1
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Liu F, Fu J, Wang L, Nie Q, Luo Z, Hou M, Yang Y, Gong X, Wang Y, Xiao Y, Xiang J, Hu X, Zhang L, Wu M, Chen W, Cheng B, Luo L, Zhang X, Liu X, Zheng D, Huang S, Liu Y, Li DW. Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. Aging Cell 2020; 19:e13222. [PMID: 32827359 PMCID: PMC7576240 DOI: 10.1111/acel.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022] Open
Abstract
Sumoylation is one of the key regulatory mechanisms in eukaryotes. Our previous studies reveal that sumoylation plays indispensable roles during lens differentiation (Yan et al. 2010. Proc Natl Acad Sci USA. 107:21034-21039; Gong et al. 2014. Proc Natl Acad Sci USA. 111:5574-5579). Whether sumoylation is implicated in cataractogenesis, a disease largely derived from aging, remains elusive. In the present study, we have examined the changing patterns of the sumoylation ligases and de-sumoylation enzymes (SENPs) and their substrates including Pax6 and other proteins in cataractous lenses of different age groups from 50 to 90 years old. It is found that compared with normal lenses, sumoylation ligases 1 and 3, de-sumoylation enzymes SENP3/7/8, and p46 Pax6 are clearly increased. In contrast, Ubc9 is significantly decreased. Among different cataract patients from 50s to 70s, male patients express more sumoylation enzymes and p46 Pax6. Ubc9 and SENP6 display age-dependent increase. The p46 Pax6 displays age-dependent decrease in normal lens, remains relatively stable in senile cataracts but becomes di-sumoylated in complicated cataracts. In contrast, sumoylation of p32 Pax6 is observed in senile cataracts and increases its stability. Treatment of rat lenses with oxidative stress increases Pax6 expression without sumoylation but promotes apoptosis. Thus, our results show that the changing patterns in Ubc9, SENP6, and Pax6 levels can act as molecular markers for senile cataract and the di-sumoylated p46 Pax6 for complicated cataract. Together, our results reveal the presence of molecular signature for both senile and complicated cataracts. Moreover, our study indicates that sumoylation is implicated in control of aging and cataractogenesis.
Collapse
Affiliation(s)
- Fang‐Yuan Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jia‐Ling Fu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Ling Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Qian Nie
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Min Hou
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xiao‐Dong Gong
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yan Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jiawen Xiang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - David Wan‐Cheng Li
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| |
Collapse
|
4
|
Yu F, Zhang W, Yan C, Yan D, Zhou M, Chen J, Zhao X, Zhu A, Zhou J, Liu H, Sun H, Fu Y. PAX6, modified by SUMOylation, plays a protective role in corneal endothelial injury. Cell Death Dis 2020; 11:683. [PMID: 32826860 PMCID: PMC7442823 DOI: 10.1038/s41419-020-02848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Treating corneal endothelial diseases tends to be challenging as human corneal endothelial cells (CECs) do not proliferate in vivo. The pathogenesis or mechanisms underlying injured CECs need further studies. The abnormal expression of PAX6, which is an essential transcription factor for corneal homeostasis, exhibits corneal endothelial defects. However, the effects of PAX6 protein involved in corneal endothelial wound process are still unknown. Here, we found the upregulated protein levels of PAX6 in human corneal endothelial monolayer after injury; the expression of PAX6 also increased in murine and rat corneal endothelium injury models. Enforced PAX6 expression could alleviate the damages to CECs via regulating permeability by prompting cellular tight junction. In addition, SUMOylation mainly happened on both K53 and K89 residues of 48-kD PAX6 (the longest and main isoform expressed in cornea), and de-SUMOylation promoted the stability of PAX6 protein in vitro. In CECs of SENP1+/− mice, increased SUMOylation levels leading to instability and low expression of PAX6, delayed the repair of CECs after injury. Furthermore, overexpression of PAX6 accelerated the rate of corneal endothelial repair of SENP1+/− mice. Our findings indicate that SENP1-mediated de-SUMOylation improving the stability of PAX6, amplifies the protective effects of PAX6 on corneal endothelial injuries, highlighting potentials of PAX6 and/or SUMOylation to be used as a treatment target for corneal endothelial disorders.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Pediatric Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
