1
|
Sekiya M. Proton Pumping ATPases: Rotational Catalysis, Physiological Roles in Oral Pathogenic Bacteria, and Inhibitors. Biol Pharm Bull 2022; 45:1404-1411. [PMID: 36184496 DOI: 10.1248/bpb.b22-00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton pumping ATPases, both F-type and V/A-type ATPases, generate ATP using electrochemical energy or pump protons/sodium ions by hydrolyzing ATP. The enzymatic reaction and proton transport are coupled through subunit rotation, and this unique rotational mechanism (rotational catalysis) has been intensively studied. Single-molecule and thermodynamic analyses have revealed the detailed rotational mechanism, including the catalytically inhibited state and the roles of subunit interactions. In mammals, F- and V-ATPases are involved in ATP synthesis and organelle acidification, respectively. Most bacteria, including anaerobes, have F- and/or A-ATPases in the inner membrane. However, these ATPases are not believed to be essential in anaerobic bacteria since anaerobes generate sufficient ATP without oxidative phosphorylation. Recent studies suggest that F- and A-ATPases perform indispensable functions beyond ATP synthesis in oral pathogenic anaerobes; F-ATPase is involved in acid tolerance in Streptococcus mutans, and A-ATPase mediates nutrient import in Porphyromonas gingivalis. Consistently, inhibitors of oral bacterial F- and A-ATPases, such as phytopolyphenols and bedaquiline, strongly diminish growth and survival. Herein, we discuss rotational catalysis of bacterial F- and A-ATPases, and discuss their physiological roles, focusing on oral bacteria. We also review the effects of ATPase inhibitors on the growth and survival of oral pathogenic bacteria. The features of the catalytic mechanism and unique physiological roles in oral bacteria highlight the potential for proton pumping ATPases to serve as targets for oral antimicrobial agents.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
2
|
Iwamoto-Kihara A. Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biol Pharm Bull 2022; 45:1412-1418. [PMID: 36184497 DOI: 10.1248/bpb.b22-00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.
Collapse
|
3
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
4
|
Using a system's equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proc Natl Acad Sci U S A 2019; 116:5920-5924. [PMID: 30867295 DOI: 10.1073/pnas.1817778116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must operate far from equilibrium, utilizing and dissipating energy continuously to maintain their organization and to avoid stasis and death. However, they must also avoid unnecessary waste of energy. Recent studies have revealed that molecular machines are extremely efficient thermodynamically compared with their macroscopic counterparts. However, the principles governing the efficient out-of-equilibrium operation of molecular machines remain a mystery. A theoretical framework has been recently formulated in which a generalized friction coefficient quantifies the energetic efficiency in nonequilibrium processes. Moreover, it posits that, to minimize energy dissipation, external control should drive the system along the reaction coordinate with a speed inversely proportional to the square root of that friction coefficient. Here, we demonstrate the utility of this theory for designing and understanding energetically efficient nonequilibrium processes through the unfolding and folding of single DNA hairpins.
Collapse
|
5
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Sekiya M, Sakamoto Y, Futai M, Nakanishi-Matsui M. Role of α/β interface in F 1 ATPase rotational catalysis probed by inhibitors and mutations. Int J Biol Macromol 2017; 99:615-621. [DOI: 10.1016/j.ijbiomac.2017.02.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/24/2017] [Indexed: 01/26/2023]
|
7
|
Czub J, Wieczór M, Prokopowicz B, Grubmüller H. Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F 1-ATPase. J Am Chem Soc 2017; 139:4025-4034. [PMID: 28253614 DOI: 10.1021/jacs.6b11708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned energy conversion mechanism are not fully understood. Here, we use extensive molecular dynamics simulations to reconcile recent single-molecule experiments with structural data and provide a consistent thermodynamic, kinetic and mechanistic description of the main rotary substep in the synthetic cycle of mammalian ATP synthase. The calculated free energy profiles capture a discrete pattern in the rotation of the central γ-shaft, with a metastable intermediate located-consistently with recent experimental findings-at 70° relative to the X-ray position. We identify this rotary step as the ATP-dependent substep, and find that the associated free energy input supports the mechanism involving concurrent nucleotide binding and release. During the main substep, our simulations show no significant opening of the ATP-bound β subunit; instead, we observe that mechanical energy is transmitted to its nucleotide binding site, thus lowering the affinity for ATP. Simultaneously, the empty subunit assumes a conformation that enables the enzyme to harness the free energy of ADP binding to drive ATP release. Finally, we show that ligand exchange is regulated by a checkpoint mechanism, an apparent prerequisite for high efficiency in protein nanomotors.
