1
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
2
|
Winkler R, Piskor EM, Kosan C. Lessons from Using Genetically Engineered Mouse Models of MYC-Induced Lymphoma. Cells 2022; 12:37. [PMID: 36611833 PMCID: PMC9818924 DOI: 10.3390/cells12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Oncogenic overexpression of MYC leads to the fatal deregulation of signaling pathways, cellular metabolism, and cell growth. MYC rearrangements are found frequently among non-Hodgkin B-cell lymphomas enforcing MYC overexpression. Genetically engineered mouse models (GEMMs) were developed to understand MYC-induced B-cell lymphomagenesis. Here, we highlight the advantages of using Eµ-Myc transgenic mice. We thoroughly compiled the available literature to discuss common challenges when using such mouse models. Furthermore, we give an overview of pathways affected by MYC based on knowledge gained from the use of GEMMs. We identified top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet.
Collapse
Affiliation(s)
| | | | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
3
|
Myc-Interacting Zinc Finger Protein 1 (Miz-1) Is Essential to Maintain Homeostasis and Immunocompetence of the B Cell Lineage. BIOLOGY 2022; 11:biology11040504. [PMID: 35453704 PMCID: PMC9027237 DOI: 10.3390/biology11040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Aging of the immune system is described as a progressive loss of the ability to respond to immunologic stimuli and is commonly referred to as immunosenescence. B cell immunosenescence is characterized by a decreased differentiation rate in the bone marrow and accumulation of antigen-experienced and age-associated B cells in secondary lymphoid organs (SLOs). A specific deletion of the POZ-domain of the transcription factor Miz-1 in pro-B cells, which is known to be involved in bone marrow hematopoiesis, leads to premature aging of the B cell lineage. In mice, this causes a severe reduction in bone marrow-derived B cells with a drastic decrease from the pre-B cell stage on. Further, mature, naïve cells in SLOs are reduced at an early age, while post-activation-associated subpopulations increase prematurely. We propose that Miz-1 interferes at several key regulatory checkpoints, critical during B cell aging, and counteracts a premature loss of immunocompetence. This enables the use of our mouse model to gain further insights into mechanisms of B cell aging and it can significantly contribute to understand molecular causes of impaired adaptive immune responses to counteract loss of immunocompetence and restore a functional immune response in the elderly.
Collapse
|
4
|
Massó-Vallés D, Soucek L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells 2020; 9:cells9040883. [PMID: 32260326 PMCID: PMC7226798 DOI: 10.3390/cells9040883] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
First designed and published in 1998 as a laboratory tool to study Myc perturbation, Omomyc has come a long way in the past 22 years. This dominant negative has contributed to our understanding of Myc biology when expressed, first, in normal and cancer cells, and later in genetically-engineered mice, and has shown remarkable anti-cancer properties in a wide range of tumor types. The recently described therapeutic effect of purified Omomyc mini-protein—following the surprising discovery of its cell-penetrating capacity—constitutes a paradigm shift. Now, much more than a proof of concept, the most characterized Myc inhibitor to date is advancing in its drug development pipeline, pushing Myc inhibition into the clinic.
Collapse
Affiliation(s)
| | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, 08035 Barcelona, Spain;
- Vall d’Hebron Institute of Oncology (VHIO), Edifici Cellex, 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
5
|
Liu Z, Yoshimi A, Wang J, Cho H, Chun-Wei Lee S, Ki M, Bitner L, Chu T, Shah H, Liu B, Mato AR, Ruvolo P, Fabbri G, Pasqualucci L, Abdel-Wahab O, Rabadan R. Mutations in the RNA Splicing Factor SF3B1 Promote Tumorigenesis through MYC Stabilization. Cancer Discov 2020; 10:806-821. [PMID: 32188705 DOI: 10.1158/2159-8290.cd-19-1330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/15/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
Although mutations in the gene encoding the RNA splicing factor SF3B1 are frequent in multiple cancers, their functional effects and therapeutic dependencies are poorly understood. Here, we characterize 98 tumors and 12 isogenic cell lines harboring SF3B1 hotspot mutations, identifying hundreds of cryptic 3' splice sites common and specific to different cancer types. Regulatory network analysis revealed that the most common SF3B1 mutation activates MYC via effects conserved across human and mouse cells. SF3B1 mutations promote decay of transcripts encoding the protein phosphatase 2A (PP2A) subunit PPP2R5A, increasing MYC S62 and BCL2 S70 phosphorylation which, in turn, promotes MYC protein stability and impair apoptosis, respectively. Genetic PPP2R5A restoration or pharmacologic PP2A activation impaired SF3B1-mutant tumorigenesis, elucidating a therapeutic approach to aberrant splicing by mutant SF3B1. SIGNIFICANCE: Here, we identify that mutations in SF3B1, the most commonly mutated splicing factor gene across cancers, alter splicing of a specific subunit of the PP2A serine/threonine phosphatase complex to confer post-translational MYC and BCL2 activation, which is therapeutically intervenable using an FDA-approved drug.See related commentary by O'Connor and Narla, p. 765.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Zhaoqi Liu
- Program for Mathematical Genomics, Columbia University, New York, New York.,Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, New York
| | - Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, Center for Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle Ki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lillian Bitner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy Chu
- Program for Mathematical Genomics, Columbia University, New York, New York.,Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, New York
| | - Harshal Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony R Mato
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Ruvolo
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulia Fabbri
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, New York.,Department of Pathology and Cell Biology, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University, New York, New York. .,Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, New York
| |
Collapse
|
6
|
Dammert MA, Brägelmann J, Olsen RR, Böhm S, Monhasery N, Whitney CP, Chalishazar MD, Tumbrink HL, Guthrie MR, Klein S, Ireland AS, Ryan J, Schmitt A, Marx A, Ozretić L, Castiglione R, Lorenz C, Jachimowicz RD, Wolf E, Thomas RK, Poirier JT, Büttner R, Sen T, Byers LA, Reinhardt HC, Letai A, Oliver TG, Sos ML. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun 2019; 10:3485. [PMID: 31375684 PMCID: PMC6677768 DOI: 10.1038/s41467-019-11371-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.
