1
|
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H, Xie S, Wan H, He H, Xie K, Liu C, Wu H. The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun 2025; 16:333. [PMID: 39747873 PMCID: PMC11696079 DOI: 10.1038/s41467-024-55577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket. Furthermore, circPETH-147aa impairs anti-HCC immunity by increasing HuR-dependent SLC43A2 mRNA stability and driving methionine and leucine deficiency in cytotoxic CD8+ T cells. Importantly, through virtual and experimental screening, we find that a small molecule, Norathyriol, is an effective inhibitor that targets the MEG pocket on the circPETH-147aa surface. Norathyriol reverses circPETH-147aa-facilitated acquisition of metabolic and metastatic phenotypes by HCC cells, increases anti-PD1 efficacy, and enhances cytotoxic CD8+ T-cell function. Here we show that Norathyriol is a promising anti-HCC agent that contributes to attenuating the resistance of advanced HCC to immune checkpoint blocker (ICB) therapies.
Collapse
Affiliation(s)
- Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Fengwei Gao
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yinghao Lv
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haifeng Wan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haorong He
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Lagani GD, Sha M, Lin W, Natarajan S, Kankkunen M, Kistler SA, Lampl N, Waxman H, Harper ER, Emili A, Beffert U, Ho A. Beyond Glycolysis: Aldolase A Is a Novel Effector in Reelin-Mediated Dendritic Development. J Neurosci 2024; 44:e0072242024. [PMID: 39227156 PMCID: PMC11484552 DOI: 10.1523/jneurosci.0072-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.
Collapse
Affiliation(s)
- Gavin D Lagani
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Mingqi Sha
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Sahana Natarajan
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Marcus Kankkunen
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Sabrina A Kistler
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Noah Lampl
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Hannah Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Evelyn R Harper
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
3
|
Chikunova A, Manley MP, Ud Din Ahmad M, Bilman T, Perrakis A, Ubbink M. Conserved residues Glu37 and Trp229 play an essential role in protein folding of β‐lactamase. FEBS J 2021; 288:5708-5722. [PMID: 33792206 PMCID: PMC8518976 DOI: 10.1111/febs.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 01/27/2023]
Abstract
Evolutionary robustness requires that the number of highly conserved amino acid residues in proteins is minimized. In enzymes, such conservation is observed for catalytic residues but also for some residues in the second shell or even further from the active site. β‐Lactamases evolve in response to changing antibiotic selection pressures and are thus expected to be evolutionarily robust, with a limited number of highly conserved amino acid residues. As part of the effort to understand the roles of conserved residues in class A β‐lactamases, we investigate the reasons leading to the conservation of two amino acid residues in the β‐lactamase BlaC, Glu37, and Trp229. Using site‐directed mutagenesis, we have generated point mutations of these residues and observed a drastic decrease in the levels of soluble protein produced in Escherichia coli, thus abolishing completely the resistance of bacteria against β‐lactam antibiotics. However, the purified proteins are structurally and kinetically very similar to the wild‐type enzyme, only differing by exhibiting a slightly lower melting temperature. We conclude that conservation of Glu37 and Trp229 is solely caused by an essential role in the folding process, and we propose that during folding Glu37 primes the formation of the central β‐sheet and Trp229 contributes to the hydrophobic collapse into a molten globule.