Collapse
Affiliation(s)
- Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Bartosz Prokopowicz
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
9
|
A unique mechanism of curcumin inhibition on F1 ATPase. Biochem Biophys Res Commun 2014; 452:940-4. [DOI: 10.1016/j.bbrc.2014.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2022]
|
10
|
Nakanishi-Matsui M, Sekiya M, Yano S, Futai M. Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the ϵ subunit. J Biol Chem 2014; 289:30822-30831. [PMID: 25228697 DOI: 10.1074/jbc.m114.578872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan.
| | - Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| | - Shio Yano
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| | - Masamitsu Futai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
11
|
Oka H, Hosokawa H, Nakanishi-Matsui M, Dunn SD, Futai M, Iwamoto-Kihara A. Elastic rotation of Escherichia coli FOF1 having ε subunit fused with cytochrome b562 or flavodoxin reductase. Biochem Biophys Res Commun 2014; 446:889-93. [DOI: 10.1016/j.bbrc.2014.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
12
|
Nakanishi-Matsui M, Sekiya M, Futai M. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics. IUBMB Life 2013; 65:247-54. [PMID: 23441040 DOI: 10.1002/iub.1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022]
Abstract
In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, and Futai Special Laboratory, Yahaba, Iwate, Japan.
| | | | | |
Collapse
|
13
|
Shah NB, Hutcheon ML, Haarer BK, Duncan TM. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands. J Biol Chem 2013; 288:9383-95. [PMID: 23400782 DOI: 10.1074/jbc.m113.451583] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ε binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
14
|
Bilyard T, Nakanishi-Matsui M, Steel BC, Pilizota T, Nord AL, Hosokawa H, Futai M, Berry RM. High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120023. [PMID: 23267177 DOI: 10.1098/rstb.2012.0023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.
Collapse
Affiliation(s)
- Thomas Bilyard
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gol’dshtein BN, Aksirov AM, Zakrzhevskaya DT. Irregular activity oscillations of a rotary molecular motor: A simple kinetic model of F1-ATPase. Mol Biol 2012. [DOI: 10.1134/s0026893312040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Sekiya M, Nakamoto RK, Nakanishi-Matsui M, Futai M. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase. J Biol Chem 2012; 287:22771-80. [PMID: 22582396 DOI: 10.1074/jbc.m112.374868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and β stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the β/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
17
|
Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1711-21. [PMID: 22459334 DOI: 10.1016/j.bbabio.2012.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 01/28/2023]
Abstract
We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among β and γ subunits and the β subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
18
|
A model of stepping kinetics for rotary enzymes. Application to the F1-ATPase. Biosystems 2010; 104:9-13. [PMID: 21195126 DOI: 10.1016/j.biosystems.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/02/2010] [Accepted: 12/18/2010] [Indexed: 11/22/2022]
Abstract
Our simple kinetic model, based on the classic "binding change mechanism", describes the stepping kinetics for the rotary enzyme motors. The model shows that the cooperative interactions between active sites in the motor enzyme F1-ATPase induce the stepping product release. This phenomenon results from non-harmonic oscillations in the enzyme forms. The found rate constants, corresponding to the stepping phenomenon, are close to the rate constants known for the F1-ATPase. The duration of dwells during the product release is shown to depend on the ATP concentration in accordance with the known experimental data.