5
|
Liu F, Wang L, Fu JL, Xiao Y, Gong X, Liu Y, Nie Q, Xiang JW, Yang L, Chen Z, Liu Y, Li DWC. Analysis of Non-Sumoylated and Sumoylated Isoforms of Pax-6, the Master Regulator for Eye and Brain Development in Ocular Cell Lines. Curr Mol Med 2019; 18:566-573. [PMID: 30636604 DOI: 10.2174/1566524019666190111153310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE Pax-6 is a master regulator for eye and brain development. Previous studies including ours have shown that Pax-6 exists in 4 major isoforms. According to their sizes, they are named p48, p46, p43 and p32 with the corresponding molecular weight of 48, 46, 43 and 32 kd, respectively. While p48 and p46 is derived from alternative splicing, p32 Pax-6 is generated through an internal translation initiation site. As for 43 kd Pax-6, two resources have been reported. In bird, it was found that an alternative splicing can generate a p43 Pax-6. In human and mouse, we reported that the p43 kd Pax-6 is derived from sumoylation: addition of a 11 kd polypeptide SUMO1 into the p32 Pax-6 at the K91 residue. Whether other Pax-6 isoforms can be sumoylated or not remains to be explored. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Both non-sumoylated and sumoylated isoforms of Pax-6 exist in 6 major types of ocular cells among which five are lens epithelial cells, and one is retinal pigment epithelial cell. Our results revealed that the most abundant isoforms of Pax-6 are the p32 and p46 Pax-6. These two major isoforms can be sumoylated to generate p43 (mono-sumoylated p32 Pax-6), p57 and p68 Pax-6 (mono- and di-sumoylated p46 Pax-6). In addition, the splicing-generated p48 Pax-6 is also readily detected. CONCLUSION Our results for the first time, have determined the relative isoform abundance and also the sumoylation patterns of pax-6 in 6 major ocular cell lines.
Collapse
Affiliation(s)
- Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
6
|
Nie Q, Xie J, Gong X, Luo Z, Wang L, Liu F, Xiang JW, Xiao Y, Fu JL, Liu Y, Chen Z, Yang L, Chen H, Gan Y, Li DWC. Analysis of the Differential Expression Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines. Curr Mol Med 2019; 18:509-515. [PMID: 30636610 DOI: 10.2174/1566524019666190112143636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE Protein sumoylation is a well established regulatory mechanism to control many cellular processes such as chromatin structure dynamics, transcriptional regulation of gene expression, cell proliferation and differentiation, cell transformation and carcinogenesis, autophagy and senescence. In the vertebrate vision system, we and others have revealed that sumoylation plays important roles in regulating differentiation of several ocular tissues during eye development. To further elucidate the functional mechanisms of sumoylation, in vitro assay systems are needed. Currently, the five major cell lines including αTN4-1, FHL124, HLE, N/N1003A and ARPE-19 have been extensively used to test the biochemical and molecular aspects of normal vision physiology and various disease processes. Thus, we conducted the study on the expression patterns of the three types of sumoylation enzymes, the activating enzymes SAE1 and UBA2, the conjugating enzyme UBC9, and the ligating enzymes such as RanBP2 and PIAS1 in these ocular cell lines. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS we have obtained the following results: 1) For the mRNAs encoding E1 SAE1 and UBA2, E2 UBC9 and E3 PIAS1, the highest level of expression was observed in αTN4-1 cells; For the mRNA encoding RanBP2, the highest level of expression was detected in N/N1003A cells; 2) In contrast to the mRNA expression patterns, a similar level of the SAE1 protein was observed in the all five cell lines, and so is true with UBA2 protein in all cells except for N/N1003A where over fourfold of enrichment in UBA2 protein was observed compared with other cell lines; 3) A similar level of UBC9 protein was also detected in all cells except for N/N1003A where more than one-fold of decrease in UBC9 level was found compared with other cell lines; 4) For E3 ligases, we did not identify the regular PIAS1 band in N/N1003A cells, the remaining cells have a level of PIAS1 with difference of less than 0.6-fold; all cells except for FHL124 cells have a similar level of RanBP2, and a 70% drop in RanBP2 was observed in FHL124 cell. CONCLUSIONS Our determination of the differential expression patterns of the three types of sumoylation enzymes in the 5 ocular cell lines help to understand sumoylation functions in vertebrate eye.
