1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
EPA Modulates KLK Genes via miR-378: A Potential Therapy in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14112813. [PMID: 35681793 PMCID: PMC9179265 DOI: 10.3390/cancers14112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
It is known that miRNA-378a-3p (miR-378) could be induced by eicosapentaenoic acid (EPA), an omega-3 fatty acid. Herein, we first demonstrated how miR-378 exerts anti-prostate cancer (PCa) actions by influencing multiple target genes, including KLK2, KLK4, KLK6, and KLK14, which are implicated in PCa development, cell proliferation, and cell survival. Furthermore, these genes also correlate with androgen and mTOR signaling transduction, and are considered pivotal pathways for the onset and progression of PCa. In total, four PCa cell lines and eight pairing tissues (tumor vs. normal) from clinical PCa patients were included in the current study. The results showed high significance after EPA induced tumor cells containing higher expression levels of miR-378, and led the PCa cells having low cell viabilities, and they progressed to apoptosis when compared with normal prostate cells (p < 0.001). The findings indicated that EPA might become a potential therapy for PCa, especially because it is derived from the components of natural fish oil; it may prove to be a great help for solving the problem of castration-resistant prostate cancer (CRPC).
Collapse
|
3
|
An insilico study of KLK-14 protein and its inhibition with curcumin and its derivatives. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Sotiropoulou G, Zingkou E, Pampalakis G. Reconstructing the epidermal proteolytic cascades in health and disease. J Pathol 2022; 257:545-560. [PMID: 35218558 DOI: 10.1002/path.5888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
The epidermis is the outer stratified epithelium of the skin, forming the physical barrier that is indispensable for homeostasis. Epidermal proteolysis, mainly but not exclusively executed by kallikrein-related peptidases (KLKs), is tightly regulated to ensure maintenance of physiological skin renewal and an intact skin barrier. Perturbation of epidermal proteolytic networks is implicated in a wide array of rare and common skin pathologies of diverse genetic backgrounds. Recent studies of monogenic human skin diseases and newly developed animal models have revealed new mechanisms of regulation of proteolytic pathways in epidermal physiology and in disease states. These new data have challenged some accepted views, for example the role of matriptase in epidermal desquamation, which turned out to be restricted to mouse skin. The significance of PAR2 signaling in skin inflammation should also be reconsidered in the face of recent findings. Cumulatively, recent studies necessitate a sophisticated redefinition of the proteolytic and signaling pathways that operate in human skin. We elaborate how epidermal proteolysis is finely regulated at multiple levels, and in a spatial manner that was not taken into consideration so far, in which specific proteases are confined to distinct epidermal sublayers. Of interest, transglutaminases have emerged as regulators of epidermal proteolysis and desquamation by spatially fixing endogenous protease inhibitors, constituting regulatory factors that were not recognized before. Furthermore, new evidence suggests a link between proteolysis and lipid metabolism. By synthesis of established notions and recent discoveries, we provide an up-to-date critical parathesis of current knowledge and the extended complexity of proteolysis regulation and signaling pathways in skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | - Georgios Pampalakis
- Department of Pharmacology-Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| |
Collapse
|
5
|
Belitškin D, Pant SM, Munne P, Suleymanova I, Belitškina K, Hongisto HA, Englund J, Raatikainen T, Klezovitch O, Vasioukhin V, Li S, Wu Q, Monni O, Kuure S, Laakkonen P, Pouwels J, Tervonen TA, Klefström J. Hepsin regulates TGFβ signaling via fibronectin proteolysis. EMBO Rep 2021; 22:e52532. [PMID: 34515392 PMCID: PMC8567232 DOI: 10.15252/embr.202152532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor‐beta (TGFβ) is a multifunctional cytokine with a well‐established role in mammary gland development and both oncogenic and tumor‐suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFβ activity by acting as a storage compartment of latent‐TGFβ, but how TGFβ is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFβ signaling through the release of latent‐TGFβ from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFβ signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent‐TGFβ1, while overexpression of hepsin in mammary tumors increased TGFβ signaling. Cell‐free and cell‐based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent‐TGFβ and, importantly, that the ability of hepsin to activate TGFβ signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFβ pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Shishir M Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kati Belitškina
- Pathology Department, North Estonia Medical Centre, Tallinn, Estonia
| | - Hanna-Ala Hongisto
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Englund
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tiina Raatikainen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qingyu Wu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Outi Monni
- Research Programs Unit/Applied Tumor Genomics Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
6
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
7
|
Mella C, Figueroa CD, Otth C, Ehrenfeld P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front Cell Neurosci 2020; 14:166. [PMID: 32655372 PMCID: PMC7324807 DOI: 10.3389/fncel.2020.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two KLKs that are highly expressed in the adult central nervous system (CNS). Altered expression and activity of KLK6 have been linked to brain physiology and the development of multiple sclerosis. On the other hand, altered levels of KLK6 in the brain and serum of people affected by Alzheimer's disease and Parkinson's disease have been documented, pointing out to its function in amyloid metabolism and development of synucleinopathies. People who have structural genetic variants of KLK8 can suffer mental illnesses such as intellectual and learning disabilities, seizures, and autism. Increased expression of KLK8 has also been implicated in schizophrenia, bipolar disorder, and depression. Also, we discuss the possible link that exists between KLKs activity and certain viral infections that can affect the nervous system. Although little is known about the exact mechanisms that mediate KLKs function and their participation in neuroinflammatory and neurodegenerative disorders will open a new field to develop novel therapies to modulate their levels and/or activity and their harmful effects on the CNS.