Collapse
Affiliation(s)
- Marcel A Dammert
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
| | - Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Stefanie Böhm
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Niloufar Monhasery
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Milind D Chalishazar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hannah L Tumbrink
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sebastian Klein
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Annika Marx
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Luka Ozretić
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | - Roberta Castiglione
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Ron D Jachimowicz
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - John T Poirier
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Triparna Sen
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lauren A Byers
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - H Christian Reinhardt
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
7
|
c-Myc promotes tubular cell apoptosis in ischemia-reperfusion-induced renal injury by negatively regulating c-FLIP and enhancing FasL/Fas-mediated apoptosis pathway. Acta Pharmacol Sin 2019; 40:1058-1066. [PMID: 30593588 DOI: 10.1038/s41401-018-0201-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
c-Myc plays an important role in cell proliferation, differentiation, and cell apoptosis. FasL/Fas pathway is a key regulator of cell apoptosis. This study was aimed to investigate the effects of c-Myc on the FasL/Fas pathway in ischemia-reperfusion (I/R)-induced renal injury. Rats were objected to bilateral renal ischemia for 60 min and reperfused for 24 or 48 h. NRK-52E cells were treated with hypoxia-reoxygenation (H/R) or FasL. Immunohistochemistry was used to identify the distribution of c-Myc. Cell apoptosis was assessed by TUNEL staining. Ad-c-Myc and recombinant pcDAN 3.0 were used to overexpress c-Myc and c-FLIP, respectively. ChIP assay and luciferase assay were used to detect the binding of c-Myc to c-FLIP promoter. In I/R rats, c-Myc was increased significantly and mainly located in renal tubular epithelial cells; meanwhile, c-FLIP was decreased, cleaved caspase-8, cleaved caspase-3 and TUNEL-positive staining cells were increased. Treatment of I/R rats with c-Myc inhibitor 10058-F4 significantly attenuated the decrease in c-FLIP, the increase in cleaved caspase-8, cleaved caspase-3, TUNEL-positive cells, Scr and BUN in I/R rats. In NRK-52E cells, hypoxia and reoxygen induced the increase in c-Myc and decrease in c-FLIP. ChIP and luciferase assay results indicated that c-Myc binds to the promoter region of c-FLIP gene. Overexpression of c-Myc markedly decreased c-FLIP. Overexpression of c-FLIP inhibited the increase in cleaved caspase-8 and caspase-3 induced by FasL. Data indicated that c-Myc is increased in kidneys of I/R rats and negatively regulates the expression of c-FLIP, then enhanced FasL-induced cell apoptosis in I/R stress.
Collapse
|
8
|
Yang TQ, Chen M, Wang YQ, Xu W, Han Y, Xu J, Xiang YJ, Yuan B, Wang HZ, Zhou YX. Nuclear factor-kappa B1 inhibits early apoptosis of glioma cells by promoting the expression of Bcl-2. Onco Targets Ther 2017; 10:4305-4313. [PMID: 28919779 PMCID: PMC5587140 DOI: 10.2147/ott.s144014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioma is one of the most common types of adult primary brain tumors, and the underlying molecular mechanisms still remain unclear. Nuclear factor-kappa B1 (NF-κB1) is involved in a variety of malignancies and is widely expressed in malignant tumors. However, the expression of NF-κB1 in different grades of glioma, the correlation between NF-κB1 and Bcl-2 expressions in gliomas, and the research between NF-κB1 and early apoptosis of glioma cells have not been reported so far. In this study, the expression level of NF-κB1 in 31 human glioma tissues and six nonneoplastic brain tissues was determined using quantitative real-time polymerase chain reaction. Results showed that the expression of NF-κB1 in human glioma tissues and glioma cell lines, SHG44 and U87, was significantly higher compared to noncancerous brain tissues and that the expression increased with increasing degrees of tumor malignancy. Similar results were demonstrated with the expression of Bcl-2 in the same human glioma specimens. Flow cytometry results showed that inhibition of NF-κB1 expression significantly promoted apoptosis of SHG44 and U87 in human glioma cells. Western blot analysis further confirmed decreased expression of Bcl-2 protein after inhibition of NF-κB1 protein expression. Taken together, NF-κB1 overexpression inhibits early apoptosis of glioma cells and high expression of NF-κB1 promotes the expression of antiapoptotic gene Bcl-2. Therefore, our study results provide a theoretical basis for antiapoptotic mechanism of tumor cells in association with NF-κB1.
Collapse
Affiliation(s)
- Tian-Quan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Min Chen
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Yong-Qiang Wang
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Wei Xu
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Yong Han
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Jin Xu
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Yong-Jun Xiang
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Bin Yuan
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - Hang-Zhou Wang
- Department of Neurosurgery, Children's Hospital of Soochow University
| | - You-Xin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
9
|
Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma. Oncotarget 2016; 7:2401-16. [PMID: 26573234 PMCID: PMC4823044 DOI: 10.18632/oncotarget.6262] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
Double-hit B-cell lymphoma is a common designation for a group of tumors characterized by concurrent translocations of MYC and BCL2, BCL6, or other genes. The prognosis of concurrent MYC and BCL6 translocations is not well known. In this study, we assessed rearrangements and expression of MYC, BCL2 and BCL6 in 898 patients with de novo diffuse large B-cell lymphoma treated with standard chemotherapy (cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab). Neither BCL6 translocation alone (more frequent in activated B-cell like diffuse large B-cell lymphoma) nor in combination with MYC translocation (observed in 2.0% of diffuse large B-cell lymphoma) predicted poorer survival in diffuse large B-cell lymphoma patients. Diffuse large B-cell lymphoma patients with MYC/BCL6 co-expression did have significantly poorer survival, however, MYC/BCL6 co-expression had no effect on prognosis in the absence of MYC/BCL2 co-expression, and had no additive impact in MYC+/BCL2+ cases. The isolated MYC+/BCL6+/BCL2− subset, more frequent in germinal center B-cell like diffuse large B-cell lymphoma, had significantly better survival compared with the isolated MYC+/BCL2+/BCL6− subset (more frequent in activated B-cell like diffuse large B-cell lymphoma). In summary, diffuse large B-cell lymphoma patients with either MYC/BCL6 rearrangements or MYC/BCL6 co-expression did not always have poorer prognosis; MYC expression levels should be evaluated simultaneously; and double-hit B-cell lymphoma needs to be refined based on the specific genetic abnormalities present in these tumors.