Collapse
Affiliation(s)
- Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jie Xie
- Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuwen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
7
|
Steinmetz EL, Dewald DN, Walldorf U. Homeodomain-interacting protein kinase phosphorylates the Drosophila Paired box protein 6 (Pax6) homologues Twin of eyeless and Eyeless. INSECT MOLECULAR BIOLOGY 2018; 27:198-211. [PMID: 29205612 DOI: 10.1111/imb.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Homeodomain-interacting protein kinase (Hipk), the Drosophila homologue of mammalian HIPK2, plays several important roles in regulating differentiation, proliferation, apoptosis, and stress responses and acts as a mediator for signals of diverse pathways, such as Notch or Wingless signalling. The Paired box protein 6 (Pax6) has two Drosophila homologues, Twin of eyeless (Toy) and Eyeless (Ey). Both stand atop the retinal determination gene network (RDGN), which is essential for proper eye development in Drosophila. Here, we set Hipk and the master regulators Toy and Ey in an enzyme-substrate relationship. Furthermore, we prove a physical interaction between Toy and Hipk in vivo using bimolecular fluorescence complementation. Using in vitro kinase assays with different truncated Toy constructs and mutational analyses, we mapped four Hipk phosphorylation sites of Toy, one in the paired domain (Ser121 ) and three in the C-terminal transactivation domain of Toy (Thr395 , Ser410 and Thr452 ). The interaction and phosphorylation of the master regulator Toy by Hipk may be important for precise tuning of signalling within the RDGN and therefore for Drosophila eye development.
Collapse
Affiliation(s)
- E L Steinmetz
- Developmental Biology, Saarland University, Homburg, Germany
| | - D N Dewald
- Developmental Biology, Saarland University, Homburg, Germany
| | - U Walldorf
- Developmental Biology, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Curto GG, Gard C, Ribes V. Structures and properties of PAX linked regulatory networks architecting and pacing the emergence of neuronal diversity. Semin Cell Dev Biol 2015; 44:75-86. [DOI: 10.1016/j.semcdb.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
|
11
|
Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
13
|
Yan Q, Sharma-Kuinkel BK, Deshmukh H, Tsalik EL, Cyr DD, Lucas J, Woods CW, Scott WK, Sempowski GD, Thaden J, Rude TH, Ahn SH, Fowler VG. Dusp3 and Psme3 are associated with murine susceptibility to Staphylococcus aureus infection and human sepsis. PLoS Pathog 2014; 10:e1004149. [PMID: 24901344 PMCID: PMC4047107 DOI: 10.1371/journal.ppat.1004149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/12/2014] [Indexed: 01/21/2023] Open
Abstract
Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
Collapse
Affiliation(s)
- Qin Yan
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Batu K. Sharma-Kuinkel
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hitesh Deshmukh
- Division of Neonatology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ephraim L. Tsalik
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Emergency Medicine Service, Durham Veteran's Affairs Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Joseph Lucas
- Quintiles Innovations, Morrisville, North Carolina, United States of America
| | - Christopher W. Woods
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Section on Infectious Diseases, Durham Veteran's Affairs Medical Center, Durham, North Carolina, United States of America
| | - William K. Scott
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | | | - Joshua Thaden
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Thomas H. Rude
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Department of Biochemistry School of Dentistry, Chonnam National University, Bukgu, Gwangju, Korea
| | - Vance G. Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Zheng W, Tong T, Lee J, Liu X, Marcus C, Jefcoate CR. Stimulation of mouse Cyp1b1 during adipogenesis: characterization of promoter activation by the transcription factor Pax6. Arch Biochem Biophys 2013; 532:1-14. [PMID: 23376040 PMCID: PMC3596501 DOI: 10.1016/j.abb.2013.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023]