Collapse
Affiliation(s)
- Cinthia Mella
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
de Oliveira TM, de Lacerda JTJG, Leite GGF, Dias M, Mendes MA, Kassab P, E Silva CGS, Juliano MA, Forones NM. Label-free peptide quantification coupled with in silico mapping of proteases for identification of potential serum biomarkers in gastric adenocarcinoma patients. Clin Biochem 2020; 79:61-69. [PMID: 32097616 DOI: 10.1016/j.clinbiochem.2020.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We aimed to identify serum level variations in protein-derived peptides between patients diagnosed with gastric adenocarcinoma (GAC) and non-cancer persons (control) to detect the activity changes of proteases and explore the auxiliary diagnostic value in the context of GAC physiopathology. METHODS The label-free quantitative peptidome approach was applied to identify variants in serum levels of peptides that can differentiate GAC patients from the control group. Peptide sequences were submitted against Proteasix tool predicting proteases potentially involved in their generation. The activity change of proteases was subsequently estimated based on the peptides with significantly altered relative abundance. In turn, activity change prediction of proteases was correlated with relevant protease expression data from the literature. RESULTS A total of 191 peptide sequences generated by the cleavage of 36 precursor proteins were identified. Using the label-free quantification approach, 33 peptides were differentially quantified (adjusted fold change ≥ 1.5 and p-value < 0.05) in which 19 were up-regulated and 14 were down-regulated in GAC samples. Of these peptides, fibrinopeptide A was significantly decreased and its phosphorylated form ADpSGEGDFLAEGGGVR was upregulated in GAC samples. Activity change prediction yielded 10 proteases including 6 Matrix Metalloproteinases (MMPs), Thrombin, Plasmin, and kallikreins 4 and 14. Among predicted proteases in our analysis, MMP-7 was presented as a more promising biomarker associated with useful assays of clinical practice for GAC diagnosis. CONCLUSION Our experimental results demonstrate that the serum levels of peptides were significantly differentiated in GAC physiopathology. The hypotheses built on protease regulation could be used for further investigations to measure proteases and their activity levels that have been poorly studied for GAC diagnosis.
Collapse
Affiliation(s)
- Talita Mendes de Oliveira
- Department of Medicine, Division of Gastroenterology, Oncology Group, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | | | - Meriellen Dias
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Anita Mendes
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Kassab
- Digestive Surgical Oncology Division, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | - Nora Manoukian Forones
- Department of Medicine, Division of Gastroenterology, Oncology Group, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Filippou PS, Ren AH, Soosaipillai A, Safar R, Prassas I, Diamandis EP, Conner JR. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response. Clin Biochem 2020; 77:41-47. [PMID: 31904348 DOI: 10.1016/j.clinbiochem.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Kallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues. DESIGN & METHODS Protein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members. RESULTS ELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation. CONCLUSION Overall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Roaa Safar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - James R Conner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
10
|
Chen X, Leahy D, Van Haeften J, Hartfield P, Prentis PJ, van der Burg CA, Surm JM, Pavasovic A, Madio B, Hamilton BR, King GF, Undheim EAB, Brattsand M, Harris JM. A Versatile and Robust Serine Protease Inhibitor Scaffold from Actinia tenebrosa. Mar Drugs 2019; 17:E701. [PMID: 31842369 PMCID: PMC6950308 DOI: 10.3390/md17120701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.
Collapse
Affiliation(s)
- Xingchen Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Darren Leahy
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Jessica Van Haeften
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Perry Hartfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Peter J. Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chloé A. van der Burg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Joachim M. Surm
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Ana Pavasovic
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Bruno Madio
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Brett R. Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Maria Brattsand
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden;
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
11
|
Kryza T, Bock N, Lovell S, Rockstroh A, Lehman ML, Lesner A, Panchadsaram J, Silva LM, Srinivasan S, Snell CE, Williams ED, Fazli L, Gleave M, Batra J, Nelson C, Tate EW, Harris J, Hooper JD, Clements JA. The molecular function of kallikrein-related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Mol Oncol 2019; 14:105-128. [PMID: 31630475 PMCID: PMC6944120 DOI: 10.1002/1878-0261.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.
Collapse
Affiliation(s)
- Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Mater Research Institute - The University of Queensland, Brisbane, Australia
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Scott Lovell
- Department of Chemistry, Imperial College London, UK
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Janaththani Panchadsaram
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Lakmali Munasinghage Silva
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Srilakshmi Srinivasan
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Cameron E Snell
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Edward W Tate
- Department of Chemistry, Imperial College London, UK
| | - Jonathan Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
12
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biol Chem 2019; 399:937-957. [PMID: 29885274 DOI: 10.1515/hsz-2018-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Department of Science, Universidad San Sebastián, sede De la Patagonia, Puerto Montt, Chile
| | - Kanti D Bhoola
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigaciones del Sistema Nervioso (CISNe), Valdivia, Chile, e-mail:
| |
Collapse
|
14
|
Zinc in Keratinocytes and Langerhans Cells: Relevance to the Epidermal Homeostasis. J Immunol Res 2018; 2018:5404093. [PMID: 30622978 PMCID: PMC6304883 DOI: 10.1155/2018/5404093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
In the skin, the epidermis is continuously exposed to various kinds of external substances and stimuli. Therefore, epidermal barriers are crucial for providing protection, safeguarding health, and regulating water balance by maintaining skin homeostasis. Disruption of the epidermal barrier allows external substances and stimuli to invade or stimulate the epidermal cells, leading to the elicitation of skin inflammation. The major components of the epidermal barrier are the stratum corneum (SC) and tight junctions (TJs). The presence of zinc in the epidermis promotes epidermal homeostasis; hence, this study reviewed the role of zinc in the formation and function of the SC and TJs. Langerhans cells (LCs) are one of the antigen-presenting cells found in the epidermis. They form TJs with adjacent keratinocytes (KCs), capture external antigens, and induce antigen-specific immune reactions. Thus, the function of zinc in LCs was examined in this review. We also summarized the general knowledge of zinc and zinc transporters in the epidermis with updated findings.
Collapse
|
15
|
Zingkou E, Pampalakis G, Kiritsi D, Valari M, Jonca N, Sotiropoulou G. Activography reveals aberrant proteolysis in desquamating diseases of differing backgrounds. Exp Dermatol 2018; 28:86-89. [PMID: 30390391 DOI: 10.1111/exd.13832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
Abstract
The role of epidermal proteolysis in overdesquamation was revealed in Netherton syndrome, a rare ichthyosis due to genetic deficiency of the LEKTI inhibitor of serine proteases. Recently, we developed activography, a new histochemical method, to spatially localize and semiquantitatively assess proteolytic activities using activity-based probes. Activography provides specificity and versatility compared to in situ zymography, the only available method to determine enzymatic activities in tissue biopsies. Here, activography was validated in skin biopsies obtained from an array of distinct disorders and compared with in situ zymography. Activography provides a methodological advancement due to its simplicity and specificity and can be readily adapted as a routine diagnostic assay. Interestingly, the levels of epidermal proteolysis correlated with the degree of desquamation independent of skin pathology. Thus, deregulated epidermal proteolysis likely represents a universal mechanism underlying aberrant desquamation.