Collapse
|
10
|
Singh K, Briggs JM. Functional Implications of the spectrum of BCL2 mutations in Lymphoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:1-18. [PMID: 27543313 DOI: 10.1016/j.mrrev.2016.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL. BCL2 arbitrates apoptosis through a classic interaction between its hydrophobic groove forming BH1-3 domains and the BH3 domain of pro-apoptotic members of the BCL2 family. The effects of mutations are mainly determined by the ability of the mutated BCL2 to mediate apoptosis by this inter-member protein binding. Nevertheless, BCL2 regulates diverse non-canonical pathways that are unlikely to be explained by canonical interactions. In this review, first, we identify recurrent missense mutations in the BH4 domain and the FLD reported in independent lymphoma sequencing studies. Second, we discuss the probable consequences of mutations on the binding ability of BCL2 to non-BCL2 family member proteins crucial for 1) maintaining mitochondrial energetics and calcium hemostasis such as VDAC, IP3R, and RyR and 2) oncogenic pathways implicated in the acquisition of the 'hallmarks of cancer' such as SOD, Raf-1, NFAT, p53, HIF-1α, and gelsolin. The study also highlights the likely ramifications of mutations on binding of BCL2 antagonists and BH3 profiling. Based on our analysis, we believe that an in-depth focus on BCL2 interactions mediated by these domains is warranted to elucidate the functional significance of missense mutations in DLBCL. In summary, we provide an extensive overview of the pleiotropic functions of BCL2 mediated by its physical binding interaction with other proteins and the various ways BCL2 mutations would affect the normal function of the cell leading to the development of DLBCL.
Collapse
Affiliation(s)
- Khushboo Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| |
Collapse
|
11
|
Chen P, Wang W, Zhang Y, Yuan Y, Wu Y. Decreased MIZ1 Expression in Severe Experimental Acute Pancreatitis: A Rat Study. Dig Dis Sci 2016; 61:758-66. [PMID: 26581215 DOI: 10.1007/s10620-015-3951-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
AIM We tested our hypothesis that Myc-interacting zinc finger protein 1 (MIZ1), a cell cycle regulator, suppressed inflammation, and therefore, represented a useful prognostic marker in patients with acute necrotizing pancreatitis (ANP) complicated by acute lung injury. METHODS Sprague-Dawley rats were randomly divided into control and ANP groups at different time points. The MIZ1 protein expression was measured by Western blot and ELISA, and confirmed using immunohistochemistry. The severity of pancreatic and lung injury was evaluated by the injury score and wet/dry weight ratio. The severity of disease was evaluated by serum C-reactive protein (CRP). The MPO activity of lung tissue amylase levels and the degree of inflammation were evaluated by serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression. The risk due to multiple factors was investigated by relationship analysis. RESULTS The serum levels of CRP, amylase, TNF-α, and IL-6 were gradually increased at 6, 24, and 48 h in ANP when compared with the control rats. The MIZ1 expressions were greatly decreased in ANP rats, especially at 24 h. Statistical analysis showed that there were time-dependent differences in ANP rats when compared with control rats (6 vs. 24 or 48 h, P < 0.01). MIZ1 showed close negative correlation with the degree of pancreatic and lung injury, serum amylase, CRP, TNF-α, and IL-6 (P < 0.01, respectively). CONCLUSION The decreasing MIZ1 expression was closely correlated with inflammatory response, and development of ANP. Decreasing MIZ1 levels indicate a risk for ANP.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Weiyi Wang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yongping Zhang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yunlin Wu
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| |
Collapse
|
12
|
Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells Int 2015; 2016:5178965. [PMID: 26798358 PMCID: PMC4699043 DOI: 10.1155/2016/5178965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.
Collapse
|
13
|
Adams CM, Hiebert SW, Eischen CM. Myc Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in Hematologic Malignancies. Cancer Res 2015; 76:736-48. [PMID: 26676759 DOI: 10.1158/0008-5472.can-15-1751] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022]
Abstract
Alterations in the expression or function of histone deacetylases (HDAC) contribute to the development and progression of hematologic malignancies. Consequently, the development and implementation of HDAC inhibitors has proven to be therapeutically beneficial, particularly for hematologic malignancies. However, the molecular mechanisms by which HDAC inhibition (HDACi) induces tumor cell death remain unresolved. Here, we investigated the effects of HDACi in Myc-driven B-cell lymphoma and five other hematopoietic malignancies. We determined that Myc-mediated transcriptional repression of the miR-15 and let-7 families in malignant cells was relieved upon HDACi, and Myc was required for their upregulation. The miR-15 and let-7 families then targeted and downregulated the antiapoptotic genes Bcl-2 and Bcl-xL, respectively, to induce HDACi-mediated apoptosis. Notably, Myc also transcriptionally upregulated these miRNA in untransformed cells, indicating that this Myc-induced miRNA-mediated apoptotic pathway is suppressed in malignant cells, but becomes reactivated upon HDACi. Taken together, our results reveal a previously unknown mechanism by which Myc induces apoptosis independent of the p53 pathway and as a response to HDACi in malignant hematopoietic cells.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
14
|
Wiese KE, Haikala HM, von Eyss B, Wolf E, Esnault C, Rosenwald A, Treisman R, Klefström J, Eilers M. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells. EMBO J 2015; 34:1554-71. [PMID: 25896507 PMCID: PMC4474530 DOI: 10.15252/embj.201490467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
Abstract
Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells.
Collapse
Affiliation(s)
- Katrin E Wiese
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Heidi M Haikala
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Björn von Eyss
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Cyril Esnault
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Andreas Rosenwald
- Institute of Pathology University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Richard Treisman
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Juha Klefström
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Martin Eilers
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Cole MD. MYC association with cancer risk and a new model of MYC-mediated repression. Cold Spring Harb Perspect Med 2014; 4:a014316. [PMID: 24985129 DOI: 10.1101/cshperspect.a014316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase.
Collapse
Affiliation(s)
- Michael D Cole
- Departments of Pharmacology and Genetics, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
16
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
17
|
Abstract
Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer. Nac1 is a transcriptional repressor that has been implicated in ovarian serous carcinoma. Here we show that Nac1 interacts with the transcription factor Miz1, and suggest that this interaction may contribute to tumourigenesis.
