1
|
Maskey D, Granados Pineda J, Ortiz PA. Update on NKCC2 regulation in the thick ascending limb (TAL) by membrane trafficking, phosphorylation, and protein-protein interactions. Front Physiol 2024; 15:1508806. [PMID: 39717823 PMCID: PMC11663917 DOI: 10.3389/fphys.2024.1508806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose of review The thick ascending limb (TAL) of loop of Henle is essential for NaCl, calcium and magnesium homeostasis, pH balance and for urine concentration. NKCC2 is the main transporter for NaCl reabsorption in the TAL and its regulation is very complex. There have been recent advancements toward understanding how NKCC2 is regulated by protein trafficking, protein-protein interaction, and phosphorylation/dephosphorylation. Here, we update the latest molecular mechanisms and players that control NKCC2 function, which gives an increasingly complex picture of NKKC2 regulation in the apical membrane of the TAL. Recent Findings Protein-protein interactions are required as a regulatory mechanism in many cellular processes. A handful of proteins have been recently identified as an interacting partner of NKCC2, which play major roles in regulating NKCC2 trafficking and activity. New players in NKCC2 internalization and trafficking have been identified. NKCC2 activity is also regulated by kinases and phosphatases, and there have been developments in that area as well. Summary Here we review the current understanding of apical trafficking of NKCC2 in the thick ascending limb (TAL) which is tightly controlled by protein-protein interactions, protein turnover and by phosphorylation and dephosphorylation. We discuss new proteins and processes that regulate NKCC2 that have physiological and pathological significance.
Collapse
Affiliation(s)
- Dipak Maskey
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| | - Jessica Granados Pineda
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Laghmani K. Protein Quality Control of NKCC2 in Bartter Syndrome and Blood Pressure Regulation. Cells 2024; 13:818. [PMID: 38786040 PMCID: PMC11120568 DOI: 10.3390/cells13100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations in NKCC2 generate antenatal Bartter syndrome type 1 (type 1 BS), a life-threatening salt-losing nephropathy characterized by arterial hypotension, as well as electrolyte abnormalities. In contrast to the genetic inactivation of NKCC2, inappropriate increased NKCC2 activity has been associated with salt-sensitive hypertension. Given the importance of NKCC2 in salt-sensitive hypertension and the pathophysiology of prenatal BS, studying the molecular regulation of this Na-K-2Cl cotransporter has attracted great interest. Therefore, several studies have addressed various aspects of NKCC2 regulation, such as phosphorylation and post-Golgi trafficking. However, the regulation of this cotransporter at the pre-Golgi level remained unknown for years. Similar to several transmembrane proteins, export from the ER appears to be the rate-limiting step in the cotransporter's maturation and trafficking to the plasma membrane. The most compelling evidence comes from patients with type 5 BS, the most severe form of prenatal BS, in whom NKCC2 is not detectable in the apical membrane of thick ascending limb (TAL) cells due to ER retention and ER-associated degradation (ERAD) mechanisms. In addition, type 1 BS is one of the diseases linked to ERAD pathways. In recent years, several molecular determinants of NKCC2 export from the ER and protein quality control have been identified. The aim of this review is therefore to summarize recent data regarding the protein quality control of NKCC2 and to discuss their potential implications in BS and blood pressure regulation.
Collapse
Affiliation(s)
- Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
4
|
Frachon N, Demaretz S, Seaayfan E, Chelbi L, Bakhos-Douaihy D, Laghmani K. AUP1 Regulates the Endoplasmic Reticulum-Associated Degradation and Polyubiquitination of NKCC2. Cells 2024; 13:389. [PMID: 38474353 DOI: 10.3390/cells13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2. Here, we report the identification of ancient ubiquitous protein 1 (AUP1) as a novel interactor of NKCC2 ER-resident form in renal cells. AUP1 is also an interactor of the ER lectin OS9, a key player in the ERAD of NKCC2. Similar to OS9, AUP1 co-expression decreased the amount of total NKCC2 protein by enhancing the ER retention and associated protein degradation of the cotransporter. Blocking the ERAD pathway with the proteasome inhibitor MG132 or the α-mannosidase inhibitor kifunensine fully abolished the AUP1 effect on NKCC2. Importantly, AUP1 knock-down or inhibition by overexpressing its dominant negative form strikingly decreased NKCC2 polyubiquitination and increased the protein level of the cotransporter. Interestingly, AUP1 co-expression produced a more profound impact on NKCC2 folding mutants. Moreover, AUP1 also interacted with the related kidney cotransporter NCC and downregulated its expression, strongly indicating that AUP1 is a common regulator of sodium-dependent chloride cotransporters. In conclusion, our data reveal the presence of an AUP1-mediated pathway enhancing the polyubiquitination and ERAD of NKCC2. The characterization and selective regulation of specific ERAD constituents of NKCC2 and its pathogenic mutants could open new avenues in the therapeutic strategies for type 1 BS treatment.