Collapse
Affiliation(s)
| | - Max P. Manley
- Leiden Institute of Chemistry Leiden University the Netherlands
| | - Misbha Ud Din Ahmad
- Oncode Institute and Division of Biochemistry the Netherlands Cancer Institute Amsterdam the Netherlands
| | - Tuğçe Bilman
- Leiden Institute of Chemistry Leiden University the Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry the Netherlands Cancer Institute Amsterdam the Netherlands
| | | |
Collapse
|
4
|
Cai M, Li Y, He G, Guo X, Zhang S, Yan L, Zhang J, Ding J. Comparative Proteomic Analysis of Different Parts of Taenia Hydatigena. Front Vet Sci 2021; 8:626579. [PMID: 33981740 PMCID: PMC8107385 DOI: 10.3389/fvets.2021.626579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Taenia hydatigena, a globally distributed parasite, is a canine tapeworm and causes huge economic losses in the food industry. Using LC-MS/MS, the proteomes of T. hydatigena cyst scolex, designated as CS, and the cyst without the scolex, designated as CWS, were profiled and a total of 764 different proteins were identified, 664 of which were identified in CS, 412 identified in CWS, and 312 in both. Comparative analysis revealed that CS had more abundant proteins associated with growth and development, while CWS had more abundant proteins constituting a scaffolding and protective extracellular matrix. Consistent with the sequencing data, the abundance of the five selected proteins was validated to be higher in CWS than CS by Western blotting. The current data will provide a clue for further pinpointing a role of these proteins in the biology of T. hydatigena.
Collapse
Affiliation(s)
- Mengting Cai
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yating Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guitian He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lujun Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and 4 Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Center for International Research on Tropical Diseases, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Hui MH, Rhine K, Tolan DR. Actin filament- and Wiskott-Aldrich syndrome protein-binding sites on fructose-1,6-bisphosphate aldolase are functionally distinct from the active site. Cytoskeleton (Hoboken) 2020; 78:129-141. [PMID: 33210455 DOI: 10.1002/cm.21646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/05/2022]
Abstract
The glycolytic enzyme fructose 1,6-(bis)phosphate aldolase (aldolase) is not only required for efficient utilization of glucose and fructose, but also for cytoskeletal functions like cytokinesis and cell motility. These differing roles are mediated by distinct and discrete binding interactions with aldolase's many binding partners, including actin filaments, Wiskott-Aldrich Syndrome protein (WASP), and Sorting Nexin 9 (SNX9). How these interactions are coordinated on the aldolase homotetramer of 160 kDa is unclear. In this study, the catalytic activity of wild-type aldolase is measured in the presence of actin filaments, and a WASP-derived peptide that binds to aldolase, or both. No appreciable changes in kcat or Km values are seen. Then, aldolase variants with substitutions targeting the tryptophan-binding pocket for WASP and SNX9 are created and perturbation of actin filament-, WASP peptide-, and SNX9 peptide-binding are assessed. Those that negatively impacted binding did not show an impact on aldolase catalysis. These results suggest that aldolase can engage in catalysis while simultaneously interacting with cytoskeletal machinery.
Collapse
Affiliation(s)
- Maggie H Hui
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kevin Rhine
- Program in Cell, Molecular, and Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Copley SD. The physical basis and practical consequences of biological promiscuity. Phys Biol 2020; 17:10.1088/1478-3975/ab8697. [PMID: 32244231 PMCID: PMC9291633 DOI: 10.1088/1478-3975/ab8697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins interact with metabolites, nucleic acids, and other proteins to orchestrate the myriad catalytic, structural and regulatory functions that support life from the simplest microbes to the most complex multicellular organisms. These molecular interactions are often exquisitely specific, but never perfectly so. Adventitious "promiscuous" interactions are ubiquitous due to the thousands of macromolecules and small molecules crowded together in cells. Such interactions may perturb protein function at the molecular level, but as long as they do not compromise organismal fitness, they will not be removed by natural selection. Although promiscuous interactions are physiologically irrelevant, they are important because they can provide a vast reservoir of potential functions that can provide the starting point for evolution of new functions, both in nature and in the laboratory.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, UNITED STATES
| |
Collapse
|
7
|
Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death Dis 2019; 10:712. [PMID: 31558701 PMCID: PMC6763475 DOI: 10.1038/s41419-019-1968-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Muscle fructose-1,6-bisphosphate aldolase (ALDOA) is among the most abundant glycolytic enzymes in all cancer cells. Here, we show that the enzyme plays a previously unknown and critical role in a cancer cell survival. Simultaneous inhibition of ALDOA activity and interaction with F-actin cytoskeleton using ALDOA slow-binding inhibitor UM0112176 leads to a rapid cofilin-dependent loss of F-actin stress fibers which is associated with elevated ROS production, inhibition of ATP synthesis, increase in calcium levels, caspase activation and arrested cellular proliferation. These effects can be reproduced by silencing of ALDOA. The mechanism of pharmacological action is, however, independent of the catalytic function of the enzyme, specific to cancer cells, and is most deleterious to cells undergoing the epithelial–mesenchymal transition, a process facilitating cancer cell invasion. Our results demonstrate that the overabundance of ALDOA in cancer cells is associated with its moonlighting rather than catalytic functions. This may have significant implications for development of novel broad-based anti-cancer therapies.