Collapse
|
18
|
Wu G, Lu X, Wang Y, He H, Meng X, Xia S, Zhen K, Liu Y. Epigenetic high regulation of ATAD2 regulates the Hh pathway in human hepatocellular carcinoma. Int J Oncol 2014; 45:351-61. [PMID: 24805933 DOI: 10.3892/ijo.2014.2416] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
ATAD2 is associated with many cellular progresses such as cell growth, differentiation and apoptosis. Some studies suggest ATAD2 is highly expressed in cancer cells. In our previous studies, we found that ATAD2 is highly expressed in HCC tissues, compared with adjacent normal tissues, and patients with high expression of ATAD2 had a poorer prognosis. Moreover, we found mir-372 can regulate the expression of ATAD2 in HCC cell lines. We also detected a relationship between the mRNA expression of ATAD2 and Ptch1 by gene microarray. Here, we completed the function studies of ATAD2 in vivo and in vitro, and tested whether ATAD2 could regulate the Hh pathway. ATAD2 and Hh pathway protein expressions in 80 HCC specimens were examined by immunohistochemistry (IHC). The mRNA expression of ATAD2 and Hh pathway members in paired-HCC tissues and cell lines were, respectively, analyzed using quantitative PCR. ATAD2‑RNAi was transduced into HCCLM3 and Huh7 cells, using a lentiviral vector. The effect of ATAD2 in HCC cell lines on cell cycle and apoptosis were evaluated by flow cytometry. Tumorigenicity experiments in nude mice were performed to test the function of ATAD2 in vivo. Pharmacological regulation of Hh signaling was performed to test the relation between the ATAD2 and Hh pathways and C-myc. We found that ATAD2 and Ptch1 were both highly expressed in HCC tissues, compared with paired normal hepatic tissues. In addition, we found that ATAD2 could affect the expression of the Hh pathway by PCR and western blot anaysis in HCC cell lines, by observing the outcome before and after transfection. We speculate that ATAD2 cooperates with the MYC gene to regulate the expression of SMO and Gli, activating the Hh pathway and inducing an active feedback of the Hh pathway.
Collapse
Affiliation(s)
- Gang Wu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojun Lu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yawei Wang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiangyu Meng
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuguan Xia
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kunming Zhen
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongfeng Liu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Aesoy R, Gradin K, Aasrud KS, Hoivik EA, Ruas JL, Poellinger L, Bakke M. Regulation of CDKN2B expression by interaction of Arnt with Miz-1--a basis for functional integration between the HIF and Myc gene regulatory pathways. Mol Cancer 2014; 13:54. [PMID: 24618291 PMCID: PMC3984710 DOI: 10.1186/1476-4598-13-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Background Hypoxia- and Myc-dependent transcriptional regulatory pathways are frequently deregulated in cancer cells. These pathways converge in many cellular responses, but the underlying molecular mechanisms are unclear. Methods The ability of Miz-1 and Arnt to interact was identified in a yeast two-hybrid screen. The mode of interaction and the functional consequences of complex formation were analyzed by diverse molecular biology methods, in vitro. Statistical analyses were performed by Student’s t-test and ANOVA. Results In the present study we demonstrate that the aryl hydrocarbon receptor nuclear translocator (Arnt), which is central in hypoxia-induced signaling, forms a complex with Miz-1, an important transcriptional regulator in Myc-mediated transcriptional repression. Overexpression of Arnt induced reporter gene activity driven by the proximal promoter of the cyclin-dependent kinase inhibitor 2B gene (CDKN2B), which is an established target for the Myc/Miz-1 complex. In contrast, mutated forms of Arnt, that were unable to interact with Miz-1, had reduced capability to activate transcription. Moreover, repression of Arnt reduced endogenous CDKN2B expression, and chromatin immunoprecipitation demonstrated that Arnt interacts with the CDKN2B promoter. The transcriptional activity of Arnt was counteracted by Myc, but not by a mutated variant of Myc that is unable to interact with Miz-1, suggesting mutually exclusive interaction of Arnt and Myc with Miz-1. Our results also establish CDKN2B as a hypoxia regulated gene, as endogenous CDKN2B mRNA and protein levels were reduced by hypoxic treatment of U2OS cells. Conclusions Our data reveal a novel mode of regulation by protein-protein interaction that directly ties together, at the transcriptional level, the Myc- and hypoxia-dependent signaling pathways and expands our understanding of the roles of hypoxia and cell cycle alterations during tumorigenesis.
Collapse
Affiliation(s)
- Reidun Aesoy
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wiese KE, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O, Eilers M. The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med 2013; 3:a014290. [PMID: 24296348 PMCID: PMC3839600 DOI: 10.1101/cshperspect.a014290] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A hallmark of MYC-transformed cells is their aberrant response to antimitogenic signals. Key examples include the inability of MYC-transformed cells to arrest proliferation in response to antimitogenic signals such as TGF-β or DNA damage and their inability to differentiate into adipocytes in response to hormonal stimuli. Given the plethora of antimitogenic signals to which a tumor cell is exposed, it is likely that the ability to confer resistance to these signals is central to the transforming properties of MYC in vivo. At the same time, the inability of MYC-transformed cells to halt cell-cycle progression on stress may establish a dependence on mutations that impair or disable apoptosis. We propose that the interaction of MYC with the zinc finger protein MIZ-1 mediates resistance to antimitogenic signals. In contrast to other interactions of MYC, there is currently little evidence that MIZ-1 associates with MYC in normal, unperturbed cells. The functional interaction of both proteins becomes apparent at oncogenic expression levels of MYC and association with MIZ-1 mediates both oncogenic functions of MYC as well as tumor-suppressive responses to oncogenic levels of MYC.
Collapse
Affiliation(s)
- Katrin E Wiese
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Multiple cytokine- and multiple cytokine receptor-expressing triple-hit B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt’s lymphoma. Pathology 2013; 45:508-10. [DOI: 10.1097/pat.0b013e3283634dec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dock3 attenuates neural cell death due to NMDA neurotoxicity and oxidative stress in a mouse model of normal tension glaucoma. Cell Death Differ 2013; 20:1250-6. [PMID: 23852370 DOI: 10.1038/cdd.2013.91] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/29/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023] Open
Abstract
Dedicator of cytokinesis 3 (Dock3), a new member of the guanine nucleotide exchange factors for the small GTPase Rac1, promotes axon regeneration following optic nerve injury. In the present study, we found that Dock3 directly binds to the intracellular C-terminus domain of NR2B, an N-methyl-D-aspartate (NMDA) receptor subunit. In transgenic mice overexpressing Dock3 (Dock3 Tg), NR2B expression in the retina was significantly decreased and NMDA-induced retinal degeneration was ameliorated. In addition, overexpression of Dock3 protected retinal ganglion cells (RGCs) from oxidative stress. We previously reported that glutamate/aspartate transporter (GLAST) is a major glutamate transporter in the retina, and RGC degeneration due to glutamate neurotoxicity and oxidative stress is observed in GLAST-deficient (KO) mice. In GLAST KO mice, the NR2B phosphorylation rate in the retina was significantly higher compared with Dock3 Tg:GLAST KO mice. Consistently, glaucomatous retinal degeneration was significantly improved in GLAST KO:Dock3 Tg mice compared with GLAST KO mice. These results suggest that Dock3 overexpression prevents glaucomatous retinal degeneration by suppressing both NR2B-mediated glutamate neurotoxicity and oxidative stress, and identifies Dock3 signaling as a potential therapeutic target for both neuroprotection and axonal regeneration.