Collapse
Affiliation(s)
- Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | | | - Nathalie Jonca
- Epithelial Differentiation and Rheumatoid Autoimmunity Unit (UDEAR), Hôpital Purpan, UMR 1056 Inserm - Université de Toulouse, Toulouse, Cedex 9, France
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
16
|
Wang C, Moya L, Clements JA, Nelson CC, Batra J. Mining human cancer datasets for kallikrein expression in cancer: the 'KLK-CANMAP' Shiny web tool. Biol Chem 2018; 399:983-995. [PMID: 30052511 DOI: 10.1515/hsz-2017-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/15/2022]
Abstract
The dysregulation of the serine-protease family kallikreins (KLKs), comprising 15 genes, has been reportedly associated with cancer. Their expression in several tissues and physiological fluids makes them potential candidates as biomarkers and therapeutic targets. There are several databases available to mine gene expression in cancer, which often include clinical and pathological data. However, these platforms present some limitations when comparing a specific set of genes and can generate considerable unwanted data. Here, several datasets that showed significant differential expression (p<0.01) in cancer vs. normal (n=118), metastasis vs. primary (n=15) and association with cancer survival (n=21) have been compiled in a user-friendly format from two open and/or publicly available databases Oncomine and OncoLnc for the 15 KLKs. The data have been included in a free web application tool: the KLK-CANMAP https://cancerbioinformatics.shinyapps.io/klk-canmap/. This tool integrates, analyses and visualises data and it was developed with the R Shiny framework. Using KLK-CANMAP box-plots, heatmaps and Kaplan-Meier graphs can be generated for the KLKs of interest. We believe this new cancer KLK focused web tool will benefit the KLK community by narrowing the data visualisation to only the genes of interest.
Collapse
Affiliation(s)
- Chenwei Wang
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland, 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, Queensland, 4059, Australia
| | - Leire Moya
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland, 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, Queensland, 4059, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland, 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, Queensland, 4059, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland, 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, Queensland, 4059, Australia
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland, 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, Queensland, 4059, Australia
| |
Collapse
|
17
|
De Vita E, Schüler P, Lovell S, Lohbeck J, Kullmann S, Rabinovich E, Sananes A, Heßling B, Hamon V, Papo N, Hess J, Tate EW, Gunkel N, Miller AK. Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity. J Med Chem 2018; 61:8859-8874. [DOI: 10.1021/acs.jmedchem.8b01106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elena De Vita
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Biosciences Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Peter Schüler
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Scott Lovell
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Jasmin Lohbeck
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Kullmann
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Eitan Rabinovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amiram Sananes
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bernd Heßling
- Center for Molecular Biology, University of Heidelberg, Heidelberg 69120, Germany
| | - Veronique Hamon
- European Screening Centre, Biocity Scotland, University of Dundee, Newhouse ML1 5UH, U.K
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Nikolas Gunkel
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Aubry K. Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| |
Collapse
|
18
|
Filippou PS, Ren AH, Soosaipillai A, Papaioannou MD, Korbakis D, Safar R, Diamandis EP, Conner JR. Expression profile of human tissue kallikrein 15 provides preliminary insights into its roles in the prostate and testis. Clin Biochem 2018; 59:78-85. [DOI: 10.1016/j.clinbiochem.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023]
|
19
|
Filippou PS, Ren AH, Bala S, Papaioannou MD, Brinc D, Prassas I, Karakosta T, Diamandis EP. Biochemical characterization of human tissue kallikrein 15 and examination of its potential role in cancer. Clin Biochem 2018; 58:108-115. [PMID: 29928903 DOI: 10.1016/j.clinbiochem.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Human tissue kallikrein 15 (KLK15) is the last cloned member of the KLK-related gene family. Despite being implicated in multiple cancers, its pathophysiological role remains unknown. We aimed to biochemically characterize KLK15 and preliminarily study its role in cancer. DESIGN & METHODS Recombinant KLK15 protein was produced, purified to homogeneity and quantified by mass spectrometry (parallel reaction monitoring analysis). We profiled the enzymatic activity of KLK15 using fluorogenic peptide substrates, and performed kinetic analysis to discover the cleavage sites. As KLK15 has mainly been associated with prostate cancer, we used a degradomic approach and subsequent KEGG pathway analysis to identify a number of putative protein substrates in the KLK15-treated prostate cancer cell line PC3. RESULTS We discovered trypsin-like activity in KLK15, finding that it cleaves preferentially after arginine (R). The enzymatic activity of KLK15 was regulated by different factors such as pH, cations and serine protease inhibitors. Notably, we revealed that KLK15 most likely interacts with the extracellular matrix (ECM) receptor group. CONCLUSION To our knowledge, this is the first study that experimentally verifies the trypsin-like activity of KLK15. We show here for the first time that KLK15 may be able to cleave many ECM components, similar to several members of the KLK family. Thus the protease could potentially be linked to tumorigenesis by promoting metastasis via this mechanism.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Sudarshan Bala
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Davor Brinc
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Theano Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
20
|
Dettmar L, Ahmed N, Kotzsch M, Diersch S, Napieralski R, Darmoul D, Schmitt M, Weichert W, Kiechle M, Dorn J, Magdolen V. Advanced high-grade serous ovarian cancer: inverse association of KLK13 and KLK14 mRNA levels in tumor tissue and patients' prognosis. J Cancer Res Clin Oncol 2018; 144:1109-1118. [PMID: 29546479 DOI: 10.1007/s00432-018-2623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Gene expression of a variety of the 15 members of the KLK serine protease family is dysregulated in ovarian cancer. We aimed at determining the clinical relevance of KLK13 and KLK14 mRNA expression in tumor tissues of a homogeneous patient cohort afflicted with advanced high-grade serous ovarian cancer (FIGO stage III/IV). METHODS mRNA expression levels of KLK13 and KLK14 were assessed by quantitative PCR in tumor tissue of 91 patients and related with clinical factors and patients' outcome. RESULTS There was no significant association of KLK13 and KLK14 mRNA expression with the clinical factors ascitic fluid volume or residual tumor mass. In univariate Cox regression analysis, elevated KLK13 mRNA levels were significantly linked with shorter progression-free (PFS; hazard ratio [HR] = 1.97, P = 0.020) and overall survival (OS; HR = 1.81, P = 0.041). High KLK14 mRNA levels were significantly associated with prolonged PFS (HR = 0.44, P = 0.017) and showed a trend towards significance for OS (HR = 0.55, P = 0.070). In multivariable analysis, including the factors age, residual tumor mass, ascitic fluid volume, KLK13, and KLK14, both KLKs, apart from residual tumor mass, remained statistically independent predictive markers: patients with high KLK13 mRNA expression levels displayed a more than twofold increase risk for shorter PFS (HR = 2.14, P = 0.020) as well as OS (HR = 2.05, P = 0.028), whereas elevated KLK14 mRNA values were found to be significant for both, prolonged PFS (HR = 0.36, P = 0.007) and OS (HR = 0.46, P = 0.037). CONCLUSION These results indicate that in advanced high-grade serous ovarian cancer KLK13 may become proficient for tumor-supporting functions, whereas KLK14 may have adopted tumor-suppressing activity.