Collapse
|
8
|
Heron PW, Abellán-Flos M, Salmon L, Sygusch J. Bisphosphonate Inhibitors of Mammalian Glycolytic Aldolase. J Med Chem 2018; 61:10558-10572. [PMID: 30418024 DOI: 10.1021/acs.jmedchem.8b01000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glycolytic enzyme aldolase is an emerging drug target in diseases such as cancer and protozoan infections which are dependent on a hyperglycolytic phenotype to synthesize adenosine 5'-triphosphate and metabolic precursors for biomass production. To date, structural information for the enzyme in complex with phosphate-derived inhibitors has been lacking. Thus, we determined the crystal structure of mammalian aldolase in complex with naphthalene 2,6-bisphosphate (1) that served as a template for the design of bisphosphonate-based inhibitors, namely, 2-phosphate-naphthalene 6-bisphosphonate (2), 2-naphthol 6-bisphosphonate (3), and 1-phosphate-benzene 4-bisphosphonate (4). All inhibitors targeted the active site, and the most promising lead, 2, exhibited slow-binding inhibition with an overall inhibition constant of ∼38 nM. Compound 2 inhibited proliferation of HeLa cancer cells, whereas HEK293 cells expressing a normal phenotype were not inhibited. The crystal structures delineated the essential features of high-affinity phosphate-derived inhibitors and provide a template for the development of inhibitors with prophylaxis potential.
Collapse
Affiliation(s)
- Paul W Heron
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| | - Marta Abellán-Flos
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Jurgen Sygusch
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| |
Collapse
|
9
|
Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends Endocrinol Metab 2018; 29:549-559. [PMID: 29907340 DOI: 10.1016/j.tem.2018.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
The aldolase family members involved in metabolism and glycolysis are present in three isoforms: ALDOA, ALDOB, and ALDOC. Aldolases are differentially expressed in human tissues, and aberrant expression has been observed in several human diseases and cancer types. However, non-enzymatic functions through protein-protein interactions or epigenetic modifications have been reported in recent years. Using high-throughput screening and -omics database integration, aldolase has been validated as an independent clinical prognostic marker of human cancers. Therefore, the aim of this review was to provide potential clinical value from in silico predictions and also summarize well-known signaling axes or phenotypes in various cancer types. Finally, we discuss the role of aldolase in the treatment of human diseases and cancers.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Chieh Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ping Tien
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
He X, Zou R, Zhang B, You Y, Yang Y, Tian X. Whole Wiskott‑Aldrich syndrome protein gene deletion identified by high throughput sequencing. Mol Med Rep 2017; 16:6526-6531. [PMID: 28901403 PMCID: PMC5865821 DOI: 10.3892/mmr.2017.7416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022] Open
Abstract
Wiskott‑Aldrich syndrome (WAS) is a rare X‑linked recessive immunodeficiency disorder, characterized by thrombocytopenia, small platelets, eczema and recurrent infections associated with increased risk of autoimmunity and malignancy disorders. Mutations in the WAS protein (WASP) gene are responsible for WAS. To date, WASP mutations, including missense/nonsense, splicing, small deletions, small insertions, gross deletions, and gross insertions have been identified in patients with WAS. In addition, WASP‑interacting proteins are suspected in patients with clinical features of WAS, in whom the WASP gene sequence and mRNA levels are normal. The present study aimed to investigate the application of next generation sequencing in definitive diagnosis and clinical therapy for WAS. A 5 month‑old child with WAS who displayed symptoms of thrombocytopenia was examined. Whole exome sequence analysis of genomic DNA showed that the coverage and depth of WASP were extremely low. Quantitative polymerase chain reaction indicated total WASP gene deletion in the proband. In conclusion, high throughput sequencing is useful for the verification of WAS on the genetic profile, and has implications for family planning guidance and establishment of clinical programs.