Collapse
|
23
|
Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1. PLoS One 2013; 8:e63353. [PMID: 23671675 PMCID: PMC3643979 DOI: 10.1371/journal.pone.0063353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/30/2013] [Indexed: 11/19/2022] Open
Abstract
Smoothened (Smo) mediated Hedgehog (Hh) signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1) as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.
Collapse
|
24
|
Hönnemann J, Sanz-Moreno A, Wolf E, Eilers M, Elsässer HP. Miz1 is a critical repressor of cdkn1a during skin tumorigenesis. PLoS One 2012; 7:e34885. [PMID: 22509363 PMCID: PMC3324535 DOI: 10.1371/journal.pone.0034885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Miz1 forms repressive DNA-binding complexes with the Myc, Gfi-1 and Bcl-6 oncoproteins. Known target genes of these complexes encode the cyclin-dependent kinase inhibitors (CKIs) cdkn2b (p15Ink4), cdkn1a (p21Cip1), and cdkn1c (p57Kip2). Whether Miz1-mediated repression is important for control of cell proliferation in vivo and for tumor formation is unknown. Here we show that deletion of the Miz1 POZ domain, which is critical for Miz1 function, restrains the development of skin tumors in a model of chemically-induced, Ras-dependent tumorigenesis. While the stem cell compartment appears unaffected, interfollicular keratinocytes lacking functional Miz1 exhibit a reduced proliferation and an accelerated differentiation of the epidermis in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Tumorigenesis, proliferation and normal differentiation are restored in animals lacking cdkn1a, but not in those lacking cdkn2b. Our data demonstrate that Miz1-mediated attenuation of cell cycle arrest pathways via repression of cdkn1a has a critical role during tumorigenesis in the skin.
Collapse
Affiliation(s)
- Jan Hönnemann
- Department of Cytobiology, Philipps-University Marburg, Germany
| | | | - Elmar Wolf
- Theodor-Boveri-Institute, Biocentre, University of Würzburg, Germany
| | - Martin Eilers
- Theodor-Boveri-Institute, Biocentre, University of Würzburg, Germany
| | | |
Collapse
|
25
|
Möröy T, Saba I, Kosan C. The role of the transcription factor Miz-1 in lymphocyte development and lymphomagenesis-Binding Myc makes the difference. Semin Immunol 2011; 23:379-87. [PMID: 22000024 DOI: 10.1016/j.smim.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Myc interacting zinc finger protein 1 (Miz-1) is a BTB/POZ domain containing transcription factor that can function as an activator or repressor depending on its binding partners. In a complex with co-factors such as nuclophosmin or p300, Miz-1 stimulates transcription of genes that encode regulators of cell cycle progression such as p21(Cip1) or p15(Ink4b) or inhibitors of apoptosis such as Bcl-2. In contrast, Miz-1 becomes a transcriptional repressor when it binds to c-Myc or Bcl-6, which replace nucleophosmin or p300. During lymphocyte development, Miz-1 functions as a regulator of the IL-7 signaling pathway at very early steps in the bone marrow and thymus. When the IL-7 receptor (IL-7R) recognizes its cognate cytokine, a cascade of events is initiated that involves the recruitment of janus kinases (JAK) to the cytoplasmic part of the IL-7R, the phosphorylation of Stat5, its dimerization and relocation to the nucleus, enabling a transcriptional programming that governs commitment, survival and proliferation of lymphoid lineage cells. Miz-1 is critical in this signal transduction pathway, since it controls the expression of Socs1, an inhibitor of JAKs and thus of Stat5 activation and Bcl-2 expression. A lack of Miz-1 blocks IL-7 mediated signaling, which is detrimental for early B- and T-lymphoid development. These functions of Miz-1 during early lymphocyte development are c-Myc-independent. In contrast, when c-Myc is constitutively over-expressed, for instance during c-Myc induced lymphomagenesis, the interaction between Miz-1 and c-Myc becomes important and critical for the initiation and maintenance of c-Myc-dependent lymphoid malignancies.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| | | | | |
Collapse
|
26
|
Inhibition of the single downstream target BAG1 activates the latent apoptotic potential of MYC. Mol Cell Biol 2011; 31:5037-45. [PMID: 21986497 DOI: 10.1128/mcb.06297-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed "intrinsic tumor suppressor activity," and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.
Collapse
|
27
|
Molecular mechanisms of cigarette smoke-induced proliferation of lung cells and prevention by vitamin C. JOURNAL OF ONCOLOGY 2011; 2011:561862. [PMID: 21772844 PMCID: PMC3136156 DOI: 10.1155/2011/561862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/12/2011] [Accepted: 02/24/2011] [Indexed: 01/24/2023]
Abstract
Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers.
Collapse
|
28
|
Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity 2011; 33:917-28. [PMID: 21167753 DOI: 10.1016/j.immuni.2010.11.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 08/10/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023]
Abstract
B cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc finger) domain of the transcription factor Miz-1 (Zbtb17(ΔPOZ/ΔPOZ)) almost entirely lacked follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 pathway and to upregulate the antiapoptotic gene Bcl2 upon IL-7 stimulation. We show that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and by activating Bcl2 expression. Zbtb17(ΔPOZ/ΔPOZ) (Miz-1-deficient) B cell progenitors had low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 (Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl2 and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19(+) B cells.
Collapse
|
29
|
IL-7R-dependent survival and differentiation of early T-lineage progenitors is regulated by the BTB/POZ domain transcription factor Miz-1. Blood 2011; 117:3370-81. [PMID: 21258009 DOI: 10.1182/blood-2010-09-310680] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells originate from early T lineage precursors that have entered the thymus and differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a CD4(-)CD8(-) to CD4(+)CD8(+) block causing a strong reduction in thymic cellularity. Miz-1(ΔPOZ) pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high expression levels of SOCS1 found in Miz-1(ΔPOZ) cells probably cause these alterations. Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by monitoring the expression levels of SOCS1.