Collapse
Affiliation(s)
- Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Lydia Chelbi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
5
|
Tan M, Pan Q, Wu Q, Li J, Wang J. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2. Front Med 2023; 17:503-517. [PMID: 36790589 DOI: 10.1007/s11684-022-0947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 02/16/2023]
Abstract
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China
| | - Jianfa Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China.
| |
Collapse
|
6
|
Bakhos-Douaihy D, Seaayfan E, Frachon N, Demaretz S, Kömhoff M, Laghmani K. Diacidic Motifs in the Carboxyl Terminus Are Required for ER Exit and Translocation to the Plasma Membrane of NKCC2. Int J Mol Sci 2022; 23:ijms232112761. [PMID: 36361553 PMCID: PMC9656672 DOI: 10.3390/ijms232112761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Demaretz S, Seaayfan E, Bakhos-Douaihy D, Frachon N, Kömhoff M, Laghmani K. Golgi Alpha1,2-Mannosidase IA Promotes Efficient Endoplasmic Reticulum-Associated Degradation of NKCC2. Cells 2021; 11:cells11010101. [PMID: 35011665 PMCID: PMC8750359 DOI: 10.3390/cells11010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mutations in the apically located kidney Na-K-2Cl cotransporter NKCC2 cause type I Bartter syndrome, a life-threatening kidney disorder. We previously showed that transport from the ER represents the limiting phase in NKCC2 journey to the cell surface. Yet very little is known about the ER quality control components specific to NKCC2 and its disease-causing mutants. Here, we report the identification of Golgi alpha1, 2-mannosidase IA (ManIA) as a novel binding partner of the immature form of NKCC2. ManIA interaction with NKCC2 takes place mainly at the cis-Golgi network. ManIA coexpression decreased total NKCC2 protein abundance whereas ManIA knock-down produced the opposite effect. Importantly, ManIA coexpression had a more profound effect on NKCC2 folding mutants. Cycloheximide chase assay showed that in cells overexpressing ManIA, NKCC2 stability and maturation are heavily hampered. Deleting the cytoplasmic region of ManIA attenuated its interaction with NKCC2 and inhibited its effect on the maturation of the cotransporter. ManIA-induced reductions in NKCC2 expression were offset by the proteasome inhibitor MG132. Likewise, kifunensine treatment greatly reduced ManIA effect, strongly suggesting that mannose trimming is involved in the enhanced ERAD of the cotransporter. Moreover, depriving ManIA of its catalytic domain fully abolished its effect on NKCC2. In summary, our data demonstrate the presence of a ManIA-mediated ERAD pathway in renal cells promoting retention and degradation of misfolded NKCC2 proteins. They suggest a model whereby Golgi ManIA contributes to ERAD of NKCC2, by promoting the retention, recycling, and ERAD of misfolded proteins that initially escape protein quality control surveillance within the ER.
Collapse
Affiliation(s)
- Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany;
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
8
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| |
Collapse
|
9
|
Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021. [PMID: 33672238 DOI: 10.3390/ijms22042207.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
|
10
|
Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021; 22:ijms22042207. [PMID: 33672238 PMCID: PMC7926544 DOI: 10.3390/ijms22042207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The apical Na/K/2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb, contributing to maintenance of blood pressure (BP). Despite effective NKCC2 inhibition by loop diuretics, these agents are not viable for long-term management of BP due to side effects. Novel molecular mechanisms that control NKCC2 activity reveal an increasingly complex picture with interacting layers of NKCC2 regulation. Here, we review the latest developments that shine new light on NKCC2-mediated control of BP and potential new long-term therapies to treat hypertension. RECENT FINDINGS Emerging molecular NKCC2 regulators, often binding partners, reveal a complex overlay of interacting mechanisms aimed at fine tuning NKCC2 activity. Different factors achieve this by shifting the balance between trafficking steps like exocytosis, endocytosis, recycling and protein turnover, or by balancing phosphorylation vs. dephosphorylation. Further molecular details are also emerging on previously known pathways of NKCC2 regulation, and recent in-vivo data continues to place NKCC2 regulation at the center of BP control. SUMMARY Several layers of emerging molecular mechanisms that control NKCC2 activity may operate simultaneously, but they can also be controlled independently. This provides an opportunity to identify new pharmacological targets to fine-tune NKCC2 activity for BP management.
