1
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Severi E, Bunoro Batista M, Lannoy A, Stansfeld PJ, Palmer T. Characterization of a TatA/TatB binding site on the TatC component of the Escherichia coli twin arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001298. [PMID: 36790402 PMCID: PMC10197872 DOI: 10.1099/mic.0.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.
Collapse
Affiliation(s)
- Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mariana Bunoro Batista
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Adelie Lannoy
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Alcock F, Berks BC. New insights into the Tat protein transport cycle from characterizing the assembled Tat translocon. Mol Microbiol 2022; 118:637-651. [PMID: 36151601 PMCID: PMC10092561 DOI: 10.1111/mmi.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK.,Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Hao B, Zhou W, Theg SM. Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway. J Biol Chem 2022; 298:101991. [PMID: 35490783 PMCID: PMC9207671 DOI: 10.1016/j.jbc.2022.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across membranes in bacteria, thylakoids, plant mitochondria, and archaea. In most species, the active Tat machinery consists of three independent subunits: TatA, TatB, and TatC. TatA and TatB possess short transmembrane alpha helices (TMHs), both of which are only 15 residues long in Escherichia coli. Such short TMHs cause a hydrophobic mismatch between Tat subunits and the membrane bilayer, although the functional significance of this mismatch is unclear. Here, we sought to address the functional importance of the hydrophobic mismatch in the Tat transport mechanism in E. coli. We conducted three different assays to evaluate the effect of TMH length mutants on Tat activity and observed that the TMHs of TatA and TatB appear to be evolutionarily tuned to 15 amino acids, with activity dropping off following any modification of this length. Surprisingly, TatA and TatB with as few as 11 residues in their TMHs can still insert into the membrane bilayer, albeit with a decline in membrane integrity. These findings support a model of Tat transport utilizing localized toroidal pores that form when the membrane bilayer is thinned to a critical threshold. In this context, we conclude that the 15-residue length of the TatA and TatB TMHs can be seen as a compromise between the need for some hydrophobic mismatch to allow the membrane to reversibly reach the threshold thinness required for toroidal pore formation and the permanently destabilizing effect of placing even shorter helices into these energy-transducing membranes.
Collapse
Affiliation(s)
- Binhan Hao
- Plant Biology Department, University of California, Davis, CA 95616
| | - Wenjie Zhou
- Plant Biology Department, University of California, Davis, CA 95616
| | - Steven M Theg
- Plant Biology Department, University of California, Davis, CA 95616.
| |
Collapse
|
5
|
Electrochromic shift supports the membrane destabilization model of Tat-mediated transport and shows ion leakage during Sec transport. Proc Natl Acad Sci U S A 2021; 118:2018122118. [PMID: 33723047 DOI: 10.1073/pnas.2018122118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism and pore architecture of the Tat complex during transport of folded substrates remain a mystery, partly due to rapid dissociation after translocation. In contrast, the proteinaceous SecY pore is a persistent structure that needs only to undergo conformational shifts between "closed" and "opened" states when translocating unfolded substrate chains. Where the proteinaceous pore model describes the SecY pore well, the toroidal pore model better accounts for the high-energy barrier that must be overcome when transporting a folded substrate through the hydrophobic bilayer in Tat transport. Membrane conductance behavior can, in principle, be used to distinguish between toroidal and proteinaceous pores, as illustrated in the examination of many antimicrobial peptides as well as mitochondrial Bax and Bid. Here, we measure the electrochromic shift (ECS) decay as a proxy for conductance in isolated thylakoids, both during protein transport and with constitutively assembled translocons. We find that membranes with the constitutively assembled Tat complex and those undergoing Tat transport display conductance characteristics similar to those of resting membranes. Membranes undergoing Sec transport and those with the substrate-engaged SecY pore result in significantly more rapid electric field decay. The responsiveness of the ECS signal in membranes with active SecY recalls the steep relationship between applied voltage and conductance in a proteinaceous pore, while the nonaccelerated electric field decay with both Tat transport and the constitutive Tat complex under the same electric field is consistent with the behavior of a toroidal pore.
Collapse
|
6
|
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861-871. [PMID: 31971282 PMCID: PMC7317946 DOI: 10.1111/mmi.14461] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.
Collapse
Affiliation(s)
- Tracy Palmer
- Faculty of Medical Sciences, Centre for Bacterial Cell Biology, Biosciences Institute, Molecular and Cellular Microbiology Theme, Newcastle University, Newcastle upon Tyne, England
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
8
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
Affiliation(s)
- Kelly M Frain
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| |
Collapse
|
9
|
New CP, Ma Q, Dabney-Smith C. Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. PHOTOSYNTHESIS RESEARCH 2018; 138:289-301. [PMID: 30101370 DOI: 10.1007/s11120-018-0567-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Thylakoids are complex sub-organellar membrane systems whose role in photosynthesis makes them critical to life. Thylakoids require the coordinated expression of both nuclear- and plastid-encoded proteins to allow rapid response to changing environmental conditions. Transport of cytoplasmically synthesized proteins to thylakoids or the thylakoid lumen is complex; the process involves transport across up to three membrane systems with routing through three aqueous compartments. Protein transport in thylakoids is accomplished by conserved ancestral prokaryotic plasma membrane translocases containing novel adaptations for the sub-organellar location. This review focuses on the evolutionarily conserved chloroplast twin arginine transport (cpTat) pathway. An overview is provided of known aspects of the cpTat components, energy requirements, and mechanisms with a focus on recent discoveries. Some of the most exciting new studies have been in determining the structural architecture of the membrane complex involved in forming the point of passage for the precursor and binding features of the translocase components. The cpTat system is of particular interest because it transports folded protein domains using only the proton motive force for energy. The implications for mechanism of translocation by recent studies focusing on interactions between membrane Tat components and with the translocating precursor will be discussed.