Collapse
|
30
|
Kurita N, Nishikii H, Nakamoto R, Nakamura N, Kondo Y, Okoshi Y, Suzukawa K, Hasegawa Y, Yokoyama Y, Noguchi M, Chiba S. A Highly Therapy-Resistant Case of B-Cell Lymphoma, Unclassifiable, with Features Intermediate between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma Showing Strong BCL2 Staining, Otherwise Indistinguishable from Burkitt Lymphoma. J Clin Exp Hematop 2011; 51:37-42. [DOI: 10.3960/jslrt.51.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Licchesi JDF, Van Neste L, Tiwari VK, Cope L, Lin X, Baylin SB, Herman JG. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc. Oncogene 2010; 29:5923-34. [PMID: 20697356 DOI: 10.1038/onc.2010.322] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Wnt signaling pathway is capable of self-regulation through positive and negative feedback mechanisms. For example, the oncoprotein c-Myc, which is upregulated by Wnt signaling activity, participates in a positive feedback loop of canonical Wnt signaling through repression of Wnt antagonists DKK1 and SFRP1. In this study, we investigated the mechanism of Wnt inhibitory factor-1 (WIF-1) silencing. Mapping of CpG island methylation of the WIF-1 promoter reveals regional methylation (-295 to -95 bp from the transcription start site) that correlates with transcriptional silencing. We identified Miz-1 as a direct activator of WIF-1 transcriptional activity, which is found at WIF-1 promoter. In addition, we show that c-Myc contributes to WIF-1 transcriptional repression in a Miz-1-dependent manner. Although the transient repression mediated by Miz-1/c-Myc is independent of de novo methylation, the stable repression by this complex is associated with CpG island methylation of the critical -295 to -95-bp region of the WIF-1 promoter. Importantly, Miz-1 and c-Myc are found at WIF-1 promoter in WIF-1 non-expressing cell lines DLD-1 and 209myc. Transient knockdown or somatic knockout of c-Myc in DLD-1 failed to restore WIF-1 expression suggesting that c-Myc is involved in initiating rather than maintaining WIF-1 epigenetic silencing. In a genome-wide screen, DNAJA4, TGFβ-induced and TRIM59 were repressed by c-Myc overexpression and DNA promoter hypermethylation. Our data reveal novel insights into c-Myc-mediated DNA methylation-dependent transcriptional silencing, a mechanism that might contribute to the dysregulation of Wnt signaling in cancer.
Collapse
Affiliation(s)
- J D F Licchesi
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Van Dang C, McMahon SB. Emerging Concepts in the Analysis of Transcriptional Targets of the MYC Oncoprotein: Are the Targets Targetable? Genes Cancer 2010; 1:560-567. [PMID: 21533016 DOI: 10.1177/1947601910379011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the MYC oncoprotein is among the most ubiquitous events in human cancer. MYC functions in part as a sequence-specific regulator of transcription. Although early searches for direct downstream target genes that explain MYC's potent biological activity were met with enthusiasm, the postgenomic decade has brought the realization that MYC regulates the transcription of not just a manageably small handful of target genes but instead up to 15% of all active loci. As the dust has begun to settle, two important concepts have emerged that reignite hope that understanding MYC's downstream targets might still prove valuable for defining critical nodes for therapeutic intervention in cancer patients. First, it is now clear that MYC target genes are not a random sampling of the cellular transcriptome but instead fall into specific, critical biochemical pathways such as metabolism, chromatin structure, and protein translation. In retrospect, we should not have been surprised to discover that MYC rewires cell physiology in a manner designed to provide the tumor cell with greater biosynthetic properties. However, the specific details that have emerged from these studies are likely to guide the development of new clinical tools and strategies. This raises the second concept that instills renewed optimism regarding MYC target genes. It is now clear that not all MYC target genes are of equal functional relevance. Thus, it may be possible to discern, from among the thousands of potential MYC target genes, those whose inhibition will truly debilitate the tumor cell. In short, targeting the targets may ultimately be a realistic approach after all.
Collapse
Affiliation(s)
- Chi Van Dang
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
33
|
Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1. J Mol Biol 2010; 400:983-97. [DOI: 10.1016/j.jmb.2010.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 11/20/2022]
|
34
|
Herkert B, Dwertmann A, Herold S, Abed M, Naud JF, Finkernagel F, Harms GS, Orian A, Wanzel M, Eilers M. The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. ACTA ACUST UNITED AC 2010; 188:905-18. [PMID: 20308430 PMCID: PMC2845071 DOI: 10.1083/jcb.200908103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arf assembles a complex containing Miz1, heterochromatin, and histone H3K3 to block expression of genes involved in cell adhesion and signal transduction. The resulting blockade of cell–cell and cell–matrix interactions facilitates elimination of cells carrying oncogenic mutations. Oncogenic stress induces expression of the alternate reading frame (Arf) tumor suppressor protein. Arf then stabilizes p53, which leads to cell cycle arrest or apoptosis. The mechanisms that distinguish both outcomes are incompletely understood. In this study, we show that Arf interacts with the Myc-associated zinc finger protein Miz1. Binding of Arf disrupts the interaction of Miz1 with its coactivator, nucleophosmin, induces the sumoylation of Miz1, and facilitates the assembly of a heterochromatic complex that contains Myc and trimethylated H3K9 in addition to Miz1. Arf-dependent assembly of this complex leads to the repression of multiple genes involved in cell adhesion and signal transduction and induces apoptosis. Our data point to a tumor-suppressive pathway that weakens cell–cell and cell–matrix interactions in response to expression of Arf and that may thereby facilitate the elimination of cells harboring an oncogenic mutation.
Collapse
Affiliation(s)
- Barbara Herkert
- Theodor-Boveri-Institute and 2 Rudolf-Virchow-Center, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Although Myc-interacting zinc-finger protein-1 (Miz-1) is known to be a poxvirus and zinc-finger (POZ) transcription factor required for Myc transcriptional repression, additional regulatory function of Miz-1 is less well understood. Using a yeast two-hybrid screen, we identified human alternate reading frame (ARF) protein as a novel interaction partner of Miz-1. The zinc-finger domain of Miz-1 is involved in its binding to ARF. In addition, we found that Miz-1 was able to interact with p53 through its DNA-binding domain, thus to diminish the binding of p53 to its target promoter and inhibit p53-mediated gene transcription. Interestingly, the Miz-1-regulated p53 transcriptional suppression does not require the presence of ARF or Mdm2. Importantly, ARF and p53 were found to competitively bind to Miz-1 in regulating p53-mediated transcription, and this conclusion was verified by both in vitro binding assay and competitive chromatin immunoprecipitation assay using a bona fide p53 endogenous Bax and Puma promoters. Thus, our study reveals that Miz-1 acts as a p53 suppressor by interfering with p53 DNA-binding ability, and ARF is able to counteract the suppression of Miz-1 on p53 by direct binding to Miz-1, suggesting that Miz-1 is a novel mediator in the ARF-p53 pathway.