Collapse
|
12
|
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Endocytic recycling of Na + -K + -Cl - cotransporter type 2: importance of exon 4. J Physiol 2019; 597:4263-4276. [PMID: 31216057 DOI: 10.1113/jp278024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 27-exon membrane protein that is expressed in the thick ascending limb (TAL) of Henle where it is involved in reabsorption of the ultrafiltered NaCl load. It comes as three splice variants that are identical to each other except for the residue composition of exon 4 and that differ in their transport characteristics, functional roles and distributions along the TAL. In this report, it is shown that the variants also differ in their trafficking properties and that two residues in exon 4 play a key role in this regard. One of these residues was also shown to sustain carrier internalization. Through these results, a novel function for the alternatively spliced exon of NKCC2 has been identified and a domain that is involved in carrier trafficking has been uncovered for the first time in a cation-Cl- cotransporter family member. ABSTRACT Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 12-transmembrane (TM) domain cell surface glycoprotein that is expressed in the thick ascending limb (TAL) of Henle and stimulated during cell shrinkage. It comes as three splice variants (A, B and F) that are identical to each other except for TM2 and the following connecting segment (CS2). Yet, these variants do not share the same localization, transport characteristics and physiological roles along the TAL. We have recently found that while cell shrinkage could exert its activating effect by increasing NKCC2 expression at the cell surface, the variants also responded differentially to this stimulus. In the current work, a mutagenic approach was exploited to determine whether CS2 could play a role in carrier trafficking and identify the residues potentially involved. We found that when the residue of position 238 in NKCC2A (F) and NKCC2B (Y) was replaced by the corresponding residue in NKCC2F (V), carrier activity increased by over 3-fold and endocytosis decreased concomitantly. We also found that when the residue of position 230 in NKCC2F (M) was replaced by the one in NKCC2B (T), carrier activity and affinity for ions both increased substantially whereas expression at the membrane decreased. Taken together, these results suggest that CS2 is involved in carrier trafficking and that two of its residues, those of positions 238 and 230, are part of an internalization motif. They also indicate that the divergent residue of position 230 plays the dual role of specifying ion affinity and sustaining carrier internalization.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Samira Slimani
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Laurence E Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6.,Cardiometabolic Research Group, Department of Kinesiology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada, H3T 1J4
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| |
Collapse
|
13
|
Ares GR, Kassem KM, Ortiz PA. Fructose acutely stimulates NKCC2 activity in rat thick ascending limbs by increasing surface NKCC2 expression. Am J Physiol Renal Physiol 2018; 316:F550-F557. [PMID: 30516424 DOI: 10.1152/ajprenal.00136.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb (TAL) reabsorbs 25% of the filtered NaCl through the Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is directly related to surface NKCC2 expression and phosphorylation. Higher NaCl reabsorption by TALs is linked to salt-sensitive hypertension, which is linked to consumption of fructose in the diet. However, little is known about the effects of fructose on renal NaCl reabsorption. We hypothesized that fructose, but not glucose, acutely enhances TAL-dependent NaCl reabsorption by increasing NKCC2 activity via stimulation of surface NKCC2 levels and phosphorylation at Thr96/101. We found that fructose (5 mM) increased transport-related O2 consumption in TALs by 11.1 ± 3.2% ( P < 0.05). The effect of fructose on O2 consumption was blocked by furosemide. To study the effect of fructose on NKCC2 activity, we measured the initial rate of NKCC2-dependent thallium influx. We found that 20 min of treatment with fructose (5 mM) increased NKCC2 activity by 58.5 ± 16.9% ( P < 0.05). We then used surface biotinylation to measure surface NKCC2 levels in rat TALs. Fructose increased surface NKCC2 expression in a concentration-dependent manner (22 ± 5, 49 ± 10, and 101 ± 59% of baseline with 1, 5, and 10 mM fructose, respectively, P < 0.05), whereas glucose or a glucose metabolite did not. Fructose did not change NKCC2 phosphorylation at Thre96/101 or total NKCC2 expression. We concluded that acute fructose treatment increases NKCC2 activity by enhancing surface NKCC2 expression, rather than NKCC2 phosphorylation. Our data suggest that fructose consumption could contribute to salt-sensitive hypertension by stimulating NKCC2-dependent NaCl reabsorption in TALs.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Kamal M Kassem