Collapse
Affiliation(s)
- Christopher Paul New
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Qianqian Ma
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA.
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
10
|
Ma Q, Fite K, New CP, Dabney‐Smith C. Thylakoid-integrated recombinant Hcf106 participates in the chloroplast twin arginine transport system. PLANT DIRECT 2018; 2:e00090. [PMID: 31245690 PMCID: PMC6508782 DOI: 10.1002/pld3.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
The chloroplast twin arginine transport (cpTat) system distinguishes itself as a protein transport pathway by translocating fully folded proteins, using the proton-motive force (PMF) as the sole source of energy. The cpTat pathway is evolutionarily conserved with the Tat pathway found in the plasma membrane of many prokaryotes. The cpTat (Escherichia coli) system uses three proteins, Tha4 (TatA), Hcf106 (TatB), and cpTatC (TatC), to form a transient translocase allowing the passage of precursor proteins. Briefly, cpTatC and Hcf106, with Tha4, form the initial receptor complex responsible for precursor protein recognition and binding in an energy-independent manner, while a separate pool of Tha4 assembles with the precursor-bound receptor complex in the presence the PMF. Analysis by blue-native polyacrylamide gel electrophoresis (BN-PAGE) shows that the receptor complex, in the absence of precursor, migrates near 700 kDa and contains cpTatC and Hcf106 with little Tha4 remaining after detergent solubilization. To investigate the role that Hcf106 may play in receptor complex oligomerization and/or stability, systematic cysteine substitutions were made in positions from the N-terminal transmembrane domain to the end of the predicted amphipathic helix of the protein. BN-PAGE analysis allowed us to identify the locations of amino acids in Hcf106 that were critical for interacting with cpTatC. Oxidative cross-linking allowed us to map interactions of the transmembrane domain and amphipathic helix region of Hcf106. In addition, we showed that in vitro expressed, integrated Hcf106 can interact with the precursor signal peptide domain and imported cpTatC, strongly suggesting that a subpopulation of the integrated Hcf106 is participating in competent cpTat complexes.
Collapse
Affiliation(s)
- Qianqian Ma
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
- Present address:
Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Kristen Fite
- Department of Chemistry and BiochemistryMiami UniversityOxfordOhio
- Present address:
Boonshoft School of MedicineWright State UniversityDaytonOhio
| | - Christopher Paul New
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
| | - Carole Dabney‐Smith
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
- Department of Chemistry and BiochemistryMiami UniversityOxfordOhio
| |
Collapse
|
11
|
Habersetzer J, Moore K, Cherry J, Buchanan G, Stansfeld PJ, Palmer T. Substrate-triggered position switching of TatA and TatB during Tat transport in Escherichia coli. Open Biol 2018; 7:rsob.170091. [PMID: 28814647 PMCID: PMC5577447 DOI: 10.1098/rsob.170091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023] Open
Abstract
The twin-arginine protein transport (Tat) machinery mediates the translocation of folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. The Escherichia coli Tat system comprises TatC and two additional sequence-related proteins, TatA and TatB. The active translocase is assembled on demand, with substrate-binding at a TatABC receptor complex triggering recruitment and assembly of multiple additional copies of TatA; however, the molecular interactions mediating translocase assembly are poorly understood. A ‘polar cluster’ site on TatC transmembrane (TM) helix 5 was previously identified as binding to TatB. Here, we use disulfide cross-linking and molecular modelling to identify a new binding site on TatC TM helix 6, adjacent to the polar cluster site. We demonstrate that TatA and TatB each have the capacity to bind at both TatC sites, however in vivo this is regulated according to the activation state of the complex. In the resting-state system, TatB binds the polar cluster site, with TatA occupying the TM helix 6 site. However when the system is activated by overproduction of a substrate, TatA and TatB switch binding sites. We propose that this substrate-triggered positional exchange is a key step in the assembly of an active Tat translocase.
