1
|
Spliid CB, Toledo AG, Sanderson P, Mao Y, Gatto F, Gustavsson T, Choudhary S, Saldanha AL, Vogelsang RP, Gögenur I, Theander TG, Leach FE, Amster IJ, Esko JD, Salanti A, Clausen TM. The specificity of the malarial VAR2CSA protein for chondroitin sulfate depends on 4-O-sulfation and ligand accessibility. J Biol Chem 2021; 297:101391. [PMID: 34762909 DOI: 10.1016/j.jbc.2021.101391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant sub-fragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.
Collapse
Affiliation(s)
- Charlotte B Spliid
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Clinical Sciences, Division of Infection Medicine, Lund University, Sweden
| | | | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China and Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, 510990 Guangzhou, China
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 42196 Gothenburg, Sweden
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Ana L Saldanha
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Rasmus P Vogelsang
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Franklin E Leach
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Li Z, Bi Y, Wu Q, Chen C, Zhou L, Qi J, Xie D, Song H, Han Y, Qu P, Zhang K, Wu Y, Yin Q. A composite scaffold of Wharton's jelly and chondroitin sulphate loaded with human umbilical cord mesenchymal stem cells repairs articular cartilage defects in rat knee. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:36. [PMID: 33779853 PMCID: PMC8007499 DOI: 10.1007/s10856-021-06506-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
To evaluate the performance of a composite scaffold of Wharton's jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young's modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.
Collapse
Affiliation(s)
- Zhong Li
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Yikang Bi
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Qi Wu
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Chao Chen
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Lu Zhou
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Jianhong Qi
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China.
- Clinical Center for Sports Medicine and Rehabilitation, the Affiliated Hospital of Shandong First Medical University, 706 Taishan Great Street, Taian, 271000, Shandong, PR China.
| | - Di Xie
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Hongqiang Song
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Yunning Han
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Pengwei Qu
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Kaihong Zhang
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Yadi Wu
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| | - Qipu Yin
- Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, 619 Changcheng Road, Taian, 271016, Shandong, PR China
| |
Collapse
|
3
|
Repurposing Heparin as Antimalarial: Evaluation of Multiple Modifications Toward In Vivo Application. Pharmaceutics 2020; 12:pharmaceutics12090825. [PMID: 32872434 PMCID: PMC7557421 DOI: 10.3390/pharmaceutics12090825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Heparin is a promising antimalarial drug due to its activity in inhibiting Plasmodium invasion of red blood cells and to the lack of resistance evolution by the parasite against it, but its potent anticoagulant activity is preventing the advance of heparin along the clinical pipeline. We have determined, in in vitro Plasmodium falciparum cultures, the antimalarial activity of heparin-derived structures of different origins and sizes, to obtain formulations having a good balance of in vitro safety (neither cytotoxic nor hemolytic), low anticoagulant activity (≤23 IU/mL according to activated partial thromboplastin time assays), and not too low antimalarial activity (IC50 at least around 100 µg/mL). This led to the selection of five chemically modified heparins according to the parameters explored, i.e., chain length, sulfation degree and position, and glycol-split, and whose in vivo toxicity indicated their safety for mice up to an intravenous dose of 320 mg/kg. The in vivo antimalarial activity of the selected formulations was poor as a consequence of their short blood half-life. The covalent crosslinking of heparin onto the surface of polyethylene glycol-containing liposomes did not affect its antimalarial activity in vitro and provided higher initial plasma concentrations, although it did not increase mean circulation time. Finding a suitable nanocarrier to impart long blood residence times to the modified heparins described here will be the next step toward new heparin-based antimalarial strategies.