- Department of Internal Medicine, University of Cincinnati Medical Center , Cincinnati, Ohio
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University , Detroit, Michigan
| |
Collapse
|
14
|
Singh R, Kursan S, Almiahoub MY, Almutairi MM, Garzón-Muvdi T, Alvarez-Leefmans FJ, Di Fulvio M. Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation. Front Cell Dev Biol 2017; 4:150. [PMID: 28101499 PMCID: PMC5209364 DOI: 10.3389/fcell.2016.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/04/2022] Open
Abstract
Na+K+2Cl− co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl− ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl− homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithelial cells of the thick ascending loop of Henle, where it plays key roles in NaCl reabsorption and electrolyte homeostasis. Although NKCC1 and NKCC2 co-transport the same ions with identical stoichiometry, NKCC1 actively co-transports water whereas NKCC2 does not. There is growing evidence showing that NKCC2 is expressed outside the kidney, but its function in extra-renal tissues remains unknown. The present study shows molecular and functional evidence of endogenous NKCC2 expression in COS7 cells, a widely used mammalian cell model. Endogenous NKCC2 is primarily found in recycling endosomes, Golgi cisternae, Golgi-derived vesicles, and to a lesser extent in the endoplasmic reticulum. Unlike NKCC1, NKCC2 is minimally hybrid/complex N-glycosylated under basal conditions and yet it is trafficked to the plasma membrane region of hyper-osmotically challenged cells through mechanisms that require minimal complex N-glycosylation or functional Golgi cisternae. Control COS7 cells exposed to slightly hyperosmotic (~6.7%) solutions for 16 h were not shrunken, suggesting that either one or both NKCC1 and NKCC2 may participate in cell volume recovery. However, NKCC2 targeted to the plasma membrane region or transient over-expression of NKCC2 failed to rescue NKCC1 in COS7 cells where NKCC1 had been silenced. Further, COS7 cells in which NKCC1, but not NKCC2, was silenced exhibited reduced cell size compared to control cells. Altogether, these results suggest that NKCC2 does not participate in cell volume recovery and therefore, NKCC1 and NKCC2 are functionally different Na+K+2Cl− co-transporters.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Shams Kursan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohamed Y Almiahoub
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Tomás Garzón-Muvdi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Francisco J Alvarez-Leefmans
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| |
Collapse
|
15
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2016. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
16
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2015; 291:4487-502. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 01/25/2023] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
17
|
Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2. Int J Cell Biol 2015; 2015:505294. [PMID: 26351455 PMCID: PMC4553341 DOI: 10.1155/2015/505294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active.
Collapse
|
18
|
Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger. Pflugers Arch 2014; 466:1605-18. [PMID: 24668450 DOI: 10.1007/s00424-014-1494-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
The zebrafish genome encodes two slc4a1 genes, one expressed in erythroid tissues and the other in the HR (H(+)-ATPase-rich) type of embryonic skin ionocytes, and two slc4a2 genes, one in proximal pronephric duct and the other in several extrarenal tissues of the embryo. We now report cDNA cloning and functional characterization of zebrafish slc4a3/ae3 gene products. The single ae3 gene on chromosome 9 generates at least two low-abundance ae3 transcripts differing only in their 5'-untranslated regions and encoding a single definitive Ae3 polypeptide of 1170 amino acids. The 7 kb upstream of the apparent initiator Met in ae3 exon 3 comprises multiple diverse, mobile repeat elements which disrupt and appear to truncate the Ae3 N-terminal amino acid sequence that would otherwise align with brain Ae3 of other species. Embryonic ae3 mRNA expression was detected by whole mount in situ hybridization only in fin buds at 24-72 hpf, but was detectable by RT-PCR across a range of embryonic and adult tissues. Epitope-tagged Ae3 polypeptide was expressed at or near the surface of Xenopus oocytes, and mediated low rates of DIDS-sensitive (36)Cl(-)/Cl(-) exchange in influx and efflux assays. As previously reported for Ae2 polypeptides, (36)Cl(-) transport by Ae3 was inhibited by both extracellular and intracellular acidic pH, and stimulated by alkaline pH. However, zebrafish Ae3 differed from Ae2 polypeptides in its insensitivity to NH4Cl and to hypertonicity. We conclude that multiple repeat elements have disrupted the 5'-end of the zebrafish ae3 gene, associated with N-terminal truncation of the protein and reduced anion transport activity.