Collapse
Affiliation(s)
- Johann Habersetzer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kristoffer Moore
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jon Cherry
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
12
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
13
|
Hamsanathan S, Anthonymuthu TS, Bageshwar UK, Musser SM. A Hinged Signal Peptide Hairpin Enables Tat-Dependent Protein Translocation. Biophys J 2018; 113:2650-2668. [PMID: 29262359 DOI: 10.1016/j.bpj.2017.09.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
The Tat machinery catalyzes the transport of folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane in plants. Using fluorescence quenching and cross-linking approaches, we demonstrate that the Escherichia coli TatBC complex catalyzes insertion of a pre-SufI signal peptide hairpin that penetrates about halfway across the membrane bilayer. Analysis of 512 bacterial Tat signal peptides using secondary structure prediction and docking algorithms suggest that this hairpin interaction mode is generally conserved. An internal cross-link in the signal peptide that blocks transport but does not affect binding indicates that a signal peptide conformational change is required during translocation. These results suggest, to our knowledge, a novel hairpin-hinge model in which the signal peptide hairpin unhinges during movement of the mature domain across the membrane. Thus, in addition to enabling the necessary recognition, the interaction of Tat signal peptides with the receptor complex plays a critical role in the transport process itself.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umesh K Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, College Station, Texas.
| |
Collapse
|
14
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
15
|
Ulfig A, Fröbel J, Lausberg F, Blümmel AS, Heide AK, Müller M, Freudl R. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. J Biol Chem 2017; 292:10865-10882. [PMID: 28515319 DOI: 10.1074/jbc.m117.788950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in their binding to the Tat translocase, but some facets of this interaction remain unclear. Here, we investigated the role of the hydrophobic (h-) region of the Escherichia coli trimethylamine N-oxide reductase (TorA) signal peptide in TatBC receptor binding in vivo and in vitro We show that besides the RR motif, a minimal, functional h-region in the signal peptide is required for Tat-dependent export in Escherichia coli Furthermore, we identified mutations in the h-region that synergistically suppressed the export defect of a TorA[KQ]-30aa-MalE Tat reporter protein in which the RR motif was replaced with a lysine-glutamine pair. Strikingly, all suppressor mutations increased the hydrophobicity of the h-region. By systematically replacing a neutral residue in the h-region with various amino acids, we detected a positive correlation between the hydrophobicity of the h-region and the translocation efficiency of the resulting reporter variants. In vitro cross-linking of residues located in the periplasmically-oriented part of the TatBC receptor to TorA[KQ]-30aa-MalE reporter variants harboring a more hydrophobic h-region in their signal peptides confirmed that unlike in TorA[KQ]-30aa-MalE with an unaltered h-region, the mutated reporters moved deep into the TatBC-binding cavity. Our results clearly indicate that, besides the Tat motif, the h-region of the Tat signal peptides is another important binding determinant that significantly contributes to the productive interaction of Tat precursor proteins with the TatBC receptor complex.
Collapse
Affiliation(s)
- Agnes Ulfig
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Julia Fröbel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Frank Lausberg
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Anne-Sophie Blümmel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Anna Katharina Heide
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Matthias Müller
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Roland Freudl
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| |
Collapse
|
16
|
Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc Natl Acad Sci U S A 2017; 114:E1958-E1967. [PMID: 28223511 PMCID: PMC5347605 DOI: 10.1073/pnas.1615056114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
Collapse
Affiliation(s)
- Qi Huang
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Justin C Deme
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sarah E Rollauer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
17
|
A Tat ménage à trois — The role of Bacillus subtilis TatAc in twin-arginine protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2745-53. [DOI: 10.1016/j.bbamcr.2015.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022]
|
18
|
Affiliation(s)
- Ben C. Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| |
Collapse
|
19
|
Cline K. Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat). J Biol Chem 2015; 290:16530-8. [PMID: 25975269 DOI: 10.1074/jbc.r114.626820] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin arginine translocase (Tat) transports folded proteins of widely varying size across ionically tight membranes with only 2-3 components of machinery and the proton motive force. Tat operates by a cycle in which the receptor complex combines with the pore-forming component to assemble a new translocase for each substrate. Recent data on component and substrate organization in the receptor complex and on the structure of the pore complex inform models for translocase assembly and translocation. A translocation mechanism involving local transient bilayer rupture is discussed.
Collapse
Affiliation(s)
- Kenneth Cline
- From the Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
20
|
Taubert J, Hou B, Risselada HJ, Mehner D, Lünsdorf H, Grubmüller H, Brüser T. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency. PLoS One 2015; 10:e0119761. [PMID: 25774531 PMCID: PMC4361764 DOI: 10.1371/journal.pone.0119761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.
Collapse
Affiliation(s)
- Johannes Taubert
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Bo Hou
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Denise Mehner
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre of Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
- * E-mail:
| |
Collapse
|
21
|
Aldridge C, Ma X, Gerard F, Cline K. Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 2014; 205:51-65. [PMID: 24711501 PMCID: PMC3987133 DOI: 10.1083/jcb.201311057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across tightly sealed membranes. cpTatC is the core component of the thylakoid translocase and coordinates transport through interactions with the substrate signal peptide and other Tat components, notably the Tha4 pore-forming component. Here, Cys-Cys matching mapped Tha4 contact sites on cpTatC and assessed the role of signal peptide binding on Tha4 assembly with the cpTatC-Hcf106 receptor complex. Tha4 made contact with a peripheral cpTatC site in nonstimulated membranes. In the translocase, Tha4 made an additional contact within the cup-shaped cavity of cpTatC that likely seeds Tha4 polymerization to form the pore. Substrate binding triggers assembly of Tha4 onto the interior site. We provide evidence that the substrate signal peptide inserts between cpTatC subunits arranged in a manner that conceivably forms an enclosed chamber. The location of the inserted signal peptide and the Tha4-cpTatC contact data suggest a model for signal peptide-gated Tha4 entry into the chamber to form the translocase.
Collapse
Affiliation(s)
- Cassie Aldridge
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611
| | | | | | | |
Collapse
|
22
|
Berks BC, Lea SM, Stansfeld PJ. Structural biology of Tat protein transport. Curr Opin Struct Biol 2014; 27:32-7. [PMID: 24709396 DOI: 10.1016/j.sbi.2014.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 11/30/2022]
Abstract
The Tat protein transport system is found in the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Unusually, the Tat system translocates proteins only after they have folded. Proteins are targeted to the Tat system by specific N-terminal signal peptides. High resolution structures have recently been determined for the TatA and TatC proteins that form the Tat translocation site. These structures provide a molecular framework for understanding the mechanism of Tat transport. The interactions between TatC and the signal peptide of the substrate protein can be provisionally modelled. However, the way that TatA and TatC combine in the active translocation site remains to be definitively established.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Susan M Lea
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
23
|
Solution structure of the TatB component of the twin-arginine translocation system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1881-8. [PMID: 24699374 DOI: 10.1016/j.bbamem.2014.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
The twin-arginine protein transport (Tat) system translocates fully folded proteins across lipid membranes. In Escherichia coli, the Tat system comprises three essential components: TatA, TatB and TatC. The protein translocation process is proposed to initiate by signal peptide recognition and substrate binding to the TatBC complex. Upon formation of the TatBC-substrate protein complex, the TatA subunits are recruited and form the protein translocation pore. Experimental evidences suggest that TatB forms a tight complex with TatC at 1:1 molar ratio and the TatBC complex contains multiple copies of both proteins. Cross-linking experiments demonstrate that TatB functions in tetrameric units and interacts with both TatC and substrate proteins. However, structural information of the TatB protein is still lacking, and its functional mechanism remains elusive. Herein, we report the solution structure of TatB in DPC micelles determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Overall, the structure shows an extended 'L-shape' conformation comprising four helices: a transmembrane helix (TMH) α1, an amphipathic helix (APH) α2, and two solvent exposed helices α3 and α4. The packing of TMH and APH is relatively rigid, whereas helices α3 and α4 display notably higher mobility. The observed floppiness of helices α3 and α4 allows TatB to sample a large conformational space, thus providing high structural plasticity to interact with substrate proteins of different sizes and shapes.
Collapse
|
24
|
Patel R, Smith SM, Robinson C. Protein transport by the bacterial Tat pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1620-8. [PMID: 24583120 DOI: 10.1016/j.bbamcr.2014.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large - even dimeric - proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are believed to coalesce to form the active translocon, and 'capturing' this translocation event has been too difficult. Nevertheless, studies on the individual components have come a long way in recent years, and structural studies have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Roshani Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
25
|
Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C. Solid-state NMR investigations of peptide–lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106. Chem Phys Lipids 2013; 175-176:123-30. [DOI: 10.1016/j.chemphyslip.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 02/02/2023]
|
26
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
27
|
Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 2013; 3:1311. [PMID: 23250441 PMCID: PMC3538955 DOI: 10.1038/ncomms2308] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/15/2012] [Indexed: 12/03/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB. TatA, B and C act together to translocate folded proteins across bacterial and chloroplast membranes, however the precise mechanism remains unclear. Fröbel and colleagues discover that TatC has unforeseen membrane insertase activity, while TatB prevents premature cleavage before translocation.
Collapse
|
28
|
Ramasamy S, Abrol R, Suloway CJ, Clemons WM. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 2013; 21:777-88. [PMID: 23583035 PMCID: PMC3653977 DOI: 10.1016/j.str.2013.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Å and 6.8 Å resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies.
Collapse
Affiliation(s)
| | - Ravinder Abrol
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian J.M. Suloway
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Ma X, Cline K. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. THE PLANT CELL 2013; 25:999-1015. [PMID: 23512851 PMCID: PMC3634702 DOI: 10.1105/tpc.112.107409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 05/17/2023]
Abstract
Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
30
|
Pal D, Fite K, Dabney-Smith C. Direct interaction between a precursor mature domain and transport component Tha4 during twin arginine transport of chloroplasts. PLANT PHYSIOLOGY 2013; 161:990-1001. [PMID: 23209125 PMCID: PMC3561034 DOI: 10.1104/pp.112.207522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Proteins destined for the thylakoid lumen of chloroplasts must cross three membranes en route. The chloroplast twin arginine translocation (cpTat) system facilitates the transport of about one-half of all proteins that cross the thylakoid membrane in chloroplasts. Known mechanistic features of the cpTat system are drastically different from other known translocation systems, notably in its formation of a transient complex to transport fully folded proteins utilizing only the protonmotive force generated during photosynthesis for energy. However, key details, such as the structure and composition of the translocation pore, are still unknown. One of the three transmembrane cpTat components, Tha4, is thought to function as the pore by forming an oligomer. Yet, little is known about the topology of Tha4 in thylakoid, and little work has been done to detect precursor-Tha4 interactions, which are expected if Tha4 is the pore. Here, we present evidence of the interaction of the precursor with Tha4 under conditions leading to transport, using cysteine substitutions on the precursor and Tha4 and disulfide bond formation in pea (Pisum sativum). The mature domain of a transport-competent precursor interacts with the amphipathic helix and amino terminus of functional Tha4 under conditions leading to transport. Detergent solubilization of thylakoids post cross linking and blue-native polyacrylamide gel electrophoresis analysis shows that Tha4 is found in a complex containing precursor and Hcf106 (i.e. the cpTat translocase). Affinity precipitation of the cross-linked complex via Tha4 clearly demonstrates that the interaction is with full-length precursor. How these data suggest a role for Tha4 in cpTat transport is discussed.
Collapse
|
31
|
Aldridge C, Storm A, Cline K, Dabney-Smith C. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 2012; 287:34752-63. [PMID: 22896708 PMCID: PMC3464578 DOI: 10.1074/jbc.m112.385666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Indexed: 11/06/2022] Open
Abstract
Twin arginine transport (Tat) systems transport folded proteins using proton-motive force as sole energy source. The thylakoid Tat system comprises three membrane components. A complex composed of cpTatC and Hcf106 is the twin arginine signal peptide receptor. Signal peptide binding triggers assembly of Tha4 for the translocation step. Tha4 is thought to serve as the protein-conducting element, and the topology it adopts during transport produces the transmembrane passageway. We analyzed Tha4 topology and conformation in actively transporting translocases and compared that with Tha4 in nontransporting membranes. Using cysteine accessibility labeling techniques and diagnostic protease protection assays, we confirm an overall N(OUT)-C(IN) topology for Tha4 that is maintained under transport conditions. Significantly, the amphipathic helix (APH) and C-tail exhibited substantial changes in accessibility when actively engaged in protein transport. Compared with resting state, cysteines within the APH became less accessible to stromally applied modifying reagent. The APH proximal C-tail, although still accessible to Cys-directed reagents, was much less accessible to protease. We attribute these changes in accessibility to indicate the Tha4 conformation that is adopted in the translocase primed for translocation. We propose that in the primed translocase, the APH partitions more extensively and uniformly into the membrane interface and the C-tails pack closer together in a mesh-like network. Implications for the mode by which the substrate protein crosses the bilayer are discussed.
Collapse
Affiliation(s)
- Cassie Aldridge
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Amanda Storm
- the Department of Chemistry and Biochemistry and
| | - Kenneth Cline
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Carole Dabney-Smith
- the Department of Chemistry and Biochemistry and
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio 45056
| |
Collapse
|
32
|
Lausberg F, Fleckenstein S, Kreutzenbeck P, Fröbel J, Rose P, Müller M, Freudl R. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One 2012; 7:e39867. [PMID: 22761916 PMCID: PMC3383694 DOI: 10.1371/journal.pone.0039867] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/28/2012] [Indexed: 12/03/2022] Open
Abstract
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.
Collapse
Affiliation(s)
- Frank Lausberg
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Fleckenstein
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Kreutzenbeck
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|
33
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483-96. [PMID: 22683878 DOI: 10.1038/nrmicro2814] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Collapse
Affiliation(s)
- Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
34
|
Celedon JM, Cline K. Stoichiometry for binding and transport by the twin arginine translocation system. J Cell Biol 2012; 197:523-34. [PMID: 22564412 PMCID: PMC3352945 DOI: 10.1083/jcb.201201096] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022] Open
Abstract
Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.
Collapse
Affiliation(s)
- Jose M Celedon
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
35
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
36
|
Zoufaly S, Fröbel J, Rose P, Flecken T, Maurer C, Moser M, Müller M. Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 2012; 287:13430-41. [PMID: 22362773 DOI: 10.1074/jbc.m112.343798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass complexes consisting of two types of membrane proteins, a hexahelical TatC protein, and usually one or two single-spanning membrane proteins, called TatA and TatB. TatC has previously been shown to be involved in the recognition of twin arginine signal peptides. We have performed an extensive site-specific cross-linking analysis of the Escherichia coli TatC protein under resting and translocating conditions. This strategy allowed us to map the recognition site for twin arginine signal peptides to the cytosolic N-terminal region and first cytosolic loop of TatC. In addition, discrete contact sites between TatC, TatB, and TatA were revealed. We discuss a tentative model of how a twin arginine signal sequence might be accommodated in the Tat translocase.
Collapse
Affiliation(s)
- Stefan Zoufaly
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Whitaker N, Bageshwar UK, Musser SM. Kinetics of precursor interactions with the bacterial Tat translocase detected by real-time FRET. J Biol Chem 2012; 287:11252-60. [PMID: 22315217 DOI: 10.1074/jbc.m111.324525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli twin-arginine translocation (Tat) system transports fully folded and assembled proteins across the inner membrane into the periplasmic space. Traditionally, in vitro protein translocation studies have been performed using gel-based transport assays. This technique suffers from low time resolution, and often, an inability to distinguish between different steps in a continuously occurring translocation process. To address these limitations, we have developed an in vitro FRET-based assay that reports on an early step in the Tat translocation process in real-time. The natural Tat substrate pre-SufI was labeled with Alexa532 (donor), and the fluorescent protein mCherry (acceptor) was fused to the C terminus of TatB or TatC. The colored Tat proteins were easily visible during purification, enabling identification of a highly active inverted membrane vesicle (IMV) fraction yielding transport rates with NADH almost an order of magnitude faster than previously reported. When pre-SufI was bound to the translocon, FRET was observed for both Tat proteins. FRET was diminished upon addition of nonfluorescent pre-SufI, indicating that the initial binding step is reversible. When the membranes were energized with NADH, the FRET signal was lost after a short delay. These data suggest a model in which a Tat cargo initially associates with the TatBC complex, and an electric field gradient is required for the cargo to proceed to the next stage of transport. This cargo migration away from the TatBC complex requires a significant fraction of the total transport time.
Collapse
Affiliation(s)
- Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, Texas 77843, USA
| | | | | |
Collapse
|
38
|
Albiniak AM, Baglieri J, Robinson C. Targeting of lumenal proteins across the thylakoid membrane. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1689-98. [PMID: 22275386 DOI: 10.1093/jxb/err444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.
Collapse
Affiliation(s)
- Anna M Albiniak
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
39
|
Hou B, Brüser T. The Tat-dependent protein translocation pathway. Biomol Concepts 2011; 2:507-23. [DOI: 10.1515/bmc.2011.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe twin-arginine translocation (Tat) pathway is found in bacteria, archaea, and plant chloroplasts, where it is dedicated to the transmembrane transport of fully folded proteins. These proteins contain N-terminal signal peptides with a specific Tat-system binding motif that is recognized by the transport machinery. In contrast to other protein transport systems, the Tat system consists of multiple copies of only two or three usually small (∼8–30 kDa) membrane proteins that oligomerize to two large complexes that transiently interact during translocation. Only one of these complexes includes a polytopic membrane protein, TatC. The other complex consists of TatA. Tat systems of plants, proteobacteria, and several other phyla contain a third component, TatB. TatB is evolutionarily and structurally related to TatA and usually forms tight complexes with TatC. Minimal two-component Tat systems lacking TatB are found in many bacterial and archaeal phyla. They consist of a ‘bifunctional’ TatA that also covers TatB functionalities, and a TatC. Recent insights into the structure and interactions of the Tat proteins have various important implications.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
40
|
van der Ploeg R, Barnett JP, Vasisht N, Goosens VJ, Pöther DC, Robinson C, van Dijl JM. Salt sensitivity of minimal twin arginine translocases. J Biol Chem 2011; 286:43759-43770. [PMID: 22041895 DOI: 10.1074/jbc.m111.243824] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial twin arginine translocation (Tat) pathways have evolved to facilitate transport of folded proteins across membranes. Gram-negative bacteria contain a TatABC translocase composed of three subunits named TatA, TatB, and TatC. In contrast, the Tat translocases of most Gram-positive bacteria consist of only TatA and TatC subunits. In these minimal TatAC translocases, a bifunctional TatA subunit fulfils the roles of both TatA and TatB. Here we have probed the importance of conserved residues in the bifunctional TatAy subunit of Bacillus subtilis by site-specific mutagenesis. A set of engineered TatAy proteins with mutations in the cytoplasmic hinge and amphipathic helix regions were found to be inactive in protein translocation under standard growth conditions for B. subtilis or when heterologously expressed in Escherichia coli. Nevertheless, these mutated TatAy proteins did assemble into TatAy and TatAyCy complexes, and they facilitated membrane association of twin arginine precursor proteins in E. coli. Interestingly, most of the mutated TatAyCy translocases were salt-sensitive in B. subtilis. Similarly, the TatAC translocases of Bacillus cereus and Staphylococcus aureus were salt-sensitive when expressed in B. subtilis. Taken together, our present observations imply that salt-sensitive electrostatic interactions have critical roles in the preprotein translocation activity of certain TatAC type translocases from Gram-positive bacteria.
Collapse
Affiliation(s)
- René van der Ploeg
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - James P Barnett
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Nishi Vasisht
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Vivianne J Goosens
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Dierk C Pöther
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Colin Robinson
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
41
|
Rodrigues RAO, Silva-Filho MC, Cline K. FtsH2 and FtsH5: two homologous subunits use different integration mechanisms leading to the same thylakoid multimeric complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:600-9. [PMID: 21214651 PMCID: PMC3107010 DOI: 10.1111/j.1365-313x.2010.04448.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.
Collapse
Affiliation(s)
- Ricardo A. O. Rodrigues
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C. Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Ma X, Cline K. Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J 2010; 29:1477-88. [PMID: 20339348 PMCID: PMC2876949 DOI: 10.1038/emboj.2010.44] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/03/2010] [Indexed: 11/09/2022] Open
Abstract
The thylakoid twin arginine protein translocation (Tat) system is thought to have a multivalent receptor complex with each cpTatC-Hcf106 pair constituting a signal peptide-binding unit. Conceptual models suggest that translocation of individual precursor proteins occurs upon assembly of a Tha4 oligomer with a precursor-occupied cpTatC-Hcf106. However, results reported here reveal that multiple precursor proteins bound to a single receptor complex can be transported together. Precursor proteins that contain one or two cysteine residues readily formed intermolecular disulphide bonds upon binding to the receptor complex, resulting in dimeric and tetrameric precursor proteins. Three lines of evidence indicate that all members of precursor oligomers were specifically bound to a receptor unit. Blue native-polyacrylamide gel electrophoresis analysis showed that oligomers were present on individual receptor complexes rather than bridging two or more receptor complexes. Upon energizing the membrane, the dimeric and tetrameric precursors were transported across the membrane with efficiencies comparable with that of monomeric precursors. These results imply a novel aspect of Tat systems, whereby multiple precursor-binding sites can act in concert to transport an interlinked oligo-precursor protein.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Bageshwar UK, Whitaker N, Liang FC, Musser SM. Interconvertibility of lipid- and translocon-bound forms of the bacterial Tat precursor pre-SufI. Mol Microbiol 2009; 74:209-226. [PMID: 19732346 DOI: 10.1111/j.1365-2958.2009.06862.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signal peptides target protein cargos for secretion from the bacterial cytoplasm. These signal peptides contain a tri-partite structure consisting of a central hydrophobic domain (h-domain), and two flanking polar domains. Using a recently developed in vitro transport assay, we report here that a central h-domain position (C17) of the twin arginine translocation (Tat) substrate pre-SufI is especially sensitive to amino acid hydrophobicity. The C17I mutant is transported more efficiently than wild type, whereas charged substitutions completely block transport. Transport efficiency is well-correlated with Tat translocon binding efficiency. The precursor protein also binds to non-Tat components of the membrane, presumably to the lipids. This lipid-bound precursor can be chased through the Tat translocons under conditions of high proton motive force. Thus, the non-Tat bound form of the precursor is a functional intermediate in the transport cycle. This intermediate appears to directly equilibrate with the translocon-bound form of the precursor.
Collapse
Affiliation(s)
- Umesh K Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Fu-Cheng Liang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
44
|
Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 2009; 106:13284-9. [PMID: 19666509 DOI: 10.1073/pnas.0901566106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. In Escherichia coli substrate proteins initially bind to the integral membrane TatBC complex which then recruits the protein TatA to effect translocation. Overproduction of TatBC and the substrate protein SufI in the absence of TatA led to the accumulation of TatBC-SufI complexes that could be purified using an affinity tag on the substrate. Three-dimensional structures of the TatBC-SufI complexes and unliganded TatBC were obtained by single-particle electron microscopy and random conical tilt reconstruction. Comparison of the structures shows that substrate molecules bind on the periphery of the TatBC complex and that substrate binding causes a significant reduction in diameter of the TatBC part of the complex. Although the TatBC complex contains multiple copies of the signal peptide-binding TatC protomer, purified TatBC-SufI complexes contain only 1 or 2 SufI molecules. Where 2 substrates are present in the TatBC-SufI complex, they are bound at adjacent sites. These observations imply that only certain TatC protomers within the complex interact with substrate or that there is a negative cooperativity of substrate binding. Similar TatBC-substrate complexes can be generated by an alternative in vitro reconstitution method and using a different substrate protein.
Collapse
|
45
|
Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis. Microbiology (Reading) 2009; 155:1776-1785. [DOI: 10.1099/mic.0.027987-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC complexes with distinct substrate specificities: PhoD is secreted by the TatAdCd complex, whereas YwbN is secreted by the TatAyCy complex. To study the role of the Gram-positive TatC proteins in Tat-dependent protein secretion efficiency, we applied several genetic engineering approaches to modify and analyse the B. subtilis TatCd and TatCy proteins. Cytoplasmic and transmembrane domain exchange between TatCd and TatCy resulted in stable chimeric proteins that were unable to secrete both known substrates of the B. subtilis Tat system. Site-directed mutagenesis of conserved residues in the N-terminal part of both TatC proteins revealed significant differences in the degree of importance of these residues between TatCd, TatCy and Escherichia coli TatC. In addition, two small C-terminal deletions in TatCy completely abolished YwbN translocation, indicating that this terminus is essential for Tat translocation activity. Important differences from previous observations for E. coli TatC and implications for substrate binding and translocation are discussed.
Collapse
|
46
|
Martin JR, Harwood JH, McCaffery MW, Fernandez DE, Cline KC. Localization and integration of thylakoid protein translocase subunit cpTatC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:831-42. [PMID: 19207210 PMCID: PMC2787251 DOI: 10.1111/j.1365-313x.2009.03816.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.
Collapse
Affiliation(s)
- Jonathan R. Martin
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| | - Jessica H. Harwood
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
| | - Michael W. McCaffery
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
| | - Kenneth C. Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| |
Collapse
|
47
|
Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, Yan M, Gao S, Wu LF, Xu J, Kan B. Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol 2009; 9:114. [PMID: 19480715 PMCID: PMC2698830 DOI: 10.1186/1471-2180-9-114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 05/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Twin-arginine translocation (Tat) system serves to translocate folded proteins, including periplasmic enzymes that bind redox cofactors in bacteria. The Tat system is also a determinant of virulence in some pathogenic bacteria, related to pleiotropic effects including growth, motility, and the secretion of some virulent factors. The contribution of the Tat pathway to Vibrio cholerae has not been explored. Here we investigated the functionality of the Tat system in V. cholerae, the etiologic agent of cholera. RESULTS In V. cholerae, the tatABC genes function in the translocation of TMAO reductase. Deletion of the tatABC genes led to a significant decrease in biofilm formation, the ability to attach to HT-29 cells, and the ability to colonize suckling mouse intestines. In addition, we observed a reduction in the output of cholera toxin, which may be due to the decreased transcription level of the toxin gene in tatABC mutants, suggesting an indirect effect of the mutation on toxin production. No obvious differences in flagellum biosynthesis and motility were found between the tatABC mutant and the parental strain, showing a variable effect of Tat in different bacteria. CONCLUSION The Tat system contributes to the survival of V. cholerae in the environment and in vivo, and it may be associated with its virulence.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Aldridge C, Cain P, Robinson C. Protein transport in organelles: Protein transport into and across the thylakoid membrane. FEBS J 2009; 276:1177-86. [PMID: 19187234 DOI: 10.1111/j.1742-4658.2009.06875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chloroplast thylakoid is the most abundant membrane system in nature, and is responsible for the critical processes of light capture, electron transport and photophosphorylation. Most of the resident proteins are imported from the cytosol and then transported into or across the thylakoid membrane. This minireview describes the multitude of pathways used for these proteins. We discuss the huge differences in the mechanisms involved in the secretory and twin-arginine translocase pathways used for the transport of proteins into the lumen, with an emphasis on the differing substrate conformations and energy requirements. We also discuss the rationale for the use of two different systems for membrane protein insertion: the signal recognition particle pathway and the so-called spontaneous pathway. The recent crystallization of a key chloroplast signal recognition particle component provides new insights into this rather unique form of signal recognition particle.
Collapse
Affiliation(s)
- Cassie Aldridge
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
49
|
Panahandeh S, Maurer C, Moser M, DeLisa MP, Müller M. Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli. J Biol Chem 2008; 283:33267-75. [PMID: 18836181 DOI: 10.1074/jbc.m804225200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) machinery present in bacterial and thylakoidal membranes is able to transport fully folded proteins. Consistent with previous in vivo data, we show that the model Tat substrate TorA-PhoA is translocated by the TatABC translocase of Escherichia coli inner membrane vesicles, only if the PhoA moiety was allowed to fold by disulfide bond formation. Although even unfolded TorA-PhoA was found to physically associate with the Tat translocase of the vesicles, site-specific cross-linking revealed a perturbed interaction of the signal sequence of unfolded TorA-PhoA with the TatBC receptor site. Some of the folded TorA-PhoA precursor accumulated in a partially protease-protected membrane environment, from where it could be translocated into the lumen of the vesicles upon re-installation of an H+-gradient. Translocation arrest occurred in immediate vicinity to TatA. Consistent with a neighborhood to TatA, TorA-PhoA remained protease-resistant in the presence of detergents that are known to preserve the oligomeric structures of TatA. Moreover, entry of TorA-PhoA to the protease-protected environment strictly required the presence of TatA. Collectively, our results are consistent with some degree of quality control by TatBC and a recruitment of TatA to a folded substrate that has functionally engaged the twin-arginine translocase.
Collapse
Affiliation(s)
- Sascha Panahandeh
- Institut für Biochemie und Molekularbiologie, ZBMZ, Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 2008; 35:835-47. [PMID: 17956229 DOI: 10.1042/bst0350835] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Tat (twin-arginine transport) pathway is a protein-targeting system dedicated to the transmembrane translocation of fully folded proteins. This system is highly prevalent in the cytoplasmic membranes of bacteria and archaea, and is also found in the thylakoid membranes of plant chloroplasts and possibly also in the inner membrane of plant mitochondria. Proteins are targeted to a membrane-embedded Tat translocase by specialized N-terminal twin-arginine signal peptides bearing an SRRXFLK amino acid motif. The genes encoding components of the Tat translocase were discovered approx. 10 years ago, and, since then, research in this area has expanded on a global scale. In this review, the key discoveries in this field are summarized, and recent studies of bacterial twin-arginine signal-peptide-binding proteins are discussed.
Collapse
|