, transmission electron microscopy and Fourier transform infrared spectroscopy, corroborated by immunohistochemistry, cell viability, apoptosis, inflammation, autophagy and animal behavior assays. Secondary and tertiary structural proprieties of these oligomers, such as the sequence regions with high β-sheet propensities and inter-residue contact frequency patterns, were similar to the properties known for Aβ fibrils. The unambiguous spontaneous formation of β-barrels in the early aggregation of Aβ42 supports their roles as the common toxic intermediates in Alzheimer's pathobiology and a target for Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Cameron P.J. Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Pu Chun Ke
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| |
Collapse
|
14
|
Aggarwal L, Biswas P. Hydration Thermodynamics of the N-Terminal FAD Mutants of Amyloid-β. J Chem Inf Model 2021; 61:298-310. [PMID: 33440932 DOI: 10.1021/acs.jcim.0c01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydration thermodynamics of amyloid-β (Aβ) and its pathogenic familial Alzheimer's disease (FAD) mutants such as A2V, Taiwan (D7H), Tottori (D7N), and English (H6R) and the protective A2T mutant is investigated by a combination of all-atom, explicit water molecular dynamics (MD) simulations and the three-dimensional reference interaction site model (3D-RISM) theory. The change in the hydration free energy on mutation is decomposed into the energetic and entropic components, which comprise electrostatic and nonelectrostatic contributions. An increase in the hydration free energy is observed for A2V, D7H, D7N, and H6R mutations that increase the aggregation propensity of Aβ and lead to an early onset of Alzheimer's disease, while a reverse trend is noted for the protective A2T mutation. An antiphase correlation is found between the change in the hydration energy and the internal energy of Aβ upon mutation. A residue-wise decomposition analysis shows that the change in the hydration free energy of Aβ on mutation is primarily due to the hydration/dehydration of the side-chain atoms of the negatively charged residues. The decrease in the hydration of the negatively charged residues on mutation may decrease the solubility of the mutant, which increases the observed aggregation propensity of the FAD mutants. Results obtained from the theory show an excellent match with the experimentally reported data.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
15
|
Single Point Mutation from E22-to-K in A β Initiates Early-Onset Alzheimer's Disease by Binding with Catalase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4981204. [PMID: 33425208 PMCID: PMC7775154 DOI: 10.1155/2020/4981204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Amyloid-beta (Aβ) is a critical etiological factor for late-onset familial Alzheimer's disease (AD). However, an early-onset AD has been found to be related with an Aβ mutation in glutamic acid 22-to-lysine (Italian type E22K). Why only one single point mutation at E22 residue induces AD remains unclear. Here, we report that a Chinese familial AD pedigree with E22K mutation was associated with higher levels of serum hydrogen peroxide (H2O2) and lower activity of catalase (a H2O2 degrading enzyme) than controls. Further, we found that E22K binding with catalase caused more severe H2O2 accumulation in the brains of E22K-injected rats than Aβ-injected rats. Unexpectedly, H2O2 bound with the mutation site 22K residue of E22K and elicited more rapid aggregation of E22K than Aβ in vitro. Moreover, H2O2 acted with E22K synergistically to induce higher cellular toxicity than with Aβ. Notably, intrahippocampal infusion of E22K led to more severe plaque deposition, neuron death, and more rapid memory decline than Aβ-injected rats. However, L-cysteine, a H2O2 scavenger, not only prevented self-aggregation of E22K but also reduced H2O2-promoted E22K assembly in vitro; subsequently, it alleviated Alzheimer-related phenotypes. Hence, E22K binding with catalase promotes the early onset of familial AD, and L-cys may reverse this disease.
Collapse
|
16
|
Söldner CA, Sticht H, Horn AH. Molecular Simulations and Alzheimer׳s Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Guyon A, Rousseau J, Lamothe G, Tremblay JP. The protective mutation A673T in amyloid precursor protein gene decreases Aβ peptides production for 14 forms of Familial Alzheimer's Disease in SH-SY5Y cells. PLoS One 2020; 15:e0237122. [PMID: 33370284 PMCID: PMC7769289 DOI: 10.1371/journal.pone.0237122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The deposition of Aβ plaques in the brain leads to the onset and development of Alzheimer’s disease. The Amyloid precursor protein (APP) is cleaved by α-secretase (non-amyloidogenic processing of APP), however increased cleavage by β-secretase (BACE1) leads to the accumulation of Aβ peptides, which forms plaques. APP mutations mapping to exons 16 and 17 favor plaque accumulation and cause Familial Alzheimer Disease (FAD). However, a variant of the APP gene (A673T) originally found in an Icelandic population reduces BACE1 cleavage by 40%. A series of plasmids containing the APP gene, each with one of 29 different FAD mutations mapping to exon 16 and exon 17 was created. These plasmids were then replicated with the addition of the A673T mutation. Combined these formed the library of plasmids that was used in this study. The plasmids were transfected in neuroblastomas to assess the effect of this mutation on Aβ peptide production. The production of Aβ peptides was decreased for some FAD mutations due to the presence of the co-dominant A673T mutation. The reduction of Aβ peptide concentrations for the London mutation (V717I) even reached the same level as for A673T control in SH-SY5Y cells. These preliminary results suggest that the insertion of A673T in APP genes containing FAD mutations might confer a clinical benefit in preventing or delaying the onset of some FADs.