Collapse
Affiliation(s)
- Larissa Dettmar
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nancy Ahmed
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | | | - Sandra Diersch
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rudolf Napieralski
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
- Therawis Diagnostics, Munich, Germany
| | - Dalila Darmoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Hopital Saint Louis, Paris, France
- Universite Paris Diderot, Sorbonne Paris Cite, UMRS-S976, Paris, France
| | - Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
- Therawis Diagnostics, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München and German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
21
|
Kryza T, Parent C, Pardessus J, Petit A, Burlaud-Gaillard J, Reverdiau P, Iochmann S, Labas V, Courty Y, Heuzé-Vourc'h N. Human kallikrein-related peptidase 12 stimulates endothelial cell migration by remodeling the fibronectin matrix. Sci Rep 2018; 8:6331. [PMID: 29679011 PMCID: PMC5910384 DOI: 10.1038/s41598-018-24576-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
Kallikrein-related peptidase 12 (KLK12) is a kallikrein family peptidase involved in angiogenesis - a complex biological process in which the sprouting, migration and stabilization of endothelial cells requires extracellular matrix remodeling. To characterize the molecular mechanisms associated with KLK12's proangiogenic activity, we evaluated its ability to hydrolyze various matrix proteins. Our results show that KLK12 efficiently cleaved the human extracellular matrix proteins fibronectin and tenascin, both of which are involved in the regulation of endothelial cell adhesion and migration. For fibronectin, the major proteolytic product generated by KLK12 was a 29 kDa fragment containing the amino-terminal domain and the first five type I fibronectin-domains, which are essential for regulating fibronectin assembly. We also demonstrated that KLK12-mediated fibronectin proteolysis antagonizes fibronectin polymerization and fibronectin fibril formation by endothelial cells, leading to an increase in cell migration. Furthermore, a polyclonal antibody raised against KLK12's proteolytic cleavage site on fibronectin prevented the KLK12-dependent inhibition of fibronectin polymerization and the KLK12-mediated pro-migratory effect on endothelial cells. Taken as a whole, our results indicate that KLK12's proangiogenic effect is mediated through several molecular mechanisms.
Collapse
Affiliation(s)
- T Kryza
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France.,Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - C Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Pardessus
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - A Petit
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Burlaud-Gaillard
- Université François Rabelais de Tours, F-37032, Tours, France.,Plateforme IBiSA de Microscopie Electronique, Université François Rabelais de Tours, F-37032, Tours, France
| | - P Reverdiau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - S Iochmann
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - V Labas
- PRC, INRA, CNRS, Université François Rabelais de Tours, IFCE, F-37380, Nouzilly, France.,PAIB, CIRE, INRA, CHRU de Tours, Université François Rabelais de Tours, F-37380, Nouzilly, France
| | - Y Courty
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France. .,Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
22
|
Hashem NN, Mara TW, Mohamed M, Zhang I, Fung K, Kwan KF, Daley TD, Diamandis EP, Darling MR. Human Kallikrein 14 (Klk14) Expression in Salivary Gland Tumors. Int J Biol Markers 2018; 25:32-7. [DOI: 10.1177/172460081002500105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To analyze the expression of human kallikrein 14 (KLK14) in salivary gland tumors. Methods A standard immunoperoxidase staining technique was used to assess the expression profile of KLK14 in normal salivary glands and tumors including pleomorphic adenoma (PA; n=17), adenoid cystic carcinoma (ACC; n=13) and mucoepidermoid carcinoma (MEC; n=9). Tumor stage, grade, patient age and gender, and site of occurrence were recorded. These clinical parameters were correlated with KLK14 levels in malignant tumors. The expression profiles for KLK3, 5, 6, 8 and 13 were also retrieved. Results Normal salivary glands, PA, ACC and MEC showed strong expression of KLK14 in ductal and non-ductal cells. Both PA and ACC showed higher KLK14 levels than normal glands and MEC tissues. There were no statistically significant associations between levels of KLK14 and clinical parameters. Conclusions The differences in the levels of KLK14 suggest that KLKs may aid in the differential diagnosis of salivary gland tumors. The coexpression of KLKs suggests their possible involvement in an enzymatic pathway activated in salivary gland. KLK14 may be a promising new biomarker in salivary gland tumors.
Collapse
Affiliation(s)
- Nelly N. Hashem
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Thomas W. Mara
- Department of Oral Medicine and Radiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Mohamed Mohamed
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Irene Zhang
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Kevin Fung
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Keith F. Kwan
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Thomas D. Daley
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario - Canada
| | - Mark R. Darling
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
23
|
Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin – from physiology to diseases to therapeutic options. Thromb Haemost 2017; 110:442-9. [DOI: 10.1160/th12-11-0836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 12/21/2022]
Abstract
SummaryKallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases, which show a tissue-specific expression profile. This made them valuable tumour expression markers. It became evident that KLKs are involved in many physiological processes like semen liquefaction and skin desquamation. More recently, we have learnt that they are involved in many pathophysiological conditions and diseases making them promising target of therapeutic intervention. Therefore, regulation of KLKs raised the interest of numerous reports. Herein, we summarise the current knowledge on KLKs regulation with an emphasis on skin-relevant KLKs regulation processes. Regulation of KLKs takes place on the level of transcription, on protease activation and on protease inactivation. A variety of protease inhibitors has been described to interact with KLKs including the irreversible serine protease inhibitors (SERPINs) and the reversible serine protease inhibitors of Kazal-type (SPINKs). In an attempt to integrate current knowledge, we propose that KLK regulation has credentials as targets for therapeutic intervention.
Collapse
|
24
|
Biochemical and functional characterization of the human tissue kallikrein 9. Biochem J 2017; 474:2417-2433. [DOI: 10.1042/bcj20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.