Abstract
Cytochrome P4501B1 (Cyp1b1) is expressed specifically in certain neural crest (NC) cells during embryogenesis. Mesenchymal progenitor cells that develop from NC cells are modeled here by mouse C3H10T1/2 and 3T3-L1 cells. Dexamethasone in combination with methylisobutylxanthine (DM) induces Cyp1b1 and a 6.7 kb mouse Cyp1b1 promoter-luciferase reporter in each cell type prior to adipogenesis. An 18 base sequence (at -6.11 kb) (PaxE) which was essential for this reporter stimulation in 3T3-L1 cells bound the transcription factor Pax6. This is shown by gel mobility shifts and sequence mutations. Heterologous vector expression of Pax6 in 3T3-L1 cells enhanced DM stimulated Cyp1b1 promoter activity through cooperation with two Sp1 sites in the proximal promoter region. Chromatin immunoprecipitation showed that DM stimulated binding of Pax6 adjacent to Sp1 in the proximal promoter more than in the PaxE region. The Cyp1b1 induction by DM in C3H10T1/2 cells was more rapid but independent of Pax6. The far upstream enhancer region (FUER) found in rat Cyp1b1 responded to DM but was inactive in the mouse promoter due to key sequence changes. The expression patterns of Pax6 and Cyp1b1 frequently overlap during mouse embryogenesis. The relationship between Pax6 and Cyp1b1 expression warrants further investigation, particularly in the NC.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
16
|
Sawant A, Chanda D, Isayeva T, Tsuladze G, Garvey WT, Ponnazhagan S. Noggin is novel inducer of mesenchymal stem cell adipogenesis: implications for bone health and obesity. J Biol Chem 2012; 287:12241-9. [PMID: 22351751 DOI: 10.1074/jbc.m111.293613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.
Collapse
Affiliation(s)
- Anandi Sawant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
17
|
Role of FOXA and Sp1 in mitochondrial acylcarnitine carrier gene expression in different cell lines. Biochem Biophys Res Commun 2011; 404:376-81. [DOI: 10.1016/j.bbrc.2010.11.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/11/2022]
|
18
|
Zhao JQ, Xie SS, Liu WB, Xiao YM, Zeng XM, Deng M, Gong L, Liu JP, Chen PC, Zhou J, Hu XH, Lv JH, Yu XQ, Wang D, Li C, Peng YL, Liao GP, Liu Y, Li DWC. Molecular Cloning of the Genes Encoding the PR55/Bβ/δ Regulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, Carassius auratus. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:135-48. [PMID: 21245947 PMCID: PMC3020040 DOI: 10.4137/grsb.s6065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue specific and developmental expression patterns in Goldfish ( Carassius auratus). Our results revealed that the full-length cDNA for PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation during goldfish development.
Collapse
Affiliation(s)
- Jun-Qiong Zhao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Si-Si Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wen-Bin Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ya-Mei Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao-Ming Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mi Deng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Lili Gong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Jin-Ping Liu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Pei-Chao Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jie Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao-Hui Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Han Lv
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Qian Yu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Dao Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chi Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun-Lei Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Gao-Peng Liao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - David Wan-Cheng Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| |
Collapse
|
19
|
Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci U S A 2010; 107:21034-9. [PMID: 21084637 DOI: 10.1073/pnas.1007866107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.