Collapse
|
19
|
Sekiya M, Hosokawa H, Nakanishi-Matsui M, Al-Shawi MK, Nakamoto RK, Futai M. Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J Biol Chem 2010; 285:42058-67. [PMID: 20974856 DOI: 10.1074/jbc.m110.176701] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis-dependent rotation of the F(1) sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under V(max) conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401-22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5'-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 μM) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F(1) requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ε subunit, the inhibitor of F(1)-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ε subunit has little effect on the transition between active and inhibited states. Rather, the ε subunit confers lower activation energy of steady-state rotation. These results suggest that the ε subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Roles of the beta subunit hinge domain in ATP synthase F(1) sector: hydrophobic network formed by introduced betaPhe174 inhibits subunit rotation. Biochem Biophys Res Commun 2010; 395:173-7. [PMID: 20331967 DOI: 10.1016/j.bbrc.2010.03.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 11/23/2022]
Abstract
The ATP synthase beta subunit hinge domain (betaPhe148 approximately betaGly186, P-loop/alpha-helixB/loop/beta-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F(1) with the betaSer174 to Phe mutation in the domain lowered the gamma subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F(1) sector. Stochastic fluctuation and a key domain of the beta subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the betaMet159, betaIle163, and betaAla167 residues of the beta subunit are involved together with the mutant betaPhe174. The network is expected to stabilize the conformation of beta(DP) (nucleotide-bound form of the beta subunit), resulting in increased activation energy for transition to beta(E) (empty beta subunit). The modeling further predicts that replacement of betaMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of betaS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the beta subunit hinge domain is pertinent for the rotational catalysis.
Collapse
|
21
|
Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M. The mechanism of rotating proton pumping ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1343-52. [PMID: 20170625 DOI: 10.1016/j.bbabio.2010.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
Abstract
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.
| | | | | | | |
Collapse
|
22
|
Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chávez FP. New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 2010; 10:7. [PMID: 20067623 PMCID: PMC2817675 DOI: 10.1186/1471-2180-10-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
Collapse
Affiliation(s)
- Cristian Varela
- Department of Biology, Faculty of Sciences, Laboratory of Molecular Microbiology and Biotechnology & Millennium Institute of Cell Dynamics and Biotechnology, University of Chile, Las Palmeras 3425, Nuñoa, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
23
|
Sekiya M, Nakamoto RK, Al-Shawi MK, Nakanishi-Matsui M, Futai M. Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of gamma-beta subunit interactions in the catalytic dwell. J Biol Chem 2009; 284:22401-22410. [PMID: 19502237 DOI: 10.1074/jbc.m109.009019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The temperature-dependent rotation of F1-ATPase gamma subunit was observed in V(max) conditions at low viscous drag using a 60-nm gold bead (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). The Arrhenius slopes of the speed of the individual 120 degrees steps and reciprocal of the pause length between rotation steps were very similar, indicating a flat energy pathway followed by the rotationally coupled catalytic cycle. In contrast, the Arrhenius slope of the reciprocal pause length of the gammaM23K mutant F1 was significantly increased, whereas that of the rotation rate was similar to wild type. The effects of the rotor gammaM23K substitution and the counteracting effects of betaE381D mutation in the interacting stator subunits demonstrate that the rotor-stator interactions play critical roles in the utilization of stored elastic energy. The gammaM23K enzyme must overcome an abrupt activation energy barrier, forcing it onto a less favored pathway that results in uncoupling catalysis from rotation.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Marwan K Al-Shawi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Masamitsu Futai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
24
|
Nakanishi-Matsui M, Futai M. Stochastic rotational catalysis of proton pumping F-ATPase. Philos Trans R Soc Lond B Biol Sci 2008; 363:2135-42. [PMID: 18339602 DOI: 10.1098/rstb.2008.2266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.