Collapse
|
4
|
Thakkar M, S B. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res 2017; 6:414-25. [PMID: 27067712 DOI: 10.1007/s13346-016-0290-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advancement of science, infectious diseases such as malaria remain an ongoing challenge globally. The main reason this disease still remains a menace in many countries around the world is the development of resistance to many of the currently available anti-malarial drugs. While developing new drugs is rather expensive and the prospect of a potent vaccine is still evading our dream of a malaria-free world, one of the feasible options is to package the older drugs in newer ways. For this, nano-sized drug delivery vehicles have been used and are proving to be promising prospects in the way malaria will be treated in the future. Since, monotherapy has given way to combination therapy in malaria treatment, nanotechnology-based delivery carriers enable to encapsulate various drug moieties in the same package, thus avoiding the complications involved in conjugation chemistry to produce hybrid drug molecules. Further, we envisage that using targeted delivery approaches, we may be able to achieve a much better radical cure and curb the side effects associated with the existing drug molecules. Thus, this review will focus on some of the nanotechnology-based combination and targeted therapies and will discuss the possibilities of better therapies that may be developed in the future.
Collapse
Affiliation(s)
- Miloni Thakkar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India
| | - Brijesh S
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
5
|
Abstract
Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.
Collapse
Affiliation(s)
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| |
Collapse
|
6
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
7
|
Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J 2016; 33:985-994. [DOI: 10.1007/s10719-016-9685-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
|
8
|
Salanti A, Clausen TM, Agerbæk MØ, Al Nakouzi N, Dahlbäck M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, Nielsen TO, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell 2015; 28:500-514. [PMID: 26461094 PMCID: PMC4790448 DOI: 10.1016/j.ccell.2015.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.
Collapse
Affiliation(s)
- Ali Salanti
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
| | - Thomas M Clausen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mette Ø Agerbæk
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Madeleine Dahlbäck
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sherry Lee
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tobias Gustavsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jamie R Rich
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Bradley J Hedberg
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Yang Mao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Line Barington
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marina A Pereira
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Janine LoBello
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Makoto Endo
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Anatomic Pathology, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Kyushu University, Fukuoka 819-0395, Japan
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Jo Soden
- Retrogenix Ltd., Crown House, Bingswood Estate, Whaley Bridge, High Peak SK23 7LY, UK
| | - Chris K Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Adam F Sander
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Robert Dagil
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Susan Thrane
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Peter J Holst
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Le Meng
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesco Favero
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark
| | - Glen J Weiss
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; Cancer Treatment Centers of America, Goodyear, AZ 85338, USA
| | - Morten A Nielsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jim Freeth
- Retrogenix Ltd., Crown House, Bingswood Estate, Whaley Bridge, High Peak SK23 7LY, UK
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nhan L Tran
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Jeff Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - John S Babcook
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Thor G Theander
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
9
|
Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, Grandfils C, Fernàndez-Busquets X. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1719-28. [DOI: 10.1016/j.nano.2014.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023]
|
10
|
Macchione G, Maza S, Mar Kayser M, de Paz JL, Nieto PM. Synthesis of Chondroitin Sulfate Oligosaccharides UsingN-(Tetrachlorophthaloyl)- andN-(Trifluoroacetyl)galactosamine Building Blocks. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
12
|
Rovira-Vallbona E, Monteiro I, Bardají A, Serra-Casas E, Neafsey DE, Quelhas D, Valim C, Alonso P, Dobaño C, Ordi J, Menéndez C, Mayor A. VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta. PLoS One 2013; 8:e69753. [PMID: 23936092 PMCID: PMC3723727 DOI: 10.1371/journal.pone.0069753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three DBL3X segments contained signatures of high parasite density (P<0.003) that were highly prevalent in the parasite population (49-91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional characterization of VAR2CSA and the development of tools against placental malaria.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/metabolism
- Binding Sites
- Chondroitin Sulfates/chemistry
- Chondroitin Sulfates/metabolism
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Humans
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Molecular Docking Simulation
- Molecular Sequence Data
- Placenta/immunology
- Placenta/parasitology
- Placenta/pathology
- Plasmodium falciparum/chemistry
- Plasmodium falciparum/genetics
- Plasmodium falciparum/metabolism
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/metabolism
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Protein Binding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isadora Monteiro
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Azucena Bardají
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Elisa Serra-Casas
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | - Diana Quelhas
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Alonso
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Pathology, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- * E-mail:
| |
Collapse
|
13
|
Stocker BL, Timmer MSM. Chemical Tools for Studying the Biological Function of Glycolipids. Chembiochem 2013; 14:1164-84. [DOI: 10.1002/cbic.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Indexed: 01/04/2023]
|
14
|
Valle-Delgado JJ, Urbán P, Fernàndez-Busquets X. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. NANOSCALE 2013; 5:3673-3680. [PMID: 23306548 DOI: 10.1039/c2nr32821f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.