Collapse
Affiliation(s)
- Xiangling He
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Runying Zou
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bing Zhang
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yalan You
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yang Yang
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Xin Tian
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
11
|
Yamamoto T, Kudo M, Peng WX, Takata H, Takakura H, Teduka K, Fujii T, Mitamura K, Taga A, Uchida E, Naito Z. Identification of aldolase A as a potential diagnostic biomarker for colorectal cancer based on proteomic analysis using formalin-fixed paraffin-embedded tissue. Tumour Biol 2016; 37:13595-13606. [PMID: 27468721 PMCID: PMC5097088 DOI: 10.1007/s13277-016-5275-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and many patients are already at an advanced stage when they are diagnosed. Therefore, novel biomarkers for early detection of colorectal cancer are required. In this study, we performed a global shotgun proteomic analysis using formalin-fixed and paraffin-embedded (FFPE) CRC tissue. We identified 84 candidate proteins whose expression levels were differentially expressed in cancer and non-cancer regions. A label-free semiquantitative method based on spectral counting and gene ontology (GO) analysis led to a total of 21 candidate proteins that could potentially be detected in blood. Validation studies revealed cyclophilin A, annexin A2, and aldolase A mRNA and protein expression levels were significantly higher in cancer regions than in non-cancer regions. Moreover, an in vitro study showed that secretion of aldolase A into the culture medium was clearly suppressed in CRC cells compared to normal colon epithelium. These findings suggest that decreased aldolase A in blood may be a novel biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Wei-Xia Peng
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hideyuki Takata
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.,Departments of Gastrointestinal Hepato Biliary Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hideki Takakura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kiyoshi Teduka
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takenori Fujii
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Eiji Uchida
- Departments of Gastrointestinal Hepato Biliary Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
12
|
Cunha E, Pinto PCAG, Saraiva MLMFS. Evaluation of ionic liquids as alternative solvents for aldolase activity: Use of a new automated SIA methodology. Talanta 2015; 141:293-9. [PMID: 25966417 DOI: 10.1016/j.talanta.2015.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 11/16/2022]
Abstract
An automated methodology is proposed for the evaluation of a set of ionic liquids (ILs) as alternative reaction media for aldolase based synthetic processes. For that, the effect of traditionally used organic solvents and ILs on the activity of aldolase was studied by means of a novel automated methodology. The implemented methodology is based on the concept of sequential injection analysis (SIA) and relies on the aldolase based cleavage of d-fructose-1,6 diphosphate (DFDP), to produce dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde-3-phosphate (G3P). In the presence of FeCl3, 3-methyl-2-benzothiazoline hydrazine (MBTH) forms a blue cation that can be measured at 670nm, by combination with G3P. The influence of several parameters such as substrate and enzyme concentration, temperature, delay time and MBTH and FeCl3 concentration were studied and the optimum reaction conditions were subsequently selected. The developed methodology showed good precision and a relative standard deviation (rsd) that does not exceed 7% also leading to low reagents consumption as well as effluent production. Resorting to this strategy, the activity of the enzyme was studied in strictly aqueous media and in the presence of dimethylformamide, methanol, bmpyr [Cl], hmim [Cl], bmim [BF4], emim [BF4], emim [Ac], bmim [Cl], emim [TfMs], emim [Ms] and Chol [Ac] up to 50%. The results show that the utilization of ILs as reaction media for aldolase based organic synthesis might present potential advantages over the tested conventional organic solvents. The least toxic IL found in this study was cho [Ac] that causes a reduction of enzyme activity of only 2.7% when used in a concentration of 50%. Generally, it can be concluded that ILs based on choline or short alkyl imidazolium moieties associated with biocompatible anions are the most promising ILs regarding the future inclusion of these solvents in synthetic protocols catalyzed by aldolase.