Collapse
|
20
|
Xiao L, Gong LL, Yuan D, Deng M, Zeng XM, Chen LL, Zhang L, Yan Q, Liu JP, Hu XH, Sun SM, Liu J, Ma HL, Zheng CB, Fu H, Chen PC, Zhao JQ, Xie SS, Zou LJ, Xiao YM, Liu WB, Zhang J, Liu Y, Li DWC. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ 2010; 17:1448-62. [PMID: 20186153 DOI: 10.1038/cdd.2010.16] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AKT pathway has a critical role in mediating signaling transductions for cell proliferation, differentiation and survival. Previous studies have shown that AKT activation is achieved through a series of phosphorylation steps: first, AKT is phosphorylated at Thr-450 by JNK kinases to prime its activation; then, phosphoinositide-dependent kinase 1 phosphorylates AKT at Thr-308 to expose the Ser-473 residue; and finally, AKT is phosphorylated at Ser-473 by several kinases (PKD2 and others) to achieve its full activation. For its inactivation, the PH-domain containing phosphatases dephosphorylate AKT at Ser-473, and protein serine/threonine phosphatase-2A (PP-2A) dephosphorylates it at Thr-308. However, it remains unknown regarding which phosphatase dephosphorylates AKT at Thr-450 during its inactivation. In this study, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 (PP-1) is a major phosphatase that directly dephosphorylates AKT to modulate its activation. First, purified PP-1 directly dephosphorylates AKT in vitro. Second, immunoprecipitation and immunocolocalization showed that PP-1 interacts with AKT. Third, stable knock down of PP-1alpha or PP-1beta but not PP-1gamma, PP-2Aalpha or PP-2Abeta by shRNA leads to enhanced phosphorylation of AKT at Thr-450. Finally, overexpression of PP-1alpha or PP-1beta but not PP-1gamma, PP-2Aalpha or PP-2Abeta results in attenuated phosphorylation of AKT at Thr-450. Moreover, our results also show that dephosphorylation of AKT by PP-1 significantly modulates its functions in regulating the expression of downstream genes, promoting cell survival and modulating differentiation. These results show that PP-1 acts as a major phosphatase to dephosphorylate AKT at Thr-450 and thus modulate its functions.
Collapse
Affiliation(s)
- L Xiao
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198-5870, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Aimo L, Mackenzie GG, Keenan AH, Oteiza PI. Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-κB and NFAT in fetal brain. J Nutr Biochem 2010; 21:1069-75. [PMID: 20092996 DOI: 10.1016/j.jnutbio.2009.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 01/25/2023]
Abstract
Transcription factors AP-1, nuclear factor κB (NF-κB) and NFAT are central to brain development by regulating the expression of genes that modulate cell proliferation, differentiation, apoptosis and synaptic plasticity. This work investigated the consequences of feeding zinc-deficient and marginal zinc diets to rat dams during gestation on the modulation of AP-1, NF-κB and NFAT in fetal brain. Sprague-Dawley rats were fed from gestation day (GD) 0 a control diet ad libitum (25 μg zinc/g diet, C), a zinc-deficient diet ad libitum (0.5 μg zinc/g diet, ZD), the control diet in the amounts eaten by the ZD rats (restrict fed, RF) or a diet containing a marginal zinc concentration ad libitum (10 μg zinc/g diet, MZD) until GD 19. AP-1-DNA binding was higher (50-190%) in nuclear fraction isolated from ZD, RF and MZD fetal brains compared to controls. In MZD fetal brain, high levels of activation of the upstream mitogen-activated protein kinases JNK and p38 and low levels of ERK phosphorylation were observed. Total levels of NF-κB and NFAT activation were higher or similar in the ZD and MZD groups than in controls, respectively. However, NF-κB- and NFAT-DNA binding in nuclear fractions was markedly lower in ZD and MZD fetal brain than in controls (50-80%). The latter could be related to zinc deficiency-associated alterations of the cytoskeleton, which is required for NF-κB and NFAT nuclear transport. In summary, suboptimal zinc nutrition during gestation could cause long-term effects on brain function, partially through a deregulation of transcription factors AP-1, NF-κB and NFAT.