Collapse
|
25
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
26
|
Genome-wide gene expression profiling of tongue squamous cell carcinoma by RNA-seq. Clin Oral Investig 2017; 22:209-216. [PMID: 28357642 DOI: 10.1007/s00784-017-2101-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Tongue squamous cell carcinoma (TSCC) is significantly more malignant than other type of oral squamous cell carcinoma (OSCC). In this study, we aimed to identify specific global gene expression signatures of TSCC to investigate the more invasive behavior of the deeply infiltrating cancer. METHODS Using RNA-seq technology, we detected gene expression of 20 TSCCs, 20 matched paratumor tissues, and 10 healthy normal mucosa tissues. Enrichment analysis of gene ontology (GO) and pathway was conducted using online tools DAVID for the dysregulated genes. Additionally, we performed the quantitative real-time RT-PCR (qRT-PCR) to validate the findings of RNA-Seq in 10 samples of TSCC, matched paratumor, and normal mucosa, respectively. RESULTS We detected 252 differentially expressed genes (DEGs) between TSCC and matched paratumor tissue, including 117 up-regulated and 135 down-regulated genes. For comparison between TSCC and normal mucosa, 234 DEGS were identified, consisting of 67 up-regulated and 167 down-regulated genes. For both two comparisons, GO categories of muscle contraction (GO: 0006936), epidermis development (GO: 0008544), epithelial cell differentiation (GO: 0030855), and keratinization (GO: 0031424) were commonly enriched. Altered gene expression affected some cancer-related pathways, such as tight junction. The qRT-PCR validation showed that gene expression patterns of FOLR1, NKX3-1, TFF3, PIGR, NEFL, MMP13, and HMGA2 were fully in concordance with RNA-Seq results. CONCLUSION Findings in this study demonstrated the genetic and molecular alterations associated with TSCC, providing new clues for understanding the molecular mechanisms of TSCC pathogenesis.
Collapse
|
27
|
Filippou P, Korbakis D, Farkona S, Soosaipillai A, Karakosta T, Diamandis EP. A new enzyme-linked immunosorbent assay (ELISA) for human free and bound kallikrein 9. Clin Proteomics 2017; 14:4. [PMID: 28115917 PMCID: PMC5241945 DOI: 10.1186/s12014-017-9140-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Kallikrein 9 (KLK9) is a member of the human kallikrein-related peptidases family, whose physiological role and implications in disease processes remain unclear. The active form of the enzyme is predicted to have chymotryptic activity. In the present study, we produced for the first time the active recombinant protein and monoclonal antibodies, and developed novel immunoassays for the quantification of free and bound KLK9 in biological samples. Methods The coding sequence of mature KLK9 isoform (mat-KLK9) was expressed in an Expi293F mammalian system and the synthesized polypeptide was purified through a two-step protocol. The purified protein was used as an immunogen for production of monoclonal antibodies in mice. Hybridomas were further expanded and antibodies were purified. Newly-produced monoclonal antibodies were screened for reaction with the KLK9 recombinant protein by a state-of-the-art immunocapture/parallel reaction monitoring mass spectrometry-based methodology. Results Anti-KLK9 antibodies were combined in pairs, resulting in the development of a highly sensitive (limit of detection: 15 pg/mL) and specific (no cross-reactivity with other KLKs) sandwich-type ELISA. Highest KLK9 protein levels were found in tonsil and sweat and lower levels in the heart, kidney and liver. Hybrid immunoassays using an anti-KLK9 antibody for antigen capture and various anti-serine protease inhibitor polyclonal antibodies, revealed the presence of an a1-antichymotrypsin-bound KLK9 isoform in biological samples. Conclusions The ELISAs for free and bound forms of KLK9 may be highly useful for the detection of KLK9 in a broad range of biological samples, thus enabling the clarification of KLK9 function and use as a potential disease biomarker. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panagiota Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Sofia Farkona
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Theano Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Mount Sinai Hospital, Joseph & Wolf Lebovic Ctr., 60 Murray St [Box 32], Flr 6 - Rm L6-201, Toronto, ON M5T 3L9 Canada
| |
Collapse
|
28
|
Fan J, Ning B, Lyon CJ, Hu TY. Circulating Peptidome and Tumor-Resident Proteolysis. PEPTIDOMICS OF CANCER-DERIVED ENZYME PRODUCTS 2017; 42:1-25. [DOI: 10.1016/bs.enz.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
de Veer SJ, Swedberg JE, Brattsand M, Clements JA, Harris JM. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem 2016; 397:1237-1249. [DOI: 10.1515/hsz-2016-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Collapse
|
30
|
Reid JC, Bennett NC, Stephens CR, Carroll ML, Magdolen V, Clements JA, Hooper JD. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol Chem 2016; 397:1299-1305. [DOI: 10.1515/hsz-2016-0163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Abstract
Kallikrein-related peptidase (KLK) 14 is a serine protease linked to several pathologies including prostate cancer. We show that KLK14 has biphasic effects in vitro on activating and inhibiting components of the prostate cancer associated hepatocyte growth factor (HGF)/Met system. At 5–10 nm, KLK14 converts pro-HGF to the two-chain heterodimer required for Met activation, while higher concentrations degrade the HGF α-chain. HGF activator-inhibitor (HAI)-1A and HAI-1B, which inhibit pro-HGF activators, are degraded by KLK14 when protease:inhibitor stoichiometry is 1:1 or the protease is in excess. When inhibitors are in excess, KLK14 generates HAI-1A and HAI-1B fragments known to inhibit pro-HGF activating serine proteases. These in vitro data suggest that increased KLK14 activity could contribute at multiple levels to HGF/Met-mediated processes in prostate and other cancers.
Collapse
|
31
|
Abstract
Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Collapse
|
32
|
De Lorenzi V, Sarra Ferraris GM, Madsen JB, Lupia M, Andreasen PA, Sidenius N. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin. EMBO Rep 2016; 17:982-98. [PMID: 27189837 DOI: 10.15252/embr.201541681] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process.