Collapse
|
25
|
Marshansky V, Futai M. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 2008; 20:415-26. [PMID: 18511251 PMCID: PMC7111286 DOI: 10.1016/j.ceb.2008.03.015] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 12/31/2022]
Abstract
Vacuolar-type H+-ATPase (V-ATPase)-driven proton pumping and organellar acidification is essential for vesicular trafficking along both the exocytotic and endocytotic pathways of eukaryotic cells. Deficient function of V-ATPase and defects of vesicular acidification have been recently recognized as important mechanisms in a variety of human diseases and are emerging as potential therapeutic targets. In the past few years, significant progress has been made in our understanding of function, regulation, and the cell biological role of V-ATPase. Here, we will review these studies with emphasis on novel direct roles of V-ATPase in the regulation of vesicular trafficking events.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Program in Membrane Biology, Center for Systems Biology, Simches Research Center, CPZN No. 8212, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
26
|
Kashiwagi S, Iwamoto-Kihara A, Kojima M, Nonaka T, Futai M, Nakanishi-Matsui M. Effects of mutations in the beta subunit hinge domain on ATP synthase F1 sector rotation: interaction between Ser 174 and Ile 163. Biochem Biophys Res Commun 2007; 365:227-31. [PMID: 17983592 DOI: 10.1016/j.bbrc.2007.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/24/2007] [Indexed: 11/16/2022]
Abstract
A complex of gamma, epsilon, and c subunits rotates in ATP synthase (F(o)F(1)) coupling with proton transport. Replacement of betaSer174 by Phe in beta-sheet4 of the beta subunit (betaS174F) caused slow gamma subunit revolution of the F(1) sector, consistent with the decreased ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the beta subunit, J. Biol. Chem. 282 (2007) 20698-20704]. Modeling of the domain including beta-sheet4 and alpha-helixB predicted that the mutant betaPhe174 residue undergoes strong and weak hydrophobic interactions with betaIle163 and betaIle166, respectively. Supporting this prediction, the replacement of betaIle163 in alpha-helixB by Ala partially suppressed the betaS174F mutation: in the double mutant, the revolution speed and ATPase activity recovered to about half of the levels in the wild-type. Replacement of betaIle166 by Ala lowered the revolution speed and ATPase activity to the same levels as in betaS174F. Consistent with the weak hydrophobic interaction, betaIle166 to Ala mutation did not suppress betaS174F. Importance of the hinge domain [phosphate-binding loop (P-loop)/alpha-helixB/loop/beta-sheet4, betaPhe148-betaGly186] as to driving rotational catalysis is discussed.
Collapse
Affiliation(s)
- Sachiko Kashiwagi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Futai M. Our research on proton pumping ATPases over three decades: their biochemistry, molecular biology and cell biology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 82:416-38. [PMID: 25792771 PMCID: PMC4338836 DOI: 10.2183/pjab.82.416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/11/2006] [Indexed: 05/24/2023]
Abstract
ATP is synthesized by F-type proton-translocating ATPases (F-ATPases) coupled with an electrochemical proton gradient established by an electron transfer chain. This mechanism is ubiquitously found in mitochondria, chloroplasts and bacteria. Vacuolar-type ATPases (V-ATPases) are found in endomembrane organelles, including lysosomes, endosomes, synaptic vesicles, etc., of animal and plant cells. These two physiologically different proton pumps exhibit similarities in subunit assembly, catalysis and the coupling mechanism from chemistry to proton transport through subunit rotation. We mostly discuss our own studies on the two proton pumps over the last three decades, including ones on purification, kinetic analysis, rotational catalysis and the diverse roles of acidic luminal organelles. The diversity of organellar proton pumps and their stochastic fluctuation are the important concepts derived recently from our studies.
Collapse
Affiliation(s)
- Masamitsu Futai
- Futai Special Laboratory, Microbial Chemistry Research Center, Microbial Chemistry Research Foundation, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo,
Japan
| |
Collapse
|