Collapse
|
36
|
Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin AA, Klein U, Dalla-Favera R, Califano A. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 2009; 27:829-39. [PMID: 19741643 PMCID: PMC2753889 DOI: 10.1038/nbt.1563] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/11/2009] [Indexed: 01/06/2023]
Abstract
The ability of a transcription factor (TF) to regulate its targets is modulated by a variety of genetic and epigenetic mechanisms, resulting in highly context-dependent regulatory networks. However, high-throughput methods for the identification of proteins that affect TF activity are still largely unavailable. Here we introduce an algorithm, modulator inference by network dynamics (MINDy), for the genome-wide identification of post-translational modulators of TF activity within a specific cellular context. When used to dissect the regulation of MYC activity in human B lymphocytes, the approach inferred novel modulators of MYC function, which act by distinct mechanisms, including protein turnover, transcription complex formation and selective enzyme recruitment. MINDy is generally applicable to study the post-translational modulation of mammalian TFs in any cellular context. As such it can be used to dissect context-specific signaling pathways and combinatorial transcriptional regulation.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoshii Y, Waki A, Furukawa T, Kiyono Y, Mori T, Yoshii H, Kudo T, Okazawa H, Welch MJ, Fujibayashi Y. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. Nucl Med Biol 2009; 36:771-7. [PMID: 19720289 DOI: 10.1016/j.nucmedbio.2009.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/19/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION [1-(11)C]Acetate positron emission tomography (PET) is used for myocardial studies. In the myocardium, mitochondrial acetyl-CoA synthetase (ACSS1) mainly contributes to the radiopharmaceutical uptake. [1-(11)C]Acetate PET is also used for tumor diagnosis; however, the uptake mechanism of radiolabeled acetate in tumors remains unclear. Our previous study reported that cytosolic acetyl-CoA synthetase (ACSS2) was expressed in tumor cells and up-regulated under hypoxia, whereas expression of ACSS1 was negligible regardless of the oxygen conditions. We also indicated that ACSS2 is a bidirectional enzyme that controls acetyl-CoA/acetate metabolism in tumor cells. In this study, to elucidate the basic mechanism of tumor acetate uptake, we focused on ACSS2 and investigated the role of ACSS2 in the uptake of radiolabeled acetate in tumor cells. METHODS [1-(14)C]Acetate uptake and ACSS2 expression were examined in four tumor cell lines under normoxia or hypoxia. An ACSS2 knockdown study was also performed. RESULTS [1-(14)C]Acetate uptake was increased in the tumor cells under hypoxia. This pattern followed that of ACSS2 expression. The incorporated (14)C was mostly distributed in the lipid-soluble fractions, and this tendency increased under hypoxia. ACSS2 knockdown led to a corresponding reduction in [1-(14)C]acetate uptake in all tumor cell lines examined under normoxia and hypoxia. CONCLUSIONS ACSS2 plays an important role in the uptake of radiolabeled acetate in tumor cells, which is different from that in the myocardium, which mainly involves ACSS1. The uptake of radiolabeled acetate in tumors increased under hypoxia along with up-regulation of ACSS2 expression. This suggests a possible mechanism for acetate PET for tumors.
Collapse
Affiliation(s)
- Yukie Yoshii
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2009; 106:11294-9. [PMID: 19549844 DOI: 10.1073/pnas.0903854106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose deregulation by genomic lesions is implicated in the pathogenesis of GC-derived diffuse large B cell lymphoma (DLBCL) and, less frequently, follicular lymphoma (FL). The biological function of BCL6 is only partially understood because no more than a few genes have been functionally characterized as direct targets of BCL6 transrepression activity. Here we report that the anti-apoptotic proto-oncogene BCL2 is a direct target of BCL6 in GC B cells. BCL6 binds to the BCL2 promoter region by interacting with the transcriptional activator Miz1 and suppresses Miz1-induced activation of BCL2 expression. BCL6-mediated suppression of BCL2 is lost in FL and DLBCL, where the 2 proteins are pathologically coexpressed, because of BCL2 chromosomal translocations and other mechanisms, including Miz1 deregulation and somatic mutations in the BCL2 promoter region. These results identify an important function for BCL6 in facilitating apoptosis of GC B cells via suppression of BCL2, and suggest that blocking this pathway is critical for lymphomagenesis.
Collapse
|
39
|
Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, Kobayashi M, Tsujikawa T, Kudo T, Okazawa H, Yonekura Y, Fujibayashi Y. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 2009; 100:821-7. [PMID: 19445015 PMCID: PMC11158093 DOI: 10.1111/j.1349-7006.2009.01099.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding tumor-specific metabolism under hypoxia is important to find novel targets for antitumor drug design. Here we found that tumor cells expressed higher levels of cytosolic acetyl-CoA synthetase (ACSS2) under hypoxia than normoxia. Knockdown of ACSS2 by RNA interference (RNAi) in tumor cells enhanced tumor cell death under long-term hypoxia in vitro. Our data also demonstrated that the ACSS2 suppression slowed tumor growth in vivo. These findings showed that ACSS2 plays a significant role in tumor cell survival under hypoxia and that ACSS2 would be a potential target for tumor treatment. Furthermore, we found that tumor cells excreted acetate and the quantity increased under hypoxia: the pattern of acetate excretion followed the expression pattern of ACSS2. Additionally, the ACSS2 knockdown led to a corresponding reduction in the acetate excretion in tumor cells. These results mean that ACSS2 can conduct the reverse reaction from acetyl-CoA to acetate in tumor cells, which indicates that ACSS2 is a bi-directional enzyme in tumor cells and that ACSS2 might play a buffering role in tumor acetyl-CoA/acetate metabolism.
Collapse
Affiliation(s)
- Yukie Yoshii
- Biomedical Imaging Research Center, University of Fukui, 23-3, Shimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 2008; 105:18782-7. [PMID: 19033189 DOI: 10.1073/pnas.0810199105] [Citation(s) in RCA: 1470] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.
Collapse
|
41
|
Abstract
c-MYC has a pivotal function in growth control, differentiation and apoptosis, and its abnormal expression is associated with many tumors. Overexpression of c-MYC sensitizes cells to apoptosis by a variety of stimuli. The decision of a cell to undergo apoptosis and how this apoptotic response is regulated by c-MYC depends on the specific cell type and the physiological status of the cell. Multiple cooperating molecular pathways of cell survival and apoptosis determine whether a cell lives or dies, and understanding how c-MYC interfaces with these pathways to influence the survival of cells is important to understand normal and abnormal development, tumor initiation and progression, and response of tumors to different treatment regimens. This article will provide an overview of the function of the tumor suppressor gene product p53 in the c-MYC-mediated apoptotic response and how c-MYC amplifies the intrinsic mitochondrial pathway and triggers and/or amplifies the death receptor pathways. Finally, a model for how deregulated c-MYC prematurely triggers the normal apoptotic response associated with terminal myeloid differentiation while also blocking the differentiation program is presented.