Collapse
Affiliation(s)
- Edite Cunha
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira no 228, 4050-313 Porto, Portugal
| | - Paula C A G Pinto
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira no 228, 4050-313 Porto, Portugal.
| | - M Lúcia M F S Saraiva
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Boucher LE, Bosch J. Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase. Acta Crystallogr F Struct Biol Commun 2014; 70:1186-92. [PMID: 25195889 PMCID: PMC4157416 DOI: 10.1107/s2053230x14017087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 12/03/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22121, with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented.
Collapse
Affiliation(s)
- Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One 2014; 9:e85804. [PMID: 24465716 PMCID: PMC3900443 DOI: 10.1371/journal.pone.0085804] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/02/2013] [Indexed: 01/19/2023] Open
Abstract
Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development.
Collapse
|
15
|
Ritterson Lew C, Tolan DR. Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J Cell Biochem 2013; 114:1928-39. [PMID: 23495010 DOI: 10.1002/jcb.24538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes.
Collapse
Affiliation(s)
- Carolyn Ritterson Lew
- Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
16
|
Ritterson Lew C, Tolan DR. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J Biol Chem 2012; 287:42554-63. [PMID: 23093405 DOI: 10.1074/jbc.m112.405969] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In cancer, glucose uptake and glycolysis are increased regardless of the oxygen concentration in the cell, a phenomenon known as the Warburg effect. Several (but not all) glycolytic enzymes have been investigated as potential therapeutic targets for cancer treatment using RNAi. Here, four previously untargeted glycolytic enzymes, aldolase A, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase, and enolase 1, are targeted using RNAi in Ras-transformed NIH-3T3 cells. Of these enzymes, knockdown of aldolase causes the greatest effect, inhibiting cell proliferation by 90%. This defect is rescued by expression of exogenous aldolase. However, aldolase knockdown does not affect glycolytic flux or intracellular ATP concentration, indicating a non-metabolic cause for the cell proliferation defect. Furthermore, this defect could be rescued with an enzymatically dead aldolase variant that retains the known F-actin binding ability of aldolase. One possible model for how aldolase knockdown may inhibit transformed cell proliferation is through its disruption of actin-cytoskeleton dynamics in cell division. Consistent with this hypothesis, aldolase knockdown cells show increased multinucleation. These results are compared with other studies targeting glycolytic enzymes with RNAi in the context of cancer cell proliferation and suggest that aldolase may be a useful target in the treatment of cancer.
Collapse
|
17
|
Pezzini J, Joucla G, Gantier R, Toueille M, Lomenech AM, Le Sénéchal C, Garbay B, Santarelli X, Cabanne C. Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J Chromatogr A 2011; 1218:8197-208. [DOI: 10.1016/j.chroma.2011.09.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
18
|
Wada Y, Harayama Y, Kamimura D, Yoshida M, Shibata T, Fujiwara K, Morimoto K, Fujioka H, Kita Y. The synthetic and biological studies of discorhabdins and related compounds. Org Biomol Chem 2011; 9:4959-76. [DOI: 10.1039/c1ob05058c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Proteomic Profiling of the Mesenteric Lymph After Hemorrhagic Shock: Differential Gel Electrophoresis and Mass Spectrometry Analysis. Clin Proteomics 2010. [DOI: 10.1007/s12014-010-9061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Esposito G, Imperato MR, Ieno L, Sorvillo R, Benigno V, Parenti G, Parini R, Vitagliano L, Zagari A, Salvatore F. Hereditary fructose intolerance: functional study of two novel ALDOB natural variants and characterization of a partial gene deletion. Hum Mutat 2010; 31:1294-303. [DOI: 10.1002/humu.21359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/19/2010] [Indexed: 11/08/2022]
|
21
|
Zurawel A, Moore EE, Peltz ED, Jordan JR, Damle S, Dzieciatkowska M, Banerjee A, Hansen KC. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: Differential gel electrophoresis and mass spectrometry analysis. Clin Proteomics 2010; 8:1. [PMID: 21906351 PMCID: PMC3167200 DOI: 10.1186/1559-0275-8-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022] Open
Abstract
Experiments show that upon traumatic injury the composition of mesenteric lymph changes such that it initiates an immune response that can ultimately result in multiple organ dysfunction syndrome (MODS). To identify candidate protein mediators of this process we carried out a quantitative proteomic study on mesenteric lymph from a well characterized rat shock model. We analyzed three animals using analytical 2D differential gel electrophoresis. Intra-animal variation for the majority of protein spots was minor. Functional clustering of proteins revealed changes arising from several global classes that give novel insight into fundamental mechanisms of MODS. Mass spectrometry based proteomic analysis of proteins in mesenteric lymph can effectively be used to identify candidate mediators and loss of protective agents in shock models.