Collapse
Affiliation(s)
- Juan José Valle-Delgado
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain
| | | | | |
Collapse
|
15
|
Heparin-functionalized nanocapsules: enabling targeted delivery of antimalarial drugs. Future Med Chem 2013; 5:737-9. [DOI: 10.4155/fmc.13.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Tonkin ML, Arredondo SA, Loveless BC, Serpa JJ, Makepeace KA, Sundar N, Petrotchenko EV, Miller LH, Grigg ME, Boulanger MJ. Structural and Biochemical Characterization of Plasmodium falciparum 12 (Pf12) Reveals a Unique Interdomain Organization and the Potential for an Antiparallel Arrangement with Pf41. J Biol Chem 2013; 288:12805-17. [DOI: 10.1074/jbc.m113.455667] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Boeuf P, Hasang W, Hanssen E, Glazier JD, Rogerson SJ. Relevant assay to study the adhesion of Plasmodium falciparum-infected erythrocytes to the placental epithelium. PLoS One 2011; 6:e21126. [PMID: 21731654 PMCID: PMC3123321 DOI: 10.1371/journal.pone.0021126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022] Open
Abstract
In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies.
Collapse
Affiliation(s)
- Philippe Boeuf
- Department of Medicine (RMH/WH), The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
18
|
Goel S, Gowda DC. How specific is Plasmodium falciparum adherence to chondroitin 4-sulfate? Trends Parasitol 2011; 27:375-81. [PMID: 21507719 DOI: 10.1016/j.pt.2011.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/16/2011] [Accepted: 03/19/2011] [Indexed: 11/16/2022]
Abstract
Plasmodium falciparum infection during pregnancy results in the sequestration of infected red blood cells (IRBCs) in the placenta, contributing to pregnancy associated malaria (PAM). IRBC adherence is mediated by the binding of a variant Plasmodium falciparum erythrocyte binding protein 1 named VAR2CSA to the low sulfated chondroitin 4-sulfate (C4S) proteoglycan (CSPG) present predominantly in the intervillous space of the placenta. IRBC binding is highly specific to the level and distribution of 4-sulfate groups in C4S. Given the strict specificity of IRBC-C4S interactions, it is better to use either placental CSPG or CSPGs bearing structurally similar C4S chains in defining VAR2CSA structural architecture that interact with C4S, evaluating VAR2CSA constructs for vaccine development or studying structure-based inhibitors as therapeutics for PAM.
Collapse
Affiliation(s)
- Suchi Goel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, USA
| | | |
Collapse
|
19
|
Avril M, Hathaway MJ, Srivastava A, Dechavanne S, Hommel M, Beeson JG, Smith JD, Gamain B. Antibodies to a full-length VAR2CSA immunogen are broadly strain-transcendent but do not cross-inhibit different placental-type parasite isolates. PLoS One 2011; 6:e16622. [PMID: 21326877 PMCID: PMC3034725 DOI: 10.1371/journal.pone.0016622] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022] Open
Abstract
The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species.