Collapse
|
42
|
Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J 2008; 27:2851-61. [PMID: 18923429 DOI: 10.1038/emboj.2008.200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 09/08/2008] [Indexed: 11/09/2022] Open
Abstract
The Myc-associated zinc-finger protein, Miz1, activates transcription of the p21cip1 gene in response to UV irradiation. Miz1 associates with topoisomerase II binding protein1 (TopBP1), an essential activator of the Atr kinase. We show here that Miz1 is required for the recruitment of a fraction of TopBP1 to chromatin, for the protection of TopBP1 from proteasomal degradation and for Atr-dependent signal transduction. TopBP1 that is not bound to chromatin is degraded by the HectH9 (Mule, ARF-BP1 and HUWE1) ubiquitin ligase. Myc antagonizes the binding of TopBP1 to Miz1; as a result, expression of Myc leads to dissociation of TopBP1 from chromatin, reduces the amount of total TopBP1 and attenuates Atr-dependent signal transduction. Our data show that Miz1 and Myc affect the activity of the Atr checkpoint through their effect on TopBP1 chromatin association and stability.
Collapse
|
43
|
Mayr D, Hirschmann A, Marlow S, Horvath C, Diebold J. Analysis of selected oncogenes (AKT1, FOS, BCL2L2, TGFbeta) on chromosome 14 in granulosa cell tumors (GCTs): a comprehensive study on 30 GCTs combining comparative genomic hybridization (CGH) and fluorescence-in situ-hybridization (FISH). Pathol Res Pract 2008; 204:823-30. [PMID: 18774655 DOI: 10.1016/j.prp.2008.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
In previous studies, we have demonstrated a number of cytogenetic alterations in granulosa cell tumors (GCTs), especially on chromosomes X, 12, 14, and 22. However, little is known about specific loci on 14q, which could play an important role in tumor pathology. Therefore, we assessed four important genes in 30 GCTs using fluorescence-in situ-hybridization (FISH). Comparative genomic hybridization (CGH) was performed on paraffin-embedded material. Then, we applied FISH with gene-specific DNA probes for AKT1 (14q32.32), FOS (14q24.3), BCL2L2 (14q11.2-q12), and TGFbeta3 (14q24), and tried to find a correlation between CGH, FISH, tumor stage, and survival. In CGH, 7 of 30 cases (23.3%) showed complete gains on chromosome 14. FISH of the four loci revealed gains of hybridization signals in 8 of 30 cases (26.6%), indicating trisomy of the whole chromosome arm. The same aberration was detected by FISH in 2 of 30 cases (6.6%), which were negative using CGH. One case (1 of 30; 3.3%) was found to have a gain on chromosome 14 by CGH, which could not be confirmed by FISH. A correlation with tumor stage or survival could not be established. Our results suggest that GCTs may be characterized by trisomy of chromosome 14. A specific oncogene that could play a particular role in the tumorigenesis of GCTs was not identified on chromosome 14.
Collapse
Affiliation(s)
- Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchner Strasse 36, München, Germany.
| | | | | | | | | |
Collapse
|
44
|
Arnold HK, Sears RC. A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev 2008; 27:147-58. [PMID: 18246411 DOI: 10.1007/s10555-008-9128-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor. This is most likely due to the fact that PP2A represents a large number of different holoenzymes. Further understanding of PP2A function(s), and especially its tumor suppressor activity, will depend largely on our ability to determine specific targets for these different PP2A holoenzymes and to gain an understanding of how these targets confer tumor suppressor activity or contribute to cell cycle progression and cell survival. Recent work has identified c-Myc as a target of the PP2A holoenzyme, PP2A-B56alpha. This holoenzyme also negatively regulates beta-catenin expression and modulates the anti-apoptotic activity of Bcl2, thus characterizing PP2A-B56alpha as a tumor suppressor PP2A holoenzyme. This review will focus on the role of PP2A-B56alpha in regulating c-Myc and will place this tumor suppressor activity of PP2A within the context of its other tumor suppressor functions. Finally, the mechanism(s) through which PP2A-B56alpha tumor suppressor activity may be lost in cancer will be discussed.
Collapse
Affiliation(s)
- Hugh K Arnold
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
45
|
Cowling VH, Cole MD. An N-Myc truncation analogous to c-Myc-S induces cell proliferation independently of transactivation but dependent on Myc homology box II. Oncogene 2007; 27:1327-32. [PMID: 17704800 DOI: 10.1038/sj.onc.1210734] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myc promotes both normal cell proliferation and oncogenic transformation through the activation and repression of target genes. The c-Myc-S protein is a truncated form of c-Myc that is produced in some cells from translation initiation at an internal AUG codon. We report that c-Myc-S and a similar truncated form of N-MycWT can fully rescue the proliferation defect in myc-null fibroblasts, but rescue is dependent on the highly conserved Myc homology box II (MBII). Global gene expression studies show that the N-Myc equivalent of c-Myc-S is defective for virtually all transcriptional activation of Myc target genes but remains active for the majority of transcriptional repression. Repression by Myc-S is dependent on MBII, but it does not bind to several known nuclear cofactors. These data suggest that repression by Myc involves recruitment of a novel MBII-dependent cofactor.
Collapse
Affiliation(s)
- V H Cowling
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | |
Collapse
|
46
|
Abstract
Impaired apoptosis is both critical in cancer development and a major barrier to effective treatment. In response to diverse intracellular damage signals, including those evoked by cancer therapy, the cell's decision to undergo apoptosis is determined by interactions between three factions of the Bcl-2 protein family. The damage signals are transduced by the diverse 'BH3-only' proteins, distinguished by the BH3 domain used to engage their pro-survival relatives: Bcl-2, Bcl-x(L), Bcl-w, Mcl-1 and A1. This interaction ablates pro-survival function and allows activation of Bax and Bak, which commit the cell to apoptosis by permeabilizing the outer membrane of the mitochondrion. Certain BH3-only proteins (e.g. Bim, Puma) can engage all the pro-survival proteins, but others (e.g. Bad, Noxa) engage only subsets. Activation of Bax and Bak appears to require that the BH3-only proteins engage the multiple pro-survival proteins guarding Bax and Bak, rather than binding to the latter. The balance between the pro-survival proteins and their BH3 ligands regulates tissue homeostasis, and either overexpression of a pro-survival family member or loss of a proapoptotic relative can be oncogenic. Better understanding of the Bcl-2 family is clarifying its role in cancer development, revealing how conventional therapy works and stimulating the search for "BH3 mimetics" as a novel class of anticancer drugs.
Collapse
Affiliation(s)
- J M Adams
- Department of Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|