Collapse
|
19
|
Functional expression of human NKCC1 from a synthetic cassette-based cDNA: introduction of extracellular epitope tags and removal of cysteines. PLoS One 2013; 8:e82060. [PMID: 24339991 PMCID: PMC3855340 DOI: 10.1371/journal.pone.0082060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
The Na-K-Cl cotransporter (NKCC) couples the movement of Na(+), K(+), and Cl(-) ions across the plasma membrane of most animal cells and thus plays a central role in cellular homeostasis and human physiology. In order to study the structure, function, and regulation of NKCC1 we have engineered a synthetic cDNA encoding the transporter with 30 unique silent restriction sites throughout the open reading frame, and with N-terminal 3xFlag and YFP tags. We show that the novel cDNA is appropriately expressed in HEK-293 cells and that the YFP-tag does not alter the transport function of the protein. Utilizing the Cl(-) -sensing capability of YFP, we demonstrate a sensitive assay of Na-K-Cl cotransport activity that measures normal cotransport activity in a fully activated transporter. In addition we present three newly developed epitope tags for NKCC1 all of which can be detected from outside of the cell, one of which is very efficiently delivered to the plasma membrane. Finally, we have characterized cysteine mutants of NKCC1 and found that whereas many useful combinations of cysteine mutations are tolerated by the biosynthetic machinery, the fully "cys-less" NKCC1 is retained in the endoplasmic reticulum. Together these advances are expected to greatly assist future studies of NKCC1.
Collapse
|
20
|
Ritterson Lew C, Tolan DR. Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J Cell Biochem 2013; 114:1928-39. [PMID: 23495010 DOI: 10.1002/jcb.24538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes.
Collapse
Affiliation(s)
- Carolyn Ritterson Lew
- Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
21
|
Carmosino M, Rizzo F, Torretta S, Procino G, Svelto M. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol 2013; 14:16. [PMID: 23506056 PMCID: PMC3618206 DOI: 10.1186/1471-2121-14-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kidney-specific NKCC cotransporter isoform NKCC2 is involved in the Na(+) reabsorption in the Thich Ascending Limb (TAL) cells and in the regulation of body fluid volume. In contrast, the isoform NKCC1 represents the major pathway for Cl- entry in endothelial cells, playing a crucial role in cell volume regulation and vascular tone. Importantly, both NKCC isoforms are involved in the regulation of blood pressure and represent important potential drug targets for the treatment of hypertension. RESULTS Taking advantage of an existing Thallium (Tl(+))-based kit, we set up a Tl(+) influx-based fluorescent assay, that can accurately and rapidly measure NKCC transporter activity in adherent epithelial cells using the high-throughput Flex station device. We assessed the feasibility of this assay in the renal epithelial LLC-PK1 cells stably transfected with a previously characterized chimeric NKCC2 construct (c-NKCC2). We demonstrated that the assay is highly reproducible, offers high temporal resolution of NKCC-mediated ion flux profiles and, importantly, being a continuous assay, it offers improved sensitivity over previous endpoint NKCC functional assays. CONCLUSIONS So far the screening of NKCC transporters activity has been done by (86)Rb(+) influx assays. Indeed, a fluorescence-based high-throughput screening method for testing NKCC inhibitors would be extremely useful in the development and characterization of new anti-hypertensive drugs.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, Potenza, 85100, Italy
| | - Federica Rizzo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Silvia Torretta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| |
Collapse
|
22
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012; 287:42642-53. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
24
|
Ares GR, Ortiz PA. Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs. J Biol Chem 2012; 287:37824-34. [PMID: 22977238 DOI: 10.1074/jbc.m112.386425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Steady-state surface levels of the apical Na/K/2Cl cotransporter NKCC2 regulate NaCl reabsorption by epithelial cells of the renal thick ascending limb (THAL). We reported that constitutive endocytosis of NKCC2 controls NaCl absorption in native THALs; however, the pathways involved in NKCC2 endocytosis are unknown. We hypothesized that NKCC2 endocytosis at the apical surface depends on dynamin-2 and clathrin. Measurements of steady-state surface NKCC2 and the rate of NKCC2 endocytosis in freshly isolated rat THALs showed that inhibition of endogenous dynamin-2 with dynasore blunted NKCC2 endocytosis by 56 ± 11% and increased steady-state surface NKCC2 by 67 ± 27% (p < 0.05). Expression of the dominant negative Dyn2K44A in THALs slowed the rate of NKCC2 endocytosis by 38 ± 8% and increased steady-state surface NKCC2 by 37 ± 8%, without changing total NKCC2 expression. Inhibition of clathrin-mediated endocytosis with chlorpromazine blunted NKCC2 endocytosis by 54 ± 6%, while preventing clathrin from interacting with synaptojanin also blunted NKCC2 endocytosis by 52 ± 5%. Disruption of lipid rafts blunted NKCC2 endocytosis by 39 ± 4% and silencing caveolin-1 by 29 ± 4%. Simultaneous inhibition of clathrin- and lipid raft-mediated endocytosis completely blocked NKCC2 internalization. We concluded that dynamin-2, clathrin, and lipid rafts mediate NKCC2 endocytosis and maintain steady-state apical surface NKCC2 in native THALs. These are the first data identifying the endocytic pathway for apical NKCC2 endocytosis.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