Collapse
Affiliation(s)
- Antoine Guyon
- Centre de Recherche du CHU, Québec-Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, Québec, Canada
- * E-mail:
| | - Joël Rousseau
- Centre de Recherche du CHU, Québec-Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, Québec, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU, Québec-Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, Québec, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU, Québec-Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, Québec, Canada
| |
Collapse
|
18
|
Obata Y, Murakami K, Kawase T, Hirose K, Izuo N, Shimizu T, Irie K. Detection of Amyloid β Oligomers with RNA Aptamers in App NL-G-F/NL-G-F Mice: A Model of Arctic Alzheimer's Disease. ACS OMEGA 2020; 5:21531-21537. [PMID: 32905362 PMCID: PMC7469371 DOI: 10.1021/acsomega.0c02134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
RNA aptamers have garnered attention for diagnostic applications due to their ability to recognize diverse targets. Oligomers of 42-mer amyloid β-protein (Aβ42), whose accumulation is relevant to the pathology of Alzheimer's disease (AD), are among the most difficult molecules for aptamer recognition because they are prone to aggregate in heterogeneous forms. In addition to designing haptens for in vitro selection of aptamers, the difficulties involved in determining their effect on Aβ42 oligomerization impede aptamer research. We previously developed three RNA aptamers (E22P-AbD4, -AbD31, and -AbD43) with high affinity for protofibrils (PFs) derived from a toxic Aβ42 dimer. Notably, these aptamers recognized diffuse staining, which likely originated from PFs or higher-order oligomers with curvilinear structures in a knock-in AppNL-G-F/NL-G-F mouse, carrying the Arctic mutation that preferentially induced the formation of PFs, in addition to a PS2Tg2576 mouse. To determine which oligomeric sizes were mainly altered by the aptamer, ion mobility-mass spectrometry (IM-MS) was carried out. One aptamer, E22P-AbD43, formed adducts with the Aβ42 monomer and dimer, leading to suppression of further oligomerization. These findings support the utility of these aptamers as diagnostics for AD.
Collapse
Affiliation(s)
- Yayoi Obata
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | - Naotaka Izuo
- Department
of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takahiko Shimizu
- Department
of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Irie
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Radko SP, Khmeleva SA, Kaluzhny DN, Kechko OI, Kiseleva YY, Kozin SA, Mitkevich VA, Makarov AA. The English (H6R) Mutation of the Alzheimer's Disease Amyloid-β Peptide Modulates Its Zinc-Induced Aggregation. Biomolecules 2020; 10:E961. [PMID: 32630528 PMCID: PMC7355780 DOI: 10.3390/biom10060961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aβ) plays a critical role in the zinc-induced Aβ aggregation implicated in Alzheimer's disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aβ sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aβ42 peptide and its isoform carrying the H6R mutation (H6R-Aβ42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays. Zinc ions triggered the occurrence of amorphous aggregates for both Aβ42 and H6R-Aβ42 peptides but with distinct optical properties. The structural difference of the formed Aβ42 and H6R-Aβ42 zinc-induced amorphous aggregates was also supported by the results of the bis-ANS assay. Moreover, while the Aβ42 peptide demonstrated an increase in the random coil and β-sheet content upon complexing with zinc ions, the H6R-Aβ42 peptide showed no appreciable structural changes under the same conditions. These observations were ascribed to the impact of H6R mutation on a mode of zinc/peptide binding. The presented findings further advance the understanding of the pathological role of the H6R mutation and the role of H6 residue in the zinc-induced Aβ aggregation.
Collapse
Affiliation(s)
- Sergey P. Radko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
| | - Olga I. Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
| | - Yana Y. Kiseleva
- Russian Scientific Center of Roentgenoradiology, 117485 Moscow, Russia;
| | - Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.K.); (O.I.K.); (S.A.K.); (V.A.M.); (A.A.M.)