Collapse
Affiliation(s)
- Lucila Aimo
- Department of Nutrition, University of California Davis, CA 95616, USA
| | | | | | | |
Collapse
|
22
|
Zhang Y, Yamada Y, Fan M, Bangaru SD, Lin B, Yang J. The beta subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. J Biol Chem 2009; 285:2527-36. [PMID: 19917615 DOI: 10.1074/jbc.m109.022236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ca(2+) channel beta subunits (Ca(v)betas) are essential for regulating the surface expression and gating of high voltage-activated Ca(2+) channels through their interaction with Ca(2+) channel alpha(1) subunits. In efforts to uncover new interacting partners and new functions for Ca(v)beta, we identified a new splicing isoform of Pax6, a transcription factor crucial for the development of the eye, nose, brain, and pancreas. Pax6 contains two DNA binding domains (paired domain and homeodomain), a glycine-rich linker connecting these two domains and a C-terminal proline-, serine-, and threonine-rich transactivation domain. The protein sequence and function of Pax6 are highly conserved from invertebrate to human. The newly isolated isoform, named Pax6(S), retains the paired domain, linker, and homeodomain of Pax6, but its C terminus is composed of a truncated classic proline, serine, and threonine domain and a unique S tail. Pax6(S) shows a similar level of transcriptional activity in vitro as does Pax6, but only in primates is the protein sequence highly conserved. Its spatial-temporal expression profiles are also different from those of Pax6. These divergences suggest a noncanonical role of Pax6(S) during development. The interaction between Pax6(S) and Ca(v)beta is mainly endowed by the S tail. Co-expression of Pax6(S) with a Ca(2+) channel complex containing the beta(3) subunit in Xenopus oocytes does not affect channel properties. Conversely, however, beta(3) is able to suppress the transcriptional activity of Pax6(S). Furthermore, in the presence of Pax6(S), beta(3) is translocated from the cytoplasm to the nucleus. These results suggest that full-length Ca(v)beta may act directly as a transcription regulator independent of its role in regulating Ca(2+) channel activity.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen HG, Han WJ, Deng M, Qin J, Yuan D, Liu JP, Xiao L, Gong L, Liang S, Zhang J, Liu Y, Li DWC. Transcriptional regulation of PP2A-A alpha is mediated by multiple factors including AP-2alpha, CREB, ETS-1, and SP-1. PLoS One 2009; 4:e7019. [PMID: 19750005 PMCID: PMC2736573 DOI: 10.1371/journal.pone.0007019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 08/11/2009] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-A alpha/beta, provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-A alpha/beta leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-A alpha gene. Our results demonstrate that the proximal promoter of the mouse PP2A-A alpha gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2 alpha, SP-1 besides the putative TFIIB binding site (BRE) and the downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2 alpha, and SP-1 all bind to PP2A-A alpha gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2A alpha all positively regulate the promoter of the PP2A-A alpha gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-A alpha gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-A alpha gene.
Collapse
Affiliation(s)
- He-Ge Chen
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wen-Jun Han
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Mi Deng
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jichao Qin
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dan Yuan
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jin-Ping Liu
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ling Xiao
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lili Gong
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - David Wan-Cheng Li
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ashby RS, Megaw PL, Morgan IG. Changes in the expression of Pax6 RNA transcripts in the retina during periods of altered ocular growth in chickens. Exp Eye Res 2009; 89:392-7. [DOI: 10.1016/j.exer.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/22/2009] [Accepted: 04/11/2009] [Indexed: 12/01/2022]
|
25
|
Ma HL, Peng YL, Gong L, Liu WB, Sun S, Liu J, Zheng CB, Fu H, Yuan D, Zhao J, Chen PC, Xie SS, Zeng XM, Xiao YM, Liu Y, Li DWC. The goldfish SG2NA gene encodes two alpha-type regulatory subunits for PP-2A and displays distinct developmental expression pattern. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:115-29. [PMID: 19838339 PMCID: PMC2758282 DOI: 10.4137/grsb.s2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.