Collapse
MESH Headings
- Amino Acid Sequence/physiology
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antibodies, Protozoan/therapeutic use
- Antibody Specificity/immunology
- Antibody Specificity/physiology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Cells, Cultured
- Cross Reactions/immunology
- Female
- Humans
- Immunization
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Mice
- Mice, Inbred BALB C
- Placenta/immunology
- Placenta/parasitology
- Pregnancy
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Pregnancy Complications, Parasitic/therapy
- Protein Isoforms/immunology
- Rabbits
- Species Specificity
Collapse
Affiliation(s)
- Marion Avril
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Marianne J. Hathaway
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Anand Srivastava
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
| | - Sébastien Dechavanne
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
| | - Mirja Hommel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BG); (JDS)
| | - Benoît Gamain
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- INSERM, UMRS 665, Paris, France
- Université Paris Diderot, Paris 7, Paris, France
- * E-mail: (BG); (JDS)
| |
Collapse
|
20
|
Chloroquine reduces arylsulphatase B activity and increases chondroitin-4-sulphate: implications for mechanisms of action and resistance. Malar J 2009; 8:303. [PMID: 20017940 PMCID: PMC2805689 DOI: 10.1186/1475-2875-8-303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptors for adhesion of Plasmodium falciparum-infected red blood cells (RBC) in the placenta have been identified as chondroitin-4-sulphate (C4S) proteoglycans, and the more sulphate-rich chondroitin oligosaccharides have been reported to inhibit adhesion. Since the anti-malarial drug chloroquine accumulates in lysosomes and alters normal lysosomal processes, the effects of chloroquine on the lysosomal enzyme arylsulphatase B (ASB, N-acetylgalactosamine-4-sulphatase), which removes 4-sulphate groups from chondroitin-4-sulphate, were addressed. The underlying hypothesis derived from the recognized impairment of attachment of parasite-infected erythrocytes in the placenta, when chondroitin-4-sulphation was increased. If chloroquine reduced ASB activity, leading to increased chondroitin-4-sulphation, it was hypothesized that the anti-malarial mechanism of chloroquine might derive, at least in part, from suppression of ASB. METHODS Experimental methods involved cell culture of human placental, bronchial epithelial, and cerebrovascular cells, and the in vitro exposure of the cells to chloroquine at increasing concentrations and durations. Measurements of arylsulphatase B enzymatic activity, total sulphated glycosaminoglycans (sGAG), and chondroitin-4-sulphate (C4S) were performed using in vitro assays, following exposure to chloroquine and in untreated cell preparations. Fluorescent immunostaining of ASB was performed to determine the effect of chloroquine on cellular ASB content and localization. Mass spectrometry and high performance liquid chromatography were performed to document and to quantify the changes in chondroitin disaccharides following chloroquine exposure. RESULTS In the human placental, bronchial epithelial, and cerebrovascular cells, exposure to increasing concentrations of chloroquine was associated with reduced ASB activity and with increased concentrations of sGAG, largely attributable to increased C4S. The study data demonstrated: 1) decline in ASB activity following chloroquine exposure; 2) inverse correlation between ASB activity and C4S content; 3) increased content of chondroitin-4-sulphate disaccharides following chloroquine exposure; and 4) decline in extent of chloroquine-induced ASB reduction with lower baseline ASB activity. Confocal microscopy demonstrated the presence of ASB along the cell periphery, indicating extra-lysosomal localization. CONCLUSIONS The study data indicate that the therapeutic mechanism of chloroquine action may be attributable, at least in part, to reduction of ASB activity, leading to increased chondroitin-4-sulphation in human placental, bronchial epithelial, and cerebrovascular cells. In vivo, increased chondroitin-4-sulphation may reduce the attachment of P. falciparum-infected erythrocytes to human cells. Extra-lysosomal localization of ASB and reduced impact of chloroquine when baseline ASB activity is less suggest possible mechanisms of resistance to the effects of chloroquine.