| |
Collapse
|
20
|
Aggarwal L, Biswas P. Interaction Volume Is a Measure of the Aggregation Propensity of Amyloid-β. J Phys Chem Lett 2020; 11:3993-4000. [PMID: 32352786 DOI: 10.1021/acs.jpclett.0c00922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study highlights the significance of the partial molar volume of amino acids in predicting the aggregation propensity of an intrinsically disordered protein, amyloid-β (Aβ), and its mutants in aqueous solution. The change in the interaction volume of the protein or mutant is quantitatively correlated with its calculated experimental aggregation propensity. This method also reveals how the interaction volume may be tuned by changing the charge and hydrophobicity of Aβ. While a positive change in the interaction volume and a higher aggregation propensity are observed for mutants with a decrease in the overall charge and/or an increase in hydrophobicity, a reverse trend is observed for the mutants with a decrease in the hydrophobicity and/or an increase in its charge. Hence, the interaction volume may be considered as a key parameter for monitoring protein aggregation that bridges the gap between the experimental aggregation kinetics and solvation thermodynamics.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Kennedy-Britten OD, Al-Shammari N, Platts JA. Molecular dynamics simulations of copper binding to N-terminus mutants of amyloid-β. J Biomol Struct Dyn 2020; 39:2003-2013. [PMID: 32189584 DOI: 10.1080/07391102.2020.1745692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report results of molecular dynamic (MD) simulations on N-terminus mutants of the copper-bound, amyloid-β (Aβ) peptide. Eight structures of Aβ were modelled, including seven mutant peptides in addition to the unaltered wild-type (WT). Trajectories analysed for each individual system were all approximately 1.4 μs in length, yielding a total of over 11 μs in total. The impact of these mutations are marked and varied compared to the wild-type peptide, including effects on secondary structure, stability and conformational changes. Each system showed differing levels of stability with some showing consistent, compact conformations whereas others displayed more flexible structures. Contrasts between comparable mutations at similar sites, such as A2T/A2V and D7H/D7N, show the location as well as the type of mutation have effects on protein structure observed in Ramachandran plots. We also report notable changes in peptide structure at residues remote to the site of substitution showing these mutations influence the entirety of Aβ. Salt-bridge profiles show this most clearly: addition or removal of charged residues affecting all salt-bridge interactions present in WT, even those remote from the site of mutation. Effects on secondary structure differ between mutations, most notably a change in incidence of β-strand, which has been linked to enhanced aggregational properties for the peptide. GFN2-xTB semi-empirical calculations show clear differences in binding energies of the copper-centre for each system.Communicated by Ramaswamy H. Sarma.
Collapse
|
22
|
L. Almeida Z, M. M. Brito R. Structure and Aggregation Mechanisms in Amyloids. Molecules 2020; 25:molecules25051195. [PMID: 32155822 PMCID: PMC7179426 DOI: 10.3390/molecules25051195] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of the approximately 50 amyloid diseases described to date. The identification and characterization of the molecular species critical for amyloid formation and disease development have been the focus of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational therapeutic approaches against these debilitating and increasingly frequent misfolding diseases requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade. Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides from a kinetic and thermodynamic point of view, the structure of the molecular species involved in the amyloidogenic process, and the origin of their cytotoxicity.
Collapse
|
23
|
Mastromoro G, Gambardella S, Marchionni E, Campopiano R, Traversa A, Di Bonaventura C, Pizzuti A. Unusual Segregation of APP Mutations in Monogenic Alzheimer Disease. NEURODEGENER DIS 2019; 19:96-100. [PMID: 31578030 DOI: 10.1159/000502906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
APP gene mutations causing Alzheimer disease (AD) segregate in an autosomal dominant pattern. We report on a 40-year-old woman with a severe cognitive decline starting at 36 years, while her affected relatives presented symptoms onset in the 6th decade. The proband carried an APP missense variant in homozygous state (NM_000484.4: c.2032G>A; NP_000475.1: p.Asp678Asn; rs63750064) and showed a more severe clinical picture than the other AD relatives, as regards the age of onset and the rate of disease progression. This mutation behaves as a semi-dominant trait. The very rare chance of studying APP mutations in the homozygous state demonstrates they are not always dominant and other segregation models are possible.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy,
| | | | - Enrica Marchionni
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Alice Traversa
- Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratory of Clinical Genomics, San Giovanni Rotondo, Italy
| | - Carlo Di Bonaventura
- Neurology Unit, Department of Neurosciences, Mental Health, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratory of Clinical Genomics, San Giovanni Rotondo, Italy
| |
Collapse
|
24
|
Characterization of the unique In Vitro effects of unsaturated fatty acids on the formation of amyloid β fibrils. PLoS One 2019; 14:e0219465. [PMID: 31291354 PMCID: PMC6619765 DOI: 10.1371/journal.pone.0219465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/01/2022] Open
Abstract
Accumulation of amyloid ß (Aß) peptides, the major component of amyloid fibrils in senile plaques, is one of the main causes of Alzheimer’s disease. Docosahexaenoic acid (DHA) is a fatty acid abundant in the brain, and is reported to have protective effects against Alzheimer’s disease, although the mechanistic effects of DHA against Alzheimer’s pathophysiology remain unclear. Because dietary supplementation of DHA in Aß precursor protein transgenic mice ameliorates Aß pathology and behavioral deficits, we hypothesize that DHA may affect the fibrillization and deposition of Aß. Here we studied the effect of different types of fatty acids on Aß fibril formation by in vitro Aß fibrillization assay. Formation of amyloid fibrils consists of two steps, i.e., the initial nucleation phase and the following elongation phase. We found that unsaturated fatty acids, especially DHA, accelerated the formation of Aß fibrils with a unique short and curved morphology in its nucleation phase, which did not elongate further into the long and straight, mature Aß fibrils. Addition of DHA afterwards did not modify the morphology of the mature Aß(1–40) fibrils. The short and curved Aß fibrils formed in the presence of DHA did not facilitate the elongation phase of Aß fibril formation, suggesting that DHA promotes the formation of “off-pathway” conformers of Aß. Our study unravels a possible mechanism of how DHA acts protectively against the pathophysiology of Alzheimer’s disease.