Collapse
Affiliation(s)
- Valentina De Lorenzi
- Unit of Cell Matrix Signalling, IFOM The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Jeppe B Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michela Lupia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Nicolai Sidenius
- Unit of Cell Matrix Signalling, IFOM The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
33
|
Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 2016; 20:801-18. [PMID: 26941073 DOI: 10.1517/14728222.2016.1147560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Tissue kallikrein and the kallikrein-related peptidases (KLKs) constitute a family of 15 homologous secreted serine proteases with trypsin- or chymotrypsin-like activities, which participate in a broad spectrum of physiological procedures. Deregulated expression and/or activation of the majority of the family members have been reported in several human diseases, thereby making KLKs ideal targets for therapeutic intervention. AREAS COVERED In the present review, we summarize the role of KLKs in normal human physiology and pathology, focusing on prostate cancer and skin diseases. Furthermore, we discuss the recent advances in the development of KLK-based therapies. A great number of diverse engineered KLKs inhibitors with improved potency, selectivity and immunogenicity have been synthesized by redesigning examples that are endogenous and naturally occurring. Moreover, encouraging results have been documented using KLKs-based vaccines and immunotherapies, as well as KLKs-mediated activation of pro-drugs. Finally, KLKs-targeting aptamers and KLKs-based imaging tools represent novel approaches towards the exploitation of KLKs' therapeutic value. EXPERT OPINION The central/critical roles of KLK family in several human pathologies highlight KLKs as attractive molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Margaritis Avgeris
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| | - Andreas Scorilas
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| |
Collapse
|
34
|
Santos JA, Kondo MY, Freitas RF, dos Santos MH, Ramalho TC, Assis DM, Juliano L, Juliano MA, Puzer L. The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins. Bioorg Med Chem Lett 2016; 26:1485-9. [DOI: 10.1016/j.bmcl.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
35
|
Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice. Pharmacol Res 2016; 105:84-92. [PMID: 26804251 DOI: 10.1016/j.phrs.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.
Collapse
|
36
|
Kallikreins - The melting pot of activity and function. Biochimie 2015; 122:270-82. [PMID: 26408415 DOI: 10.1016/j.biochi.2015.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered.
Collapse
|
37
|
Correlation between KLK6 expression and the clinicopathological features of glioma. Contemp Oncol (Pozn) 2014; 18:246-51. [PMID: 25258582 PMCID: PMC4171478 DOI: 10.5114/wo.2014.44628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 11/17/2022] Open
Abstract
Aim of the study We measured the impact of changing KLK6 expression levels on the pathological grade of gliomas and on proliferation rate, cell cycle progression, and apoptosis in the U251 glioblastoma cell line. Material and methods The expression of KLK6 in 35 brain glioma tissues and adjacent noncancerous tissues was measured using real-time quantitative polymerase chain reaction (PCR) and the relationship between KLK6 expression and pathological grades was analysed. Results The KLK6 expression in U251 cells was silenced by a specific siRNA, and the effects on proliferation, the cell cycle, and apoptosis were compared to wild type cells. Expression of KLK6 was downregulated in gliomas relative to matched noncancerous tissue. There was no obvious relationship between patient sex, pathological grade, or tumour classification and the expression of KLK6. In the U251 cell line, cell proliferation was enhanced and the fractions of cells in the G2 and S phases were increased by siRNA-mediated KLK6 silencing. Conclusions Expression of KLK6 inhibits tumour growth. Decreased KLK6 expression may be a possible risk factor for glioma.
Collapse
|
38
|
Rafi MM, Kanakasabai S, Gokarn SV, Krueger EG, Bright JJ. Dietary lutein modulates growth and survival genes in prostate cancer cells. J Med Food 2014; 18:173-81. [PMID: 25162762 DOI: 10.1089/jmf.2014.0003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lutein is a carotenoid pigment present in fruits and vegetables that has anti-inflammatory and antitumor properties. In this study, we examined the effect of lutein on proliferation and survival-associated genes in prostate cancer (PC-3) cells. We found that in vitro culture of PC-3 cells with lutein induced mild decrease in proliferation that improved in combination treatment with peroxisome proliferator-activated receptor gamma (PPARγ) agonists and other chemotherapeutic agents. Flow cytometry analyses showed that lutein improved drug-induced cell cycle arrest and apoptosis in prostate cancer. Gene array and quantitative reverse transcription-polymerase chain reaction analyses showed that lutein altered the expression of growth and apoptosis-associated biomarker genes in PC-3 cells. These findings highlight that lutein modulates the expression of growth and survival-associated genes in prostate cancer cells.
Collapse
Affiliation(s)
- Mohamed M Rafi
- 1 Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey , New Brunswick, New Jersey, USA
| | | | | | | | | |
Collapse
|
39
|
Fuhrman-Luck RA, Silva ML, Dong Y, Irving-Rodgers H, Stoll T, Hastie ML, Loessner D, Gorman JJ, Clements JA. Proteomic and other analyses to determine the functional consequences of deregulated kallikrein-related peptidase (KLK) expression in prostate and ovarian cancer. Proteomics Clin Appl 2014; 8:403-15. [PMID: 24535680 DOI: 10.1002/prca.201300098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/23/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023]
Abstract
Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. MS-driven proteomics uniquely allows for the detection, identification, and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review, we describe applications of this technology in KLK biomarker discovery and elucidate MS-based techniques that have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Ruth Anna Fuhrman-Luck
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kryza T, Achard C, Parent C, Marchand-Adam S, Guillon-Munos A, Iochmann S, Korkmaz B, Respaud R, Courty Y, Heuzé-Vourc'h N. Angiogenesis stimulated by human kallikrein-related peptidase 12 acting via a platelet-derived growth factor B-dependent paracrine pathway. FASEB J 2013; 28:740-51. [PMID: 24225148 DOI: 10.1096/fj.13-237503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KLK12, a kallikrein peptidase, is thought to take part in the control of angiogenesis. Our analysis of the secretome of endothelial cells (ECs) that had been treated with KLK12 showed that KLK12 converts the extracellular matrix- or membrane-bound precursor of platelet-derived growth factor B (PDGF-B) into a soluble form. Both PDGF-B and vascular endothelial growth factor A (VEGF-A) take part in the induction of angiogenesis by KLK12 in a coculture model of angiogenesis that mimics endothelial tubule formation. We used a cellular approach to analyze the interplay between KLK12, PDGF-B, and VEGF-A and showed that release of PDGF-B by KLK12 leads to the fibroblast-mediated secretion of VEGF-A. This then stimulates EC differentiation and the formation of capillary tube-like structures. Thus, KLK12 favors the interaction of ECs and stromal cells. The released PDGF-B acts as a paracrine factor that modulates VEGF-A secretion by stromal cells, which ultimately leads to angiogenesis. Moreover, the genes encoding KLK12 and PDGFB are both expressed in ECs and up-regulated in tumor cells kept under hypoxic conditions, which is consistent with the physiological involvement of KLK12 in PDGF-B maturation.