Collapse
|
21
|
Khunrae P, Philip JMD, Bull DR, Higgins MK. Structural comparison of two CSPG-binding DBL domains from the VAR2CSA protein important in malaria during pregnancy. J Mol Biol 2009; 393:202-13. [PMID: 19695262 PMCID: PMC3778748 DOI: 10.1016/j.jmb.2009.08.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Severe malaria during pregnancy is associated with accumulation of parasite-infected erythrocytes in the placenta due to interactions between VAR2CSA protein, expressed on the surface of infected-erythrocytes, and placental chondroitin sulfate proteoglycans (CSPG). VAR2CSA contains multiple CSPG-binding domains, including DBL3X and DBL6ɛ. Previous structural studies of DBL3X suggested CSPG to bind to a positively charged patch and sulfate-binding site on the concave surface of the domain. Here we present the structure of the DBL6ɛ domain from VAR2CSA. This domain displays the same overall architecture and secondary structure as that of DBL3X but differs in loop structures, disulfide bond positions and surface charge distribution. In particular, despite binding to CSPG, DBL6ɛ lacks the key features of the CSPG-binding site of DBL3X. Instead DBL6ɛ binds to CSPG through a positively charged surface on the distal side of subdomain 2 that is exposed in intact VAR2CSA on the erythrocyte surface. Finally, unlike intact VAR2CSA, both DBL3X and DBL6ɛ bind to various carbohydrates, with greatest affinity for ligands with high sulfation and negative charge. These studies provide further insight into the structure of DBL domains and suggest a model for the role of individual domains in CSPG binding by VAR2CSA in placental malaria.
Collapse
Affiliation(s)
- Pongsak Khunrae
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
22
|
Chondroitin sulphate A (CSA)-binding of single recombinant Duffy-binding-like domains is not restricted to Plasmodium falciparum Erythrocyte Membrane Protein 1 expressed by CSA-binding parasites. Int J Parasitol 2009; 39:1195-204. [PMID: 19324047 DOI: 10.1016/j.ijpara.2009.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/21/2009] [Accepted: 02/17/2009] [Indexed: 11/23/2022]
Abstract
Individuals living in areas with high Plasmodium falciparum transmission acquire immunity to malaria over time and adults have a markedly reduced risk of contracting severe disease. However, pregnant women constitute an important exception. Pregnancy-associated malaria is a major cause of mother and offspring morbidity, such as severe maternal anaemia and low birth-weight, and is characterised by selective accumulation of parasite-infected erythrocytes (IE) in the placenta. A P. falciparum protein named VAR2CSA, which belongs to the large P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family, enables the IE to bind chondroitin sulphate A (CSA) in the placenta. Knock-out studies have demonstrated the exclusive capacity of VAR2CSA to mediate IE binding to CSA, and it has been shown that four of the six Duffy-binding-like (DBL) domains of VAR2CSA have the ability to bind CSA in vitro. In this study, we confirm the CSA-binding of these DBL domains, however, the analysis of a number of DBL domains of a non-VAR2CSA origin shows that CSA-binding is not exclusively restricted to VAR2CSA DBL domains. Furthermore, we show that the VAR2CSA DBL domains as well as other DBL domains also bind heparan sulphate. These data explain a number of publications describing CSA-binding domains derived from PfEMP1 antigens not involved in placental adhesion. The data suggest that the ability of single domains to bind CSA does not predict the functional capacity of the whole PfEMP1 and raises doubt whether the CSA-binding domains of native VAR2CSA have been correctly identified.
Collapse
|
23
|
Achur RN, Kakizaki I, Goel S, Kojima K, Madhunapantula SV, Goyal A, Ohta M, Kumar S, Takagaki K, Gowda DC. Structural interactions in chondroitin 4-sulfate mediated adherence of Plasmodium falciparum infected erythrocytes in human placenta during pregnancy-associated malaria. Biochemistry 2009; 47:12635-43. [PMID: 18975976 DOI: 10.1021/bi801643m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection with Plasmodium falciparum during pregnancy results in the adherence of infected red blood cells (IRBCs) in placenta, causing pregnancy-associated malaria with severe health complications in mothers and fetuses. The chondroitin 4-sulfate (C4S) chains of very low sulfated chondroitin sulfate proteoglycans (CSPGs) in placenta mediate the IRBC adherence. While it is known that partially sulfated but not fully sulfated C4S effectively binds IRBCs, structural interactions involved remain unclear and are incompletely understood. In this study, structurally defined C4S oligosaccharides of varying sulfate contents and sizes were evaluated for their ability to inhibit the binding of IRBCs from different P. falciparum strains to CSPG purified from placenta. The results clearly show that, with all parasite strains studied, dodecasaccharide is the minimal chain length required for the efficient adherence of IRBCs to CSPG and two 4-sulfated disaccharides within this minimal structural motif are sufficient for maximal binding. Together, these data demonstrate for the first time that the C4S structural requirement for IRBC adherence is parasite strain-independent. We also show that the carboxyl group on nonreducing end glucuronic acid in dodecasaccharide motif is important for IRBC binding. Thus, in oligosaccharides containing terminal 4,5-unsaturated glucuronic acid, the nonreducing end disaccharide moiety does not interact with IRBCs due to the altered spatial orientation of carboxyl group. In such C4S oligosaccharides, 14-mer but not 12-mer constitutes the minimal motif for inhibition of IRBC binding to placental CSPG. These data have important implications for the development and evaluation of therapeutics and vaccine for placental malaria.