25
|
Carmosino M, Rizzo F, Procino G, Zolla L, Timperio AM, Basco D, Barbieri C, Torretta S, Svelto M. Identification of moesin as NKCC2-interacting protein and analysis of its functional role in the NKCC2 apical trafficking. Biol Cell 2012; 104:658-76. [PMID: 22708623 DOI: 10.1111/boc.201100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The renal Na(+) -K(+) -2Cl(-) co-transporter (NKCC2) is expressed in kidney thick ascending limb cells, where it mediates NaCl re-absorption regulating body salt levels and blood pressure. RESULTS In this study, we used a well-characterised NKCC2 construct (c-NKCC2) to identify NKCC2-interacting proteins by an antibody shift assay coupled with blue native/SDS-PAGE and mass spectrometry. Among the interacting proteins, we identified moesin, a protein belonging to ezrin, eadixin and moesin family. Co-immunoprecipitation experiments confirmed that c-NKCC2 interacts with the N-terminal domain of moesin in LLC-PK1 cells. Moreover, c-NKCC2 accumulates in intracellular and sub-apical vesicles in cells transfected with a moesin dominant negative green fluorescent protien (GFP)-tagged construct. In addition, moesin knock-down by short interfering RNA decreases by about 50% c-NKCC2 surface expression. Specifically, endocytosis and exocytosis assays showed that moesin knock-down does not affect c-NKCC2 internalisation but strongly reduces exocytosis of the co-transporter. CONCLUSIONS Our data clearly demonstrate that moesin plays a critical role in apical membrane insertion of NKCC2, suggesting a possible involvement of moesin in regulation of Na(+) and Cl(-) absorption in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Carmosino M, Procino G, Svelto M. Na+-K+-2Cl- cotransporter type 2 trafficking and activity: the role of interacting proteins. Biol Cell 2012; 104:201-12. [PMID: 22211456 DOI: 10.1111/boc.201100049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
The central role of Na+-K+-2Cl- cotransporter type 2 (NKCC2) in vectorial transepithelial salt reabsorption in thick ascending limb cells from Henle's loop in the kidney is evidenced by the effects of loop diuretics, the pharmacological inhibitors of NKCC2, that are amongst the most powerful antihypertensive drugs available to date. Moreover, genetic mutations of the NKCC2 encoding gene resulting in impaired apical targeting and function of NKCC2 transporter give rise to a pathological phenotype known as type I Bartter syndrome, characterised by a severe volume depletion, hypokalaemia and metabolic alkalosis with high prenatal mortality. On the contrary, excessive NKCC2 activity has been linked with inherited hypertension in humans and in rodent models. Interestingly, in animal models of hypertension, NKCC2 upregulation is achieved by post-translational mechanisms underlining the need to analyse the molecular mechanisms involved in the regulation of NKCC2 trafficking and activity to gain insights in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
27
|
Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F1143-59. [PMID: 21900458 DOI: 10.1152/ajprenal.00396.2011] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
28
|
Monette MY, Rinehart J, Lifton RP, Forbush B. Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol 2011; 300:F840-7. [PMID: 21209010 PMCID: PMC3074999 DOI: 10.1152/ajprenal.00552.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
Abstract
The Na-K-Cl cotransporter (NKCC2) is the major salt transport pathway in the thick ascending limb of Henle's loop and is part of the molecular mechanism for blood pressure regulation. Recent screening of ∼3,000 members of the Framingham Heart Study identified nine rare independent mutations in the gene encoding NKCC2 (SLC12A1) associated with clinically reduced blood pressure and protection from hypertension (Ji WZ, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State M, Levy D, Lifton RP. Nat Genet 40: 592-599, 2008). To investigate their functional consequences, we introduced the nine mutations in human NKCC2A and examined protein function, expression, localization, regulation, and ion transport kinetics using heterologous expression in Xenopus laevis oocytes and HEK-293 cells. When expressed in oocytes, four of the mutants (T235M, R302W, L505V, and P569H) exhibited reduced transport function compared with wild-type. In HEK-293 cells, the same four mutants exhibited reduced function, and in addition N399S and P1083A had significantly lower activity than wild-type. The two most functionally impaired mutants (R302W and L505V) exhibited dramatically diminished production of complex-glycosylated protein and a decrease in or absence of plasma membrane localization, indicative of a processing defect. All of the functional human (h) NKCC2A variants were regulated by changes in oocyte volume and intracellular chloride in HEK cells, but P254A and N399S exhibited a lower constitutive activity in HEK cells. The P569H mutant exhibited a 50% reduction in sodium affinity compared with wild-type, predicting lower transport activity at lower intratubular salt concentrations, while the P254A mutant exhibited a 35% increase in rubidium affinity. We conclude that defects in NKCC2 processing, transport turnover rate, regulation, and ion affinity contribute to impaired transport function in six of the nine identified mutants, providing support for the predictive approach of Ji et al. to identify functionally important residues by sequence conservation. Such mutations in hNKCC2A are likely to reduce renal salt reabsorption, providing a mechanism for lower blood pressure.
