1
|
The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1. PLoS One 2013; 8:e59913. [PMID: 23544109 PMCID: PMC3609805 DOI: 10.1371/journal.pone.0059913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.
Collapse
|
2
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
3
|
Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL. Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 2010; 30:1459-65. [PMID: 21046458 DOI: 10.1007/s10571-010-9575-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.
Collapse
Affiliation(s)
- Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | |
Collapse
|
4
|
Kovac S, Xiao L, Shulkes A, Patel O, Baldwin GS. Gastrin increases its own synthesis in gastrointestinal cancer cells via the CCK2 receptor. FEBS Lett 2010; 584:4413-8. [PMID: 20932834 DOI: 10.1016/j.febslet.2010.09.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/10/2023]
Abstract
The involvement of the gastrointestinal hormone gastrin in the development of gastrointestinal cancer is highly controversial. Here we demonstrate a positive-feedback loop whereby gastrin, acting via the CCK2 receptor, increases its own expression. Such an autocrine loop has not previously been reported for any other gastrointestinal hormone. Gastrin promoter activation was dependent on the MAP kinase pathway and did not involve Sp1 binding sites or epidermal growth factor receptor transactivation. As the treatment of gastrointestinal cancer cells with amidated gastrin led to increased expression of non-amidated gastrins, the positive-feedback loop may contribute to the sustained increase in circulating gastrins observed in colorectal cancer patients.
Collapse
Affiliation(s)
- Suzana Kovac
- The University of Melbourne, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
5
|
Inoue E, Yamashita A, Inoue H, Sekiguchi M, Shiratori A, Yamamoto Y, Tadokoro T, Ishimi Y, Yamauchi J. Identification of glucose transporter 4 knockdown-dependent transcriptional activation element on the retinol binding protein 4 gene promoter and requirement of the 20 S proteasome subunit for transcriptional activity. J Biol Chem 2010; 285:25545-53. [PMID: 20530491 PMCID: PMC2919119 DOI: 10.1074/jbc.m109.079152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 05/12/2010] [Indexed: 01/27/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the transport protein that carries retinol in blood. RBP4 was described recently as a new adipokine that reduced insulin sensitivity. Mice lacking glucose transporter 4 (GLUT4) in adipocytes have enhanced Rbp4 gene expression; however, the molecular mechanism is unknown. We found a G4KA (GLUT4 knockdown-dependent transcriptional activation) element located approximately 1.3 kb upstream of the Rbp4 promoter. Mutations within the G4KA sequence significantly reduced expression of the Rbp4 promoter-reporter construct in G4KD-L1 (GLUT4 knockdown 3T3-L1) adipocyte cells. In a yeast one-hybrid screen of a G4KD-L1 cell cDNA library, using the G4KA element as bait, we identified subunits of the 20 S proteasome, PSMB1 and PSMA4, as binding partners. In chromatin immunoprecipitation assays, both subunits bound to the G4KA element; however, only PSMB1 was tightly bound in the GLUT4 knockdown model. PSMB1 RNA interference, but not PSMA4, significantly inhibited Rbp4 transcription. Nuclear transportation of PSMB1 was increased in G4KD-L1 cells. These results provide evidence for an exclusive proteasome subunit-related mechanism for transcriptional activation of RBP4 within a GLUT4 knockdown model.
Collapse
Affiliation(s)
- Erina Inoue
- From the Nutritional Epidemiology Program and
| | | | - Hirofumi Inoue
- the Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | | | - Asuka Shiratori
- From the Nutritional Epidemiology Program and
- the Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yuji Yamamoto
- the Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tadahiro Tadokoro
- the Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoshiko Ishimi
- Food Function and Labeling Program, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjyuku, Tokyo 162-8636, Japan and
| | - Jun Yamauchi
- From the Nutritional Epidemiology Program and
- Food Function and Labeling Program, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjyuku, Tokyo 162-8636, Japan and
| |
Collapse
|
6
|
Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS. Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 2009; 76:1246-55. [PMID: 19783622 DOI: 10.1124/mol.109.058024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Target identification and validation remain difficult steps in the drug discovery process, and uncovering the core genes and pathways that are fundamental for cancer cell survival may facilitate this process. Glioblastoma represents a challenging form of cancer for chemotherapy. Therefore, we assayed 16,560 short interfering RNA (siRNA) aimed at identifying which of the 5520 unique therapeutically targetable gene products were important for the survival of human glioblastoma. We analyzed the viability of T98G glioma cells 96 h after siRNA transfection with two orthogonal statistical methods and identified 55 survival genes that encoded proteases, kinases, and transferases. It is noteworthy that 22% (12/55) of the survival genes were constituents of the 20S and 26S proteasome subunits. An expression survey of a panel of glioma cell lines demonstrated expression of the proteasome component PSMB4, and the validity of the proteasome complex as a target for survival inhibition was confirmed in a series of glioma and nonglioma cell lines by pharmacological inhibition and RNA interference. Biological networks were built with the other survival genes using a protein-protein interaction network, which identified clusters of cellular processes, including protein ubiquitination, purine and pyrimidine metabolism, nucleotide excision repair, and NF-kappaB signaling. The results of this study should broaden our understanding of the core genes and pathways that regulate cell survival; through either small molecule inhibition or RNA interference, we highlight the potential significance of proteasome inhibition.
Collapse
Affiliation(s)
- Nikhil G Thaker
- Department of Pharmacology and Chemical Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Almeida-Vega S, Catlow K, Kenny S, Dimaline R, Varro A. Gastrin activates paracrine networks leading to induction of PAI-2 via MAZ and ASC-1. Am J Physiol Gastrointest Liver Physiol 2009; 296:G414-23. [PMID: 19074642 PMCID: PMC2643906 DOI: 10.1152/ajpgi.90340.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastric hormone gastrin regulates the expression of a variety of genes involved in control of acid secretion and also in the growth and organization of the gastric mucosa. One putative target is plasminogen activator inhibitor-2 (PAI-2), which is a component of the urokinase activator system that acts extracellularly to inhibit urokinase plasminogen activator (uPA) and intracellularly to suppress apoptosis. Previous studies have demonstrated that gastrin induces PAI-2 both in gastric epithelial cells expressing the gastrin (CCK-2) receptor and, via activation of paracrine networks, in adjacent cells that do not express the receptor. We have now sought to identify the response element(s) in the PAI-2 promoter targeted by paracrine mediators initiated by gastrin. Mutational analysis identified two putative response elements in the PAI-2 promoter that were downstream of gastrin-activated paracrine signals. One was identified as a putative MAZ site, mutation of which dramatically reduced both basal and gastrin-stimulated responses of the PAI-2 promoter by a mechanism involving PGE(2) and the small GTPase RhoA. Yeast one-hybrid screening identified the other as binding the activating signal cointegrator-1 (ASC-1) complex, which was shown to be the target of IL-8 released by gastrin. RNA interference (RNAi) knockdown of two subunits of the ASC-1 complex (p50 and p65) inhibited induction of PAI-2 expression by gastrin. The data reveal previously unsuspected transcriptional mechanisms activated as a consequence of gastrin-triggered paracrine networks and emphasize the elaborate and complex cellular control mechanisms required for a key component of tissue responses to damage and infection.
Collapse
Affiliation(s)
- Simon Almeida-Vega
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krista Catlow
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Gastric enterochromaffin-like (ECL) cells release histamine in response to food because of elevation of gastrin and neural release of pituitary adenylate cyclase-activating peptide (PACAP). Acid secretion is at a basal level in the absence of food but is rapidly stimulated with feeding. Rats fasted for 24 h showed a significant decrease of mucosal histamine despite steady-state expression of the histamine-synthesizing enzyme histidine decarboxylase (HDC). Comparative transcriptomal analysis using gene expression oligonucleotide microarrays of 95% pure ECL cells from fed and 24-h fasted rats, thereby eliminating mRNA contamination from other gastric mucosal cell types, identified significantly increased gene expression of the enzymes histidase and urocanase catabolizing the HDC substrate L-histidine but significantly decreased expression of the cellular L-histidine uptake transporter SN2 and of the vesicular monoamine transporter 2 (VMAT-2) responsible for histamine uptake into secretory vesicles. This was confirmed by reverse transcriptase-quantitative polymerase chain reaction of gastric fundic mucosal samples from fed and 24-h fasted rats. The decrease of VMAT-2 gene expression was also shown by a decrease in VMAT-2 protein content in protein extracts from fed and 24-h fasted rats compared with equal amounts of HDC protein and Na-K-ATPase alpha(1)-subunit protein content. These results indicate that rat gastric ECL cells regulate their histamine content during 24-h fasting not by a change in HDC gene or protein expression but by regulation of substrate concentration for HDC and a decreased histamine secretory pool.
Collapse
Affiliation(s)
- Nils W G Lambrecht
- Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|