Collapse
Affiliation(s)
- Ashley Zurawel
- Proteomics Facility, University of Colorado School of Medicine, Aurora, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Park H, Rangarajan ES, Sygusch J, Izard T. Dramatic improvement of crystal quality for low-temperature-grown rabbit muscle aldolase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:595-600. [PMID: 20445268 PMCID: PMC2864701 DOI: 10.1107/s1744309110011875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/29/2010] [Indexed: 11/10/2022]
Abstract
Rabbit muscle aldolase (RMA) was crystallized in complex with the low-complexity domain (LC4) of sorting nexin 9. Monoclinic crystals were obtained at room temperature that displayed large mosaicity and poor X-ray diffraction. However, orthorhombic RMA-LC4 crystals grown at 277 K under similar conditions exhibited low mosaicity, allowing data collection to 2.2 A Bragg spacing and structure determination. It was concluded that the improvement of crystal quality as indicated by the higher resolution of the new RMA-LC4 complex crystals was a consequence of the introduction of new lattice contacts at lower temperature. The lattice contacts corresponded to an increased number of interactions between high-entropy side chains that mitigate the lattice strain incurred upon cryocooling and accompanying mosaic spread increases. The thermodynamically unfavorable immobilization of high-entropy side chains used in lattice formation was compensated by an entropic increase in the bulk-solvent content owing to the greater solvent content of the crystal lattice.
Collapse
Affiliation(s)
- HaJeung Park
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erumbi S. Rangarajan
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jurgen Sygusch
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Rangarajan ES, Park H, Fortin E, Sygusch J, Izard T. Mechanism of aldolase control of sorting nexin 9 function in endocytosis. J Biol Chem 2010; 285:11983-90. [PMID: 20129922 DOI: 10.1074/jbc.m109.092049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexin 9 (SNX9) functions in a complex with the GTPase dynamin-2 at clathrin-coated pits, where it provokes fission of vesicles to complete endocytosis. Here the SNX9.dynamin-2 complex binds to clathrin and adapter protein complex 2 (AP-2) that line these pits, and this occurs through interactions of the low complexity domain (LC4) of SNX9 with AP-2. Intriguingly, localization of the SNX9.dynamin-2 complex to clathrin-coated pits is blocked by interactions with the abundant glycolytic enzyme aldolase, which also binds to the LC4 domain of SNX9. The crystal structure of the LC4 motif of human SNX9 in complex with aldolase explains the biochemistry and biology of this interaction, where SNX9 binds near the active site of aldolase via residues 165-171 that are also required for the interactions of SNX9 with AP-2. Accordingly, SNX9 binding to aldolase is structurally precluded by the binding of substrate to the active site. Interactions of SNX9 with aldolase are far more extensive and differ from those of the actin-nucleating factor WASP with aldolase, indicating considerable plasticity in mechanisms that direct the functions of the aldolase as a scaffold protein.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | |
Collapse
|
24
|
Etheridge N, Lewohl JM, Mayfield RD, Harris RA, Dodd PR. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain. Proteomics Clin Appl 2009; 3:730-742. [PMID: 19924264 DOI: 10.1002/prca.200800202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.
Collapse
Affiliation(s)
- Naomi Etheridge
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
25
|
Starnes GL, Coincon M, Sygusch J, Sibley LD. Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. Cell Host Microbe 2009; 5:353-64. [PMID: 19380114 DOI: 10.1016/j.chom.2009.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/20/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
Apicomplexan parasites rely on actin-based motility to drive host cell invasion. Prior in vitro studies implicated aldolase, a tetrameric glycolytic enzyme, in coupling actin filaments to the parasite's surface adhesin microneme protein 2 (MIC2). Here, we test the essentiality of this interaction in host cell invasion. Based on in vitro studies and homology modeling, we generated a series of mutations in Toxoplasma gondii aldolase (TgALD1) that delineated MIC2 tail domain (MIC2t) binding function from its enzyme activity. We tested these mutants by complementing a conditional knockout of TgALD1. Mutations that affected glycolysis also reduced motility. Mutants only affecting binding to MIC2t had no motility phenotype, but were decreased in their efficiency of host cell invasion. Our studies demonstrate that aldolase is not only required for energy production but is also essential for efficient host cell invasion, based on its ability to bridge adhesin-cytoskeleton interactions in the parasite.
Collapse
Affiliation(s)
- G Lucas Starnes
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63130-1093, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The sorting nexin SNX9 has, in the past few years, been singled out as an important protein that participates in fundamental cellular activities. SNX9 binds strongly to dynamin and is partly responsible for the recruitment of this GTPase to sites of endocytosis. SNX9 also has a high capacity for modulation of the membrane and might therefore participate in the formation of the narrow neck of endocytic vesicles before scission occurs. Once assembled on the membrane, SNX9 stimulates the GTPase activity of dynamin to facilitate the scission reaction. It has also become clear that SNX9 has the ability to activate the actin regulator N-WASP in a membrane-dependent manner to coordinate actin polymerization with vesicle release. In this Commentary, we summarize several aspects of SNX9 structure and function in the context of membrane remodeling, discuss its interplay with various interaction partners and present a model of how SNX9 might work in endocytosis.
Collapse
Affiliation(s)
- Richard Lundmark
- Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
27
|
Chiquete-Felix N, Hernández JM, Méndez JA, Zepeda-Bastida A, Chagolla-López A, Mújica A. In guinea pig sperm, aldolase A forms a complex with actin, WAS, and Arp2/3 that plays a role in actin polymerization. Reproduction 2009; 137:669-78. [PMID: 19151127 DOI: 10.1530/rep-08-0353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycolytic enzymes have, in addition to their role in energy production, other functions in the regulation of cellular processes. Aldolase A has been reported to be present in sperm, playing a key role in glycolysis; however, despite its reported interactions with actin and WAS, little is known about a non-glycolytic role of aldolase A in sperm. Here, we show that in guinea pig spermatozoa, aldolase A is tightly associated to cytoskeletal structures where it interacts with actin, WAS, and Arp2/3. We show that aldolase A spermatozoa treatment increases their polymerized actin levels. In addition, we show that there is a direct correlation between the levels of polymerized actin and the levels of aldolase A-actin interaction. Our results suggest that aldolase A functions as a bridge between filaments of actin and the actin-polymerizing machinery.
Collapse
Affiliation(s)
- Natalia Chiquete-Felix
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), PC07360 México DF, Mexico
| | | | | | | | | | | |
Collapse
|
28
|
Sherawat M, Tolan DR, Allen KN. Structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:543-50. [PMID: 18453690 PMCID: PMC2631105 DOI: 10.1107/s0907444908004976] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/22/2008] [Indexed: 11/10/2022]
Abstract
The X-ray crystallographic structure of a dimer variant of fructose-1,6-bisphosphate aldolase demonstrates a stable oligomer that mirrors half of the native tetramer. The presence of product demonstrates that this is an active form. Fructose-1,6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform ‘moonlighting’ roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Å resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.
Collapse
Affiliation(s)
- Manashi Sherawat
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394, USA
| | | | | |
Collapse
|