Collapse
Affiliation(s)
- Rajeshwara N Achur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lauder RM. Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement Ther Med 2008; 17:56-62. [PMID: 19114230 DOI: 10.1016/j.ctim.2008.08.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/29/2008] [Accepted: 08/29/2008] [Indexed: 01/13/2023] Open
Abstract
Chondroitin sulphate (CS) is widely consumed orally by humans, and non-humans as it is believed to be beneficial for those with joint-related pathologies. Data concerning the functions of chondroitin sulphate in this, and other, biological systems are being actively extended. However, it is important to appreciate that chondroitin sulphate molecules represent a heterogeneous population the structure of which varies with source. As commercially available chondroitin sulphate is derived from a range of sources, and the molecular functions of chondroitin sulphate depend upon the structure, there are a range of structures available with differing potential for therapeutic impacts on a range of pathologies. While the safety of CS is not presently in doubt, poor quality finished products have the potential to compromise clinical and lab-based studies and will fail to give consumers all of the benefits available. Major parameters including bioavailability and uptake have been studied but it is clear that significant challenges remain in the identification of composition, sequence and size impacts on function, understanding how the consumed material is altered during uptake and travels to a site of action and how it exerts an influence on biological processes. If we understand these factors it may be possible to predict impacts upon biological processes and identify specific chondroitin sulphate structures which may target specific pathologies.
Collapse
Affiliation(s)
- Robert M Lauder
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
25
|
Beeson JG, Elliott SR, Hommel M. Polymorphic and conserved targets of antibodies against Plasmodium falciparum during pregnancy. J Infect Dis 2008; 197:1350-1; author reply 1351-2. [PMID: 18422448 DOI: 10.1086/586905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Characteristics of Plasmodium falciparum-infected-erythrocyte adhesion to chondroitin sulfate. Infect Immun 2008; 76:2808; author reply 2808-9. [PMID: 18490468 DOI: 10.1128/iai.00178-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Achur RN, Muthusamy A, Madhunapantula SV, Gowda DC. Binding affinity of Plasmodium falciparum-infected erythrocytes from infected placentas and laboratory selected strains to chondroitin 4-sulfate. Mol Biochem Parasitol 2008; 159:79-84. [PMID: 18359524 DOI: 10.1016/j.molbiopara.2008.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
The adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in human placenta is mediated by chondroitin 4-sulfate (C4S). The C4S-adherent parasites selected from laboratory strains have been widely used for determining the C4S structural elements involved in IRBC binding and for the identification of parasite adhesive protein(s). However, as far as we know, the relative binding strength of the placental versus laboratory-selected parasites has not been reported. In this study, we show that IRBCs from the infected placentas bind to C4S about 3-fold higher than those selected for C4S adherence from laboratory strains. Although adherent parasites selected from several laboratory strains have comparable binding strengths, the one obtained from 3D7 parasites designated as 3D7N61 used for malaria genome sequencing, exhibits markedly lower binding strength. Furthermore, 3D7N61-CSA parasites lose most of the binding capacity by tenth generation in continuous culture.
Collapse
Affiliation(s)
- Rajeshwara N Achur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|