Collapse
|
25
|
Tung N, Derreumaux P, Vu VV, Nam PC, Ngo ST. C-Terminal Plays as the Possible Nucleation of the Self-Aggregation of the S-Shape Aβ 11-42 Tetramer in Solution: Intensive MD Study. ACS OMEGA 2019; 4:11066-11073. [PMID: 31460204 PMCID: PMC6648102 DOI: 10.1021/acsomega.9b00992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Amyloid beta (Aβ) peptides are characterized as the major factors associated with neuron death in Alzheimer's disease, which is listed as the most common form of neurodegeneration. Disordered Aβ peptides are released from proteolysis of the amyloid precursor protein. The Aβ self-assembly process roughly takes place via five steps: disordered forms → oligomers → photofibrils → mature fibrils → plaques. Although Aβ fibrils are often observed in patient brains, oligomers were recently indicated to be major neurotoxic elements. In this work, the neurotoxic compound S-shape Aβ11-42 tetramer (S4Aβ11-42) was investigated over 10 μs of unbiased MD simulations. In particular, the S4Aβ11-42 oligomer adopted a high dynamics structure, resulting in unsuccessful determination of their structures in experiments. The C-terminal was suggested as the possible nucleation of the Aβ42 aggregation. The sequences 27-35 and 39-40 formed rich β-content, whereas other residues mostly adopted coil structures. The mean value of the β-content over the equilibrium interval is ∼42 ± 3%. Furthermore, the dissociation free energy of the S4Aβ11-42 peptide was predicted using a biased sampling method. The obtained free energy is ΔG US = -58.44 kcal/mol which is roughly the same level as the corresponding value of the U-shape Aβ17-42 peptide. We anticipate that the obtained S4Aβ11-42 structures could be used as targets for AD inhibitor screening over the in silico study.
Collapse
Affiliation(s)
- Nguyen
Thanh Tung
- Institute
of Materials Science, Vietnam Academy of
Science and Technology, Hanoi 10307, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical and Chemistry, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Laboratoire
de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT
Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Pham Cam Nam
- Department
of Chemical Engineering, The University
of Da Nang—University of Science and Technology, Da Nang City 550000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 758307, Vietnam
| |
Collapse
|
26
|
Shuaib S, Saini RK, Goyal D, Goyal B. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:708-721. [DOI: 10.1080/07391102.2019.1586587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
27
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
28
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
29
|
Thai NQ, Bednarikova Z, Gancar M, Linh HQ, Hu CK, Li MS, Gazova Z. Compound CID 9998128 Is a Potential Multitarget Drug for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:2588-2598. [PMID: 29775277 DOI: 10.1021/acschemneuro.8b00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have probed small molecule compound CID 9998128 as a potential multitarget drug for the Alzheimer's disease (AD) using in silico and in vitro experiments. By all-atom simulation and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, we have demonstrated that this compound strongly binds to both amyloid β42 (Aβ42) fibrils and β-secretase, and the van der Waals interaction dominates over the electrostatic interaction in binding affinity. A detailed analysis at the atomic level revealed that indazole in CID 99998128 structure made a major contribution to instability of all studied complexes. In vitro experiments have shown that CID 9998128 inhibits the Aβ42 amyloid fibrillization and is capable to clear Aβ42 fibrils. Moreover, the compound dose-dependently decreases β-site amyloid precursor protein cleaving enzyme (BACE-1) activity with EC50 value in micromolar range. Thus, our study has revealed that CID 9998128 is a good candidate for AD treatment through preventing production of Aβ peptides and degrading their aggregates. For drug design, we predict that the chemical structure of potent AD multitarget inhibitors should not contain indazole.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Sciences and Technology, SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| | - Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Physics Division, National Center for Theretical Sciences, Hsinchu 30013, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
- Department of Systems Science, University of Schanghai for Science and Technology, Shanghai 200093, China
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| |
Collapse
|
30
|
Girvan P, Teng X, Brooks NJ, Baldwin GS, Ying L. Redox Kinetics of the Amyloid-β-Cu Complex and Its Biological Implications. Biochemistry 2018; 57:6228-6233. [DOI: 10.1021/acs.biochem.8b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Chang KH, Lee-Chen GJ, Huang CC, Lin JL, Chen YJ, Wei PC, Lo YS, Yao CF, Kuo MW, Chen CM. Modeling Alzheimer's Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. Mol Neurobiol 2018; 56:3972-3983. [PMID: 30238389 PMCID: PMC6505505 DOI: 10.1007/s12035-018-1336-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD), probably caused by abnormal accumulation of β-amyloid (Aβ) and aberrant phosphorylation of tau, is the most common cause of dementia among older people. Generation of patient-specific neurons by induced pluripotent stem cell (iPSC) technology facilitates exploration of the disease features in live human neurons from AD patients. In this study, we generated iPSCs from two familial AD patients carrying a heterozygous D678H mutation in the APP gene (AD-iPSCs). The neurons derived from our AD-iPSCs demonstrated aberrant accumulation of intracellular and secreted Aβ42 and Aβ40, reduction of serine 9 phosphorylation in glycogen synthase kinase 3β (GSK3β) hyperphosphorylation of threonine 181 and serine 396 in tau protein, impaired neurite outgrowth, downregulation of synaptophysin, and increased caspase 1 activity. The comparison between neurons derived from a sibling pair of wild-type and mutated iPSCs successfully recapitulated these AD phenotypes. Treatment with indole compound NC009-1 (3-((1H-Indole-3-yl)methyl)-4-(2-nitrophenyl)but-3-en-2-one), a potential Aβ aggregation reducer, normalized the Aβ levels and GSK3β and tau phosphorylation, attenuated caspase 1 activity, and improved neurite outgrowth in AD-iPSC-derived neurons. Thus, APP D678H iPSCs-derived neurons recapitulate the cellular characteristics relevant to AD and enable exploration of the underlying pathogenesis and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan.
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan
| | - Jia-Li Lin
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan
| | - Yi-Jing Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan
| | - Pei-Chi Wei
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan
| | - Chin-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Wei Kuo
- Chang Gung Memorial Hospital Linkou Medical Center, Institute of Stem Cell and Translational Cancer Research, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, No.5, Fusing St., Gueishan Township, Taoyuan, 333, Taiwan.
| |
Collapse
|
32
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
33
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
34
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
35
|
Shinohara M, Koga S, Konno T, Nix J, Shinohara M, Aoki N, Das P, Parisi JE, Petersen RC, Rosenberry TL, Dickson DW, Bu G. Distinct spatiotemporal accumulation of N-truncated and full-length amyloid-β42 in Alzheimer's disease. Brain 2017; 140:3301-3316. [PMID: 29161341 PMCID: PMC5841214 DOI: 10.1093/brain/awx284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 01/22/2023] Open
Abstract
Accumulation of amyloid-β peptides is a dominant feature in the pathogenesis of Alzheimer's disease; however, it is not clear how individual amyloid-β species accumulate and affect other neuropathological and clinical features in the disease. Thus, we compared the accumulation of N-terminally truncated amyloid-β and full-length amyloid-β, depending on disease stage as well as brain area, and determined how these amyloid-β species respectively correlate with clinicopathological features of Alzheimer's disease. To this end, the amounts of amyloid-β species and other proteins related to amyloid-β metabolism or Alzheimer's disease were quantified by enzyme-linked immunosorbent assays (ELISA) or theoretically calculated in 12 brain regions, including neocortical, limbic and subcortical areas from Alzheimer's disease cases (n = 19), neurologically normal elderly without amyloid-β accumulation (normal ageing, n = 13), and neurologically normal elderly with cortical amyloid-β accumulation (pathological ageing, n = 15). We observed that N-terminally truncated amyloid-β42 and full-length amyloid-β42 accumulations distributed differently across disease stages and brain areas, while N-terminally truncated amyloid-β40 and full-length amyloid-β40 accumulation showed an almost identical distribution pattern. Cortical N-terminally truncated amyloid-β42 accumulation was increased in Alzheimer's disease compared to pathological ageing, whereas cortical full-length amyloid-β42 accumulation was comparable between Alzheimer's disease and pathological ageing. Moreover, N-terminally truncated amyloid-β42 were more likely to accumulate more in specific brain areas, especially some limbic areas, while full-length amyloid-β42 tended to accumulate more in several neocortical areas, including frontal cortices. Immunoprecipitation followed by mass spectrometry analysis showed that several N-terminally truncated amyloid-β42 species, represented by pyroglutamylated amyloid-β11-42, were enriched in these areas, consistent with ELISA results. N-terminally truncated amyloid-β42 accumulation showed significant regional association with BACE1 and neprilysin, but not PSD95 that regionally associated with full-length amyloid-β42 accumulation. Interestingly, accumulations of tau and to a greater extent apolipoprotein E (apoE, encoded by APOE) were more strongly correlated with N-terminally truncated amyloid-β42 accumulation than those of other amyloid-β species across brain areas and disease stages. Consistently, immunohistochemical staining and in vitro binding assays showed that apoE co-localized and bound more strongly with pyroglutamylated amyloid-β11-x fibrils than full-length amyloid-β fibrils. Retrospective review of clinical records showed that accumulation of N-terminally truncated amyloid-β42 in cortical areas was associated with disease onset, duration and cognitive scores. Collectively, N-terminally truncated amyloid-β42 species have spatiotemporal accumulation patterns distinct from full-length amyloid-β42, likely due to different mechanisms governing their accumulations in the brain. These truncated amyloid-β species could play critical roles in the disease by linking other clinicopathological features of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Takuya Konno
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Jeremy Nix
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naoya Aoki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
36
|
|
37
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
38
|
Söldner CA, Sticht H, Horn AHC. Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry. PLoS One 2017; 12:e0186347. [PMID: 29023579 PMCID: PMC5638522 DOI: 10.1371/journal.pone.0186347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022] Open
Abstract
A key player in Alzheimer’s disease is the peptide amyloid-beta (Aβ), whose aggregation into small soluble oligomers, protofilaments, and fibrils finally leads to plaque deposits in human brains. The aggregation behavior of Aβ is strongly modulated by the nature and composition of the peptide’s environment and by its primary sequence properties. The N-terminal residues of Aβ play an important role, because they are known to change the peptide’s aggregation propensity. Since these residues are for the first time completely resolved at the molecular level in a three-fold symmetric fibril structure derived from a patient, we chose that system as template for a systematic investigation of the influence of the N-terminus upon structural stability. Using atomistic molecular dynamics simulations, we examined several fibrillar systems comprising three, six, twelve and an infinite number of layers, both with and without the first eight residues. First, we found that three layers are not sufficient to stabilize the respective Aβ topology. Second, we observed a clear stabilizing effect of the N-terminal residues upon the overall fibril fold: truncated Aβ systems were less stable than their full-length counterparts. The N-terminal residues Arg5, Asp7, and Ser8 were found to form important interfilament contacts stabilizing the overall fibril structure of three-fold symmetry. Finally, similar structural rearrangements of the truncated Aβ species in different simulations prompted us to suggest a potential mechanism involved in the formation of amyloid fibrils with three-fold symmetry.
Collapse
Affiliation(s)
- Christian A. Söldner
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anselm H. C. Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
39
|
Bacci M, Vymětal J, Mihajlovic M, Caflisch A, Vitalis A. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip. J Chem Theory Comput 2017; 13:5117-5130. [PMID: 28870064 DOI: 10.1021/acs.jctc.7b00662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growth of amyloid fibrils from Aβ1-42 peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a "dock-lock" procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of Aβ42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of Aβ fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Collapse
Affiliation(s)
- Marco Bacci
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jiří Vymětal
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Maja Mihajlovic
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
40
|
Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates. Biochem Biophys Res Commun 2017; 493:158-163. [PMID: 28917837 DOI: 10.1016/j.bbrc.2017.09.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain.
Collapse
|
41
|
Lin TW, Chang CF, Chang YJ, Liao YH, Yu HM, Chen YR. Alzheimer's amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS One 2017; 12:e0174561. [PMID: 28362827 PMCID: PMC5376091 DOI: 10.1371/journal.pone.0174561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia affecting tens of million people worldwide. The primary neuropathological hallmark in AD is amyloid plaques composed of amyloid-β peptide (Aβ). Several familial mutations found in Aβ sequence result in early onset of AD. Previous studies showed that the mutations located at N-terminus of Aβ, such as the English (H6R) and Tottori (D7N) mutations, promote fibril formation and increase cytotoxicity. However, A2T mutant located at the very N-terminus of Aβ shows low-prevalence incidence of AD, whereas, another mutant A2V causes early onset of AD. To understand the molecular mechanism of the distinct effect and develop new potential therapeutic strategy, here, we examined the effect of full-length and N-terminal A2V/T variants to wild type (WT) Aβ40 by fibrillization assays and NMR studies. We found that full-length and N-terminal A2V accelerated WT fibrillization and induced large chemical shifts on the N-terminus of WT Aβ, whereas, full-length and N-terminal A2T retarded the fibrillization. We further examined the inhibition effect of various N-terminal fragments (NTFs) of A2T to WT Aβ. The A2T NTFs ranging from residue 1 to residue 7 to 10, but not 1 to 6 or shorter, are capable to retard WT Aβ fibrillization and rescue cytotoxicity. The results suggest that in the presence of full-length or specific N-terminal A2T can retard Aβ aggregation and the A2T NTFs can mitigate its toxicity. Our results provide a novel targeting site for future therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hung Liao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Hatami A, Monjazeb S, Milton S, Glabe CG. Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-β Peptide. J Biol Chem 2017; 292:3172-3185. [PMID: 28049728 DOI: 10.1074/jbc.m116.755264] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
Most cases of Alzheimer's disease (AD) are sporadic, but a small percentage of AD cases, called familial AD (FAD), are associated with mutations in presenilin 1, presenilin 2, or the amyloid precursor protein. Amyloid precursor protein mutations falling within the amyloid-β (Aβ) sequence lead to a wide range of disease phenotypes. There is increasing evidence that distinct amyloid structures distinguished by amyloid conformation-dependent monoclonal antibodies have similarly distinct roles in pathology. It is possible that this phenotypic diversity of FAD associated with mutations within the Aβ sequence is due to differences in the conformations adopted by mutant Aβ peptides, but the effects of FAD mutations on aggregation kinetics and conformational and morphological changes of the Aβ peptide are poorly defined. To gain more insight into this possibility, we therefore investigated the effects of 11 FAD mutations on the aggregation kinetics of Aβ, as well as its ability to form distinct conformations recognized by a panel of amyloid conformation-specific monoclonal antibodies. We found that most FAD mutations increased the rate of aggregation of Aβ. The FAD mutations also led to the adoption of alternative amyloid conformations distinguished by monoclonal antibodies and resulted in the formation of distinct aggregate morphologies as determined by transmission electron microscopy. In addition, several of the mutant peptides displayed a large reduction in thioflavin T fluorescence, despite forming abundant fibrils indicating that thioflavin T is a probe of conformational polymorphisms rather than a reliable indicator of fibrillization. Taken together, these results indicate that FAD mutations falling within the Aβ sequence lead to dramatic changes in aggregation kinetics and influence the ability of Aβ to form immunologically and morphologically distinct amyloid structures.
Collapse
Affiliation(s)
- Asa Hatami
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Sanaz Monjazeb
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 23218 Jeddah, Saudi Arabia.
| |
Collapse
|
43
|
ASAMOTO H, NAGASHIMA K, NAKAGAMA T, SAITOH K, MINAMISAWA H. Separation Analysis of Amyloid Fibrils Utilizing a PTFE Tube as a Separation Field. BUNSEKI KAGAKU 2017. [DOI: 10.2116/bunsekikagaku.66.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiromichi ASAMOTO
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| | - Kyosuke NAGASHIMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Tatsuro NAKAGAMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Kazunori SAITOH
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Hiroaki MINAMISAWA
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| |
Collapse
|
44
|
Girvan P, Miyake T, Teng X, Branch T, Ying L. Kinetics of the Interactions between Copper and Amyloid-β with FAD Mutations and Phosphorylation at the N terminus. Chembiochem 2016; 17:1732-7. [PMID: 27356100 PMCID: PMC5096041 DOI: 10.1002/cbic.201600255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 12/27/2022]
Abstract
Mutations and post‐translational modifications of amyloid‐β (Aβ) peptide in its N terminus have been shown to increase fibril formation, yet the molecular mechanism is not clear. Here we investigated the kinetics of the interactions of copper with two Aβ peptides containing Familial Alzheimer's disease (FAD) mutations (English (H6R) and Tottori (D7N)), as well as with Aβ peptide phosphorylated at serine 8 (pS8). All three peptides bind to copper with a similar rate as the wild‐type (wt). The dissociation rates follow the order pS8>H6R>wt>D7N; the interconversion between the two coordinating species occurs 50 % faster for H6R and pS8, whereas D7N had only a negligible effect. Interestingly, the rate of ternary complex (copper‐bridged heterodimer) formation for the modified peptides was significantly faster than that for wt, thus leading us to propose that FAD and sporadic AD might share a kinetic origin for the enhanced oligomerisation of Aβ.
Collapse
Affiliation(s)
- Paul Girvan
- Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Toru Miyake
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-0034, Japan
| | - Xiangyu Teng
- Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Thomas Branch
- Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Liming Ying
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
46
|
Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 2016; 139 Suppl 2:237-252. [DOI: 10.1111/jnc.13632] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Karran
- Alzheimer's Research UK Research; Cambridge Cambridgeshire UK
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Center for Human Genetics; Universitaire ziekenhuizen and LIND; KU Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| |
Collapse
|
47
|
Mezentsev YV, Medvedev AE, Kechko OI, Makarov AA, Ivanov AS, Mantsyzov AB, Kozin SA. Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: implication to amyloid seeding in Alzheimer's disease? J Biomol Struct Dyn 2016; 34:2317-26. [PMID: 26513486 DOI: 10.1080/07391102.2015.1113890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zinc ions and modified amyloid-beta peptides (Aβ) play a critical role in the pathological aggregation of endogenous Aβ in Alzheimer's disease (AD). Zinc-induced Aβ oligomerization is mediated by the metal-binding domain (MBD) which includes N-terminal residues 1-16 (Aβ1-16). Earlier, it has been shown that Aβ1-16 as well as some of its naturally occurring variants undergoes zinc-induced homodimerization via the interface in which zinc ion is coordinated by Glu11 and His14 of the interacting subunits. In this study using surface plasmon resonance technique, we have found that in the presence of zinc ions Aβ1-16 forms heterodimers with MBDs of two Aβ species linked to AD: Aβ containing isoAsp7 (isoAβ) and Aβ containing phosphorylated Ser8 (pS8-Aβ). The heterodimers appear to possess the same interface as the homodimers. Simulation of 200 ns molecular dynamic trajectories in two constructed models of dimers ([Aβ1-16/Zn/Aβ1-16] and [isoAβ1-16/Zn/Aβ1-16]), has shown that conformational flexibility of the N-terminal fragments of the dimer subunits is controlled by the structure of corresponding sites 6-8. The data suggest that isoAβ and pS8-Aβ can be involved in the AD pathogenesis by means of their zinc-dependent interactions with endogenous Aβ resulting in the formation of heterodimeric seeds for amyloid aggregation.
Collapse
Affiliation(s)
- Yuri V Mezentsev
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow 119991 , Russia
| | - Alexei E Medvedev
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow 119991 , Russia
| | - Olga I Kechko
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow 119991 , Russia
| | - Alexander A Makarov
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow 119991 , Russia
| | - Alexis S Ivanov
- b Institute of Biomedical Chemistry , Moscow 119121 , Russia
| | - Alexey B Mantsyzov
- c Faculty of Fundamental Medicine , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Sergey A Kozin
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow 119991 , Russia
| |
Collapse
|
48
|
Baram M, Atsmon-Raz Y, Ma B, Nussinov R, Miller Y. Amylin-Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Phys Chem Chem Phys 2016; 18:2330-8. [PMID: 26349542 PMCID: PMC4720542 DOI: 10.1039/c5cp03338a] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA. and Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| |
Collapse
|
49
|
Zhao J, Nelson TJ, Vu Q, Truong T, Stains CI. Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells. ACS Chem Biol 2016; 11:132-8. [PMID: 26492083 DOI: 10.1021/acschembio.5b00758] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Given the clear role of protein aggregation in human disease, there is a critical need for assays capable of quantifying protein aggregation in living systems. We hypothesized that the inherently low background and biocompatibility of luminescence signal readouts could provide a potential solution to this problem. Herein, we describe a set of self-assembling NanoLuc luciferase (Nluc) fragments that produce a tunable luminescence readout that is dependent upon the solubility of a target protein fused to the N-terminal Nluc fragment. To demonstrate this approach, we employed this assay in bacteria to assess mutations known to disrupt amyloid-beta (Aβ) aggregation as well as disease-relevant mutations associated with familial Alzheimer's diseases. The luminescence signal from these experiments correlates with the reported aggregation potential of these Aβ mutants and reinforces the increased aggregation potential of disease-relevant mutations in Aβ1-42. To further demonstrate the utility of this approach, we show that the effect of small molecule inhibitors on Aβ aggregation can be monitored using this system. In addition, we demonstrate that aggregation assays can be ported into mammalian cells. Taken together, these results indicate that this platform could be used to rapidly screen for mutations that influence protein aggregation as well as inhibitors of protein aggregation. This method offers a novel, genetically encodable luminescence readout of protein aggregation in living cells.
Collapse
Affiliation(s)
- Jia Zhao
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Travis J. Nelson
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Quyen Vu
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Tiffany Truong
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
50
|
Somavarapu AK, Kepp KP. Direct Correlation of Cell Toxicity to Conformational Ensembles of Genetic Aβ Variants. ACS Chem Neurosci 2015; 6:1990-6. [PMID: 26447342 DOI: 10.1021/acschemneuro.5b00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic analysis of conformational ensembles generated from multiseed molecular dynamics simulations of all 15 known genetic variants of Aβ42. We show that experimentally determined variant toxicities are largely explained by random coil content of the amyloid ensembles (correlation with smaller EC50 values; R(2) = 0.54, p = 0.01), and to some extent the helix character (more helix-character is less toxic, R(2) = 0.32, p = 0.07) and hydrophobic surface (R(2) = 0.37, p = 0.04). Our findings suggest that qualitative structural features of the amyloids, rather than the quantitative levels, are fundamentally related to neurodegeneration. The data provide molecular explanations for the high toxicity of E22 variants and for the protective features of the recently characterized A2T variant. The identified conformational features, for example, the local helix-coil-strand transitions of the C-terminals of the peptides, are of likely interest in the direct targeting of amyloids by rational drug design.
Collapse
Affiliation(s)
- Arun Kumar Somavarapu
- DTU Chemistry, Technical University of Denmark, Kemiorvet 206, DK-2800 Kongens Lyngby, Denmark
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of Denmark, Kemiorvet 206, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|