Collapse
Affiliation(s)
- Michelle Y Monette
- Dept. of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale Univ. School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
29
|
Haque MZ, Ares GR, Caceres PS, Ortiz PA. High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am J Physiol Renal Physiol 2011; 300:F1096-104. [PMID: 21307126 DOI: 10.1152/ajprenal.00600.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.
Collapse
Affiliation(s)
- Mohammed Ziaul Haque
- Department of Internal Medicine, Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
30
|
Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 2011; 286:9489-502. [PMID: 21205824 DOI: 10.1074/jbc.m110.166546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The renal-specific Na-K-2Cl co-transporter, NKCC2, plays a pivotal role in regulating body salt levels and blood pressure. NKCC2 mutations lead to type I Bartter syndrome, a life-threatening kidney disease. Regulation of NKCC2 trafficking behavior serves as a major mechanism in controlling NKCC2 activity across the plasma membrane. However, the identities of the protein partners involved in cell surface targeting of NKCC2 are largely unknown. To gain insight into these processes, we used a yeast two-hybrid system to screen a kidney cDNA library for proteins that interact with the NKCC2 C terminus. One binding partner we identified was SCAMP2 (secretory carrier membrane protein 2). Microscopic confocal imaging and co-immunoprecipitation assays confirmed NKCC2-SCAMP2 interaction in renal cells. SCAMP2 associated also with the structurally related co-transporter NCC, suggesting that the interaction with SCAMP2 is a common feature of sodium-dependent chloride co-transporters. Heterologous expression of SCAMP2 specifically decreased cell surface abundance as well as transport activity of NKCC2 across the plasma membrane. Co-immunolocalization experiments revealed that intracellularly retained NKCC2 co-localizes with SCAMP2 in recycling endosomes. The rate of NKCC2 endocytic retrieval, assessed by the sodium 2-mercaptoethane sulfonate cleavage assay, was not affected by SCAMP2. The surface-biotinylatable fraction of newly inserted NKCC2 in the plasma membrane was reduced by SCAMP2, demonstrating that SCAMP2-induced decrease in surface NKCC2 is due to decreased exocytotic trafficking. Finally, a single amino acid mutation, cysteine 201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, which is believed to regulate exocytosis, abolished SCAMP2-mediated down-regulation of the co-transporter. Taken together, these data are consistent with a model whereby SCAMP2 regulates NKCC2 transit through recycling endosomes and limits the cell surface targeting of the co-transporter by interfering with its exocytotic trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Huber-Ruano I, Pinilla-Macua I, Torres G, Casado FJ, Pastor-Anglada M. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. J Cell Physiol 2010; 225:620-30. [PMID: 20506327 DOI: 10.1002/jcp.22254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concentrative nucleoside transporter 2 (CNT2) is a high-affinity adenosine transporter that may play physiological roles beyond nucleoside salvage. Previous reports relate CNT2 function to modulation of purinergic signaling and energy metabolism in intestinal and liver parenchymal cells (Duflot et al., 2004, Mol Cell Biol 24:2710-2719; Aymerich et al., 2006, J Cell Sci 119:1612-1621). In the present study, to further examine the link between CNT2 and energy metabolism, CNT2 protein partners were identified using the bacterial two-hybrid and GST pull-down approaches. The N-terminal segment of CNT2 was used as bait, since proteins lacking this domain display impaired plasma membrane insertion and intracellular retention. Glucose-regulated protein 58 (GRP58) was identified as a potential rCNT2 partner in pull-down experiments. Two-hybrid screening performed against a liver human cDNA library led to the identification of aldolase B as another hCNT2 partner. Aldolase B-RFP and endogenous GRP58 separately co-localized with CNT2 in HeLa cells transfected with YFPrCNT2. CNT2 interaction with GRP58 was validated using co-immunoprecipitation experiments. In HeLa cells, fluorescence resonance energy transfer (FRET) efficiency increased upon fructose addition, consistent with a transient interaction between aldolase B and the transporter. The physiological basis for in vivo interactions was derived from experiments in which GRP58 was inhibited or overexpressed and aldolase B activity stimulated towards glycolysis. GRP58 appeared to be a negative effector of CNT2 function, whereas aldolase B flux modulated CNT2 activity via a mechanism involving acquisition of higher affinity for its substrates. These findings support the theory that CNT2 plays roles other than salvage and establishes links with energy metabolism.
Collapse
Affiliation(s)
- Isabel Huber-Ruano
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona and CIBER EHD, Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2. Mol Cell Biol 2010; 30:3027-37. [PMID: 20385770 DOI: 10.1128/mcb.01560-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance.
Collapse
|
33
|
Roumelioti K, Vangelatos I, Sophianopoulou V. A cryptic role of a glycolytic–gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans. Fungal Genet Biol 2010; 47:254-67. [DOI: 10.1016/j.fgb.2009.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 11/25/2022]
|
34
|
Hannemann A, Christie JK, Flatman PW. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant. J Biol Chem 2009; 284:35348-58. [PMID: 19854835 PMCID: PMC2790964 DOI: 10.1074/jbc.m109.060004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/06/2009] [Indexed: 11/25/2022] Open
Abstract
The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.
Collapse
Affiliation(s)
- Anke Hannemann
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Jenny K. Christie
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Peter W. Flatman
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
35
|
Zaarour N, Demaretz S, Defontaine N, Mordasini D, Laghmani K. A highly conserved motif at the COOH terminus dictates endoplasmic reticulum exit and cell surface expression of NKCC2. J Biol Chem 2009; 284:21752-64. [PMID: 19535327 DOI: 10.1074/jbc.m109.000679] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the apically located Na(+)-K(+)-2Cl(-) co-transporter, NKCC2, lead to type I Bartter syndrome, a life-threatening kidney disorder, yet the mechanisms underlying the regulation of mutated NKCC2 proteins in renal cells have not been investigated. Here, we identified a trihydrophobic motif in the distal COOH terminus of NKCC2 that was required for endoplasmic reticulum (ER) exit and surface expression of the co-transporter. Indeed, microscopic confocal imaging showed that a naturally occurring mutation depriving NKCC2 of its distal COOH-terminal region results in the absence of cell surface expression. Biotinylation assays revealed that lack of cell surface expression was associated with abolition of mature complex-glycosylated NKCC2. Pulse-chase analysis demonstrated that the absence of mature protein was not caused by reduced synthesis or increased rates of degradation of mutant co-transporters. Co-immunolocalization experiments revealed that these mutants co-localized with the ER marker protein-disulfide isomerase, demonstrating that they are retained in the ER. Cell treatment with proteasome or lysosome inhibitors failed to restore the loss of complex-glycosylated NKCC2, further eliminating the possibility that mutant co-transporters were processed by the Golgi apparatus. Serial truncation of the NKCC2 COOH terminus, followed by site-directed mutagenesis, identified hydrophobic residues (1081)LLV(1083) as an ER exit signal necessary for maturation of NKCC2. Mutation of (1081)LLV(1083) to AAA within the context of the full-length protein prevented NKCC2 ER exit independently of the expression system. This trihydrophobic motif is highly conserved in the COOH-terminal tails of all members of the cation-chloride co-transporter family, and thus may function as a common motif mediating their transport from the ER to the cell surface. Taken together, these data are consistent with a model whereby naturally occurring premature terminations that interfere with the LLV motif compromise co-transporter surface delivery through defective trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris, France
| | | | | | | | | |
Collapse
|
36
|
Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009; 458:61-76. [PMID: 18982348 PMCID: PMC3584568 DOI: 10.1007/s00424-008-0607-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 01/12/2023]
Abstract
The thick ascending limb of Henle's loop is a nephron segment that is vital to the formation of dilute and concentrated urine. This ability is accomplished by a consortium of functionally coupled proteins consisting of the apical Na(+):K(+):2Cl(-) co-transporter, the K(+) channel, and basolateral Cl(-) channel that mediate electroneutral salt absorption. In thick ascending limbs, salt absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological disruption impairing the function of any of these proteins results in Bartter syndrome. The thick ascending limb is also an important site of Ca(2+) and Mg(2+) absorption. Calcium-sensing receptor activation inhibits cellular Ca(2+) absorption induced by parathyroid hormone, as well as passive paracellular Ca(2+) transport. The present review discusses these functions and their genetic and molecular regulation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14000 Mexico City, Mexico
| | - Peter A. Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|