Collapse
Affiliation(s)
- Thomas Kryza
- 2CEPR INSERM U1100/EA 6305, Faculté de Médecine, 10 Blvd. Tonnellé, F-37032 Tours cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oikonomopoulou K, DeAngelis RA, Chen H, Diamandis EP, Hollenberg MD, Ricklin D, Lambris JD. Induction of complement C3a receptor responses by kallikrein-related peptidase 14. THE JOURNAL OF IMMUNOLOGY 2013; 191:3858-66. [PMID: 24014879 DOI: 10.4049/jimmunol.1202999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of the complement system is primarily initiated by pathogen- and damage-associated molecular patterns on cellular surfaces. However, there is increasing evidence for direct activation of individual complement components by extrinsic proteinases as part of an intricate crosstalk between physiological effector systems. We hypothesized that kallikrein-related peptidases (KLKs), previously known to regulate inflammation via proteinase-activated receptors, can also play a substantial role in innate immune responses via complement. Indeed, KLKs exemplified by KLK14 were efficiently able to cleave C3, the point of convergence of the complement cascade, indicating a potential modulation of C3-mediated functions. By using in vitro fragmentation assays, mass spectrometric analysis, and cell signaling measurements, we pinpointed the generation of the C3a fragment of C3 as a product with potential biological activity released by the proteolytic action of KLK14. Using mice with various complement deficiencies, we demonstrated that the intraplantar administration of KLK14 results in C3-associated paw edema. The edema response was dependent on the presence of the receptor for C3a but was not associated with the receptor for the downstream complement effector C5a. Our findings point to C3 as one of the potential substrates of KLKs during inflammation. Given the wide distribution of the KLKs in tissues and biological fluids where complement components may also be expressed, we suggest that via C3 processing, tissue-localized KLKs can play an extrinsic complement-related role during activation of the innate immune response.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | |
Collapse
|
42
|
Hockla A, Miller E, Salameh MA, Copland JA, Radisky DC, Radisky ES. PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer. Mol Cancer Res 2013; 10:1555-66. [PMID: 23258495 DOI: 10.1158/1541-7786.mcr-12-0314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin that has been associated with breast, lung, and pancreatic cancer cell malignancy. In analyses of open source transcriptional microarray data, we find that PRSS3 expression is upregulated in metastatic prostate cancer tissue, and that expression of PRSS3 in primary prostate tumors is prognostic of systemic progression following prostatectomy. Using a mouse orthotopic model with bioluminescent imaging, we show that PRSS3/mesotrypsin is critical for prostate cancer metastasis. Silencing of PRSS3 inhibits anchorage-independent growth of prostate cancer cells in soft agar assays, and suppresses invasiveness in Matrigel transwell assays and three-dimensional (3D) cell culture models. We further show that treatment with recombinant mesotrypsin directly promotes an invasive cellular phenotype in prostate cancer cells and find that these effects are specific and require the proteolytic activity of mesotrypsin, because neither cationic trypsin nor a mesotrypsin mutant lacking activity can drive the invasive phenotype. Finally, we show that a newly developed, potent inhibitor of mesotrypsin activity can suppress prostate cancer cell invasion to a similar extent as PRSS3 gene silencing. This study defines mesotrypsin as an important mediator of prostate cancer progression and metastasis, and suggests that inhibition of mesotrypsin activity may provide a novel modality for prostate cancer treatment.
Collapse
Affiliation(s)
- Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
43
|
Di Rosa M, Malaguarnera M, Zanghì A, Passaniti A, Malaguarnera L. Vitamin D3 insufficiency and colorectal cancer. Crit Rev Oncol Hematol 2013; 88:594-612. [PMID: 23941729 DOI: 10.1016/j.critrevonc.2013.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 12/15/2022] Open
Abstract
Traditionally the main recognized function of vitamin D has been calcium and phosphate homeostasis. Nevertheless, recent evidences have highlighted the importance of vitamin D3 as a protective agent against various cancers. The association between CRC and vitamin D3 was first suggested in ecologic studies, but further was confirmed by observational studies in humans and experimental studies in both animal models and cellular lines. The protective role of vitamin D3 against cancer has been attributed to its influence of on cell proliferation, differentiation, apoptosis, DNA repair mechanisms, inflammation and immune function. In its active (calcitriol) form (1,25-dihydroxyvitamin D3[1α,25-(OH)2D3]) vitamin D3 and the nuclear vitamin D receptor (VDR) regulate hundreds of genes including those coding for proteins involved in cell differentiation and cell proliferation. The current review addresses some of the key mechanisms that influence the biological actions of vitamin D and its metabolites. The insights derived from these mechanisms may aid in designing new uses for this hormone and its non-hypercalcemic derivatives in the treatment and/or prevention of CRC.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
44
|
Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb Haemost 2012; 109:716-25. [PMID: 23224034 DOI: 10.1160/th12-07-0518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
Abstract
Currently available colon cancer (CC) markers lack sensitivity and specificity. Kallikrein-related peptidases (KLKs) present a new class of biomarkers under investigation for diverse diseases, including cancer. KLKs are co-expressed in various tissues participating in proteolytic cascades. KLK7 in human tumours facilitates metastasis by degrading components of the extracellular matrix. KLK14 promotes tumourigenesis by activating proteinase-activated receptors. In the present study we examined the concomitant expression of KLK7 and KLK14 in245 colonic tissue specimens from 175 patients; 70 were pairs of cancerous-normal tissues, 31 were cancerous tissues and 74 were colonic adenomas. We used quantitative real-time PCR and proved that both genes are up-regulated in CC at the mRNA level. Receiver-operating characteristic (ROC) analysis of our results showed that both genes have discriminatory value between CC and adenoma tissues, with KLK14 obtaining greater distinguishing power (area under the curve [AUC]=0.708 for KLK14; AUC=0.669 for KLK7). Current work showed that the two genes are fairly co-expressed in all three types of colon tissues examined (normal rs=0.667, p<0.001, adenomas rs=0.373, p=0.001, carcinomas rs=0.478, p<0.001). KLK14 is associated with shorter disease-free survival (DFS) and overall survival (OS) of patients (p=0.003, p=0.016 respectively), whereas KLK7only with shorter DFS (p=0.004). KLK7 and KLK14 gene expression can be regarded as markers of poor prognosis for CC patients with discriminating power between CC and adenoma patients.
Collapse
Affiliation(s)
- Marina Devetzi
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, Saint Savvas Cancer Hospital, 171, Alexandras Avenue, Athens 11522, Greece
| | | | | | | | | |
Collapse
|
45
|
Stratum corneum proteases and dry skin conditions. Cell Tissue Res 2012; 351:217-35. [DOI: 10.1007/s00441-012-1501-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
|
46
|
Sanchez WY, de Veer SJ, Swedberg JE, Hong EJ, Reid JC, Walsh TP, Hooper JD, Hammond GL, Clements JA, Harris JM. Selective cleavage of human sex hormone-binding globulin by kallikrein-related peptidases and effects on androgen action in LNCaP prostate cancer cells. Endocrinology 2012; 153:3179-89. [PMID: 22547569 DOI: 10.1210/en.2012-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.
Collapse
Affiliation(s)
- Washington Y Sanchez
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chung H, Hamza M, Oikonomopoulou K, Gratio V, Saifeddine M, Virca GD, Diamandis EP, Hollenberg MD, Darmoul D. Kallikrein-related peptidase signaling in colon carcinoma cells: targeting proteinase-activated receptors. Biol Chem 2012; 393:413-20. [DOI: 10.1515/bc-2011-231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/05/2011] [Indexed: 11/15/2022]
Abstract
AbstractWe hypothesized that kallikrein-related peptidase 14 (KLK14) is produced by colonic tumors and can promote tumorigenesis by activating proteinase-activated receptors (PARs). We found that KLK14 is expressed in human colon adenocarcinoma cells but not in adjacent cancer-free tissue; KLK14 mRNA, present in colon cancer, leads to KLK14 protein expression and secretion; and KLK14 signals viaPAR-2 in HT-29 cells to cause (1) receptor activation/internalization, (2) increases in intracellular calcium, (3) stimulation of ERK1/2/MAP kinase phosphorylation, and (4) cell proliferation. We suggest that KLK14, acting via PAR-2, represents an autocrine/paracrine regulator of colon tumorigenesis.
Collapse
|
48
|
Liang G, Chen X, Aldous S, Pu SF, Mehdi S, Powers E, Xia T, Wang R. Human kallikrein 6 inhibitors with a para-amidobenzylanmine P1 group identified through virtual screening. Bioorg Med Chem Lett 2012; 22:2450-5. [DOI: 10.1016/j.bmcl.2012.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
49
|
Anisuzzaman, Islam MK, Alim MA, Miyoshi T, Hatta T, Yamaji K, Matsumoto Y, Fujisaki K, Tsuji N. Longistatin is an unconventional serine protease and induces protective immunity against tick infestation. Mol Biochem Parasitol 2011; 182:45-53. [PMID: 22206819 DOI: 10.1016/j.molbiopara.2011.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/28/2023]
Abstract
Classical serine proteases use the conserved Ser/His/Asp catalytic triad to hydrolyze substrates. Here, we show that longistatin, a salivary gland protein with two EF-hand domains from the vector tick Haemaphysalis longicornis, does not have the conserved catalytic triad, but still functions as a serine protease. Longistatin was synthesized in and secreted from the salivary glands of ticks, and is injected into host tissues during the acquisition of blood-meals. Longistatin hydrolyzed fibrinogen, an essential plasma protein in the coagulation cascade, and activated plasminogen, into its active form plasmin, a serine protease that dissolves fibrin clots. Longistatin efficiently hydrolyzed several serine protease-specific substrates showing its specificity to the amide bond of Arg. Longistatin did not hydrolyze synthetic substrates specific for other groups of proteases. The enzyme was active at a wide range of temperatures and pHs, with the optimum at 37°C and pH 7. Its activity was efficiently inhibited by various serine protease inhibitors such as phenylmethanesulfonyl fluoride (PMSF), aprotinin, antipain, and leupeptin with the estimated IC(50) of 278.57 μM, 0.35 μM, 41.56 μM and 198.86 μM, respectively. In addition, longistatin was also potently inhibited by Zinc (Zn(2+)) in a concentration-dependent manner with an IC(50) value of 275 μM, and the inhibitory effect of Zn(2+) was revived by ethylenediaminetetra acetic acid (EDTA). Immunization studies revealed that longistatin sharply induced high levels of protective IgG antibodies against ticks. Immunization with longistatin reduced repletion of ticks by about 54%, post engorgement body weight by >11% and molting of nymphs by approximately 34%; thus, the vaccination trial was approximately 73% effective against tick infestation. Taken together, our results suggest that longistatin is a new potent atypical serine protease, and may be an interesting candidate for the development of anti-tick vaccines.
Collapse
Affiliation(s)
- Anisuzzaman
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gratio V, Loriot C, Virca GD, Oikonomopoulou K, Walker F, Diamandis EP, Hollenberg MD, Darmoul D. Kallikrein-related peptidase 14 acts on proteinase-activated receptor 2 to induce signaling pathway in colon cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2625-36. [PMID: 21907696 DOI: 10.1016/j.ajpath.2011.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022]
Abstract
Serine proteinases participate in tumor growth and invasion by cleaving and activating proteinase-activated receptors (PARs). Recent studies have implicated PAR-1 and PAR-4 (activated by thrombin) and PAR-2 (activated by trypsin but not by thrombin) in human colon cancer growth. The endogenous activators of PARs in colon tumors, however, are still unknown. We hypothesize that the kallikrein-related peptidase (KLK) family member KLK14, a known tumor biomarker, is produced by colonic tumors and signals to human colon cancer cells by activating PARs. We found that i) KLK14 mRNA was present in 16 human colon cancer cell lines, ii) KLK14 protein was expressed and secreted in colon cancer cell lines, and iii) KLK14 (0.1 μmol/L) induced increases in intracellular calcium in HT29, a human colon cancer-derived cell line. KLK14-induced calcium flux was associated with internalization of KLK14-mediated activation of PAR-2. Furthermore, KLK14 induced significant extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation and HT29 cell proliferation, presumably by activating PAR-2. A PAR-2 cleavage and activation-blocking antibody dramatically reduced KLK14-induced ERK1/2 signaling. Finally, ectopic expression of KLK14 in human colon adenocarcinomas and its absence in normal epithelia was demonstrated by IHC analysis. These results demonstrate, for the first time, the aberrant expression of KLK14 in colon cancer and its involvement in PAR-2 receptor signaling. Thus, KLK14 and its receptor, PAR-2, may represent therapeutic targets for colon tumorigenesis.
Collapse
Affiliation(s)
- Valérie Gratio
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773, Centre de Recherche Biomédicale Bichat-Beaujon, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|