Collapse
Affiliation(s)
- Hai-Li Ma
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qin J, Chen HG, Yan Q, Deng M, Liu J, Doerge S, Ma W, Dong Z, Li WCD. Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res 2008; 68:4150-62. [PMID: 18519674 DOI: 10.1158/0008-5472.can-08-0839] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a well-known chemoprevention factor. Recent studies have revealed that EGCG triggers cancer cells undergoing apoptosis through p53-dependent pathway. How EGCG activates p53-dependent apoptosis is not fully understood. In the present study using JB6 cell as a model system, we have shown that EGCG can negatively regulate protein serine/threonine phosphatase-2A (PP-2A) to positively regulate p53-dependent apoptosis. First, EGCG at physiologic levels down-regulates PP-2A at the protein and enzyme activity levels. Second, EGCG induces apoptosis of JB6 cells, which is associated with hyperphosphorylation of p53 and up-regulation of the proapoptotic gene, Bak. DNA sequence analysis, gel mobility shifting, chromatin immunoprecipitation, and reporter gene activity assays revealed that p53 directly controls Bak in JB6 cells. Knockdown of p53 and Bak expression with RNAi substantially inhibits EGCG-induced apoptosis. Third, PP-2A directly interacts with p53 and dephosphorylates p53 at Ser-15 in vitro and in vivo. Fourth, overexpression of the catalytic subunit for PP-2A down-regulates p53 phosphorylation at Ser15, attenuates expression of the downstream proapoptotic gene, Bak, and antagonizes EGCG-induced apoptosis. Inhibition of PP-2A activity enhances p53 phosphorylation at Ser-15 and up-regulates Bak expression to promote EGCG-induced apoptosis. Finally, in the p53(-/-) H1299 and p53(+/+) H1080 cells, EGCG down-regulates PP-2A similarly but induces differential apoptosis. In summary, our results show that (a) PP-2A directly dephosphorylates p53 at Ser-15; (b) P53 directly controls Bak expression; and (c) EGCG negatively regulates PP-2A. Together, our results show that EGCG-mediated negative regulation of PP-2A is an important molecular event for the activation of p53-dependent apoptosis during its chemoprevention.
Collapse
Affiliation(s)
- Jichao Qin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bromberg KD, Ma'ayan A, Neves SR, Iyengar R. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 2008; 320:903-9. [PMID: 18487186 PMCID: PMC2776723 DOI: 10.1126/science.1152662] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabinoid receptor 1 (CB1R) regulates neuronal differentiation. To understand the logic underlying decision-making in the signaling network controlling CB1R-induced neurite outgrowth, we profiled the activation of several hundred transcription factors after cell stimulation. We assembled an in silico signaling network by connecting CB1R to 23 activated transcription factors. Statistical analyses of this network predicted a role for the breast cancer 1 protein BRCA1 in neuronal differentiation and a new pathway from CB1R through phosphoinositol 3-kinase to the transcription factor paired box 6 (PAX6). Both predictions were experimentally confirmed. Results of transcription factor activation experiments that used pharmacological inhibitors of kinases revealed a network organization of partial OR gates regulating kinases stacked above AND gates that control transcription factors, which together allow for distributed decision-making in CB1R-induced neurite outgrowth.
Collapse
Affiliation(s)
- Kenneth D. Bromberg
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
28
|
Wang X, Liu B, Li N, Li H, Qiu J, Zhang Y, Cao X. IPP5, a novel protein inhibitor of protein phosphatase 1, promotes G1/S progression in a Thr-40-dependent manner. J Biol Chem 2008; 283:12076-84. [PMID: 18310074 DOI: 10.1074/jbc.m801571200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. Here we describe the characterization of a novel inhibitory molecule for PP1, human inhibitor-5 of protein phosphatase 1 (IPP5). We find that IPP5, containing the PP1 inhibitory subunits, specifically interacts with the PP1 catalytic subunit and inhibits PP1 phosphatase activity. Furthermore, the mutation of Thr-40 within the inhibitory subunit of IPP5 into Ala eliminates the phosphorylation of IPP5 by protein kinase A and its inhibitor activity to PP1, whereas the mutation of Thr-40 within a truncated form of IPP5 into Asp can serve as a dominant active form of IPP5 in inhibiting PP1 activity. In IPP5-negative SW480 and IPP5-highly positive SW620 human colon cancer cells, we find that overexpression of IPP5 promotes the growth and accelerates the G(1)-S transition of SW480 cells in a Thr-40-dependent manner, which could be reversed by downregulation of the PP1 expression. Moreover, silencing of IPP5 inhibits the growth of SW620 cells both in vitro and in nude mice possibly by inducing G(0)/G(1) arrest but not by promoting apoptosis. According to its role in the promotion of cell cycle progression and cell growth, IPP5 up-regulates the expression of cyclin E and the phosphorylated form of retinoblastoma protein. Our findings suggest that IPP5, by acting as an inhibitory molecule for PP1, can promote tumor cell growth and cell cycle progression, and may be a promising target in cancer therapeutics in IPP5-highly expressing tumor cells.
Collapse
Affiliation(s)
- Xiaojian